246 Am β^- decay (25.0 min) 1976Mu03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 198,449 (2024)	31-Jul-2022

Parent: ²⁴⁶Am: E=0.0+x; $J^{\pi}=(2^{-})$; $T_{1/2}=25.0 \text{ min } 2$; $Q(\beta^{-})=2377 \text{ syst}$; $\%\beta^{-}$ decay=100

²⁴⁶Am-Q(β⁻): 2377 *18* (syst, 2021Wa16).

- 1976Mu03: ²⁴⁶Pu was produced by double neutron capture on ²⁴⁴Pu. at the Oak Ridge National Laboratory high flux reactor. Gamma rays from the β decay sequence of ²⁴⁶Pu \rightarrow ²⁴⁶Am \rightarrow ²⁴⁶Cm were investigated with Ge(Li) planar, coaxial and Compton-suppressed Ge(Li) detectors. Conversion-electron spectra were measured with a Si(Li) detector (FWHM=2 keV). Measured Ey, Iy, $\gamma\gamma$, Ice, and conversion coefficients.
- 1971Mu05: ²⁴⁶Pu was produced from the debris of a heavy element- production underground nuclear detonation. It was then followed by a series of chemical separation processes. γ -ray singles measurements from the β decay sequence of ²⁴⁶Pu \rightarrow ²⁴⁶Am \rightarrow ²⁴⁶Cm was performed using several Ge(Li) detectors.

1966Or01: ²⁴⁶Pu was produced from the underground explosion, and was chemically separated. γ -ray singles measurements from the β decay of ²⁴⁶Am \rightarrow ²⁴⁶Cm was performed using γ -scintillation spectrometers, and Ge(Li) detectors. A Au-surface-barrier electron detector was used to measure the electron spectrum. Measured, γ singles, $\gamma\gamma$ - coin, E γ , I γ and conversion-electron data.

Others: 1965St10,1956Sm85.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \ddagger}$
0#	0^{+}	4706 y <i>40</i>	1593.693 ^h 23	2^{-}
42.835 [#] 17	2+	123.2 ps 23	1601.219 27	$(2,3)^+$
141.986 [#] 24	4+	-	1604.161 ^{<i>i</i>} 32	(1 ⁻)
294.88 17	6+		1621.483 ^h 25	3-
841.668 [@] 20	2-		1628.90? 7	
876.431 [@] 22	3-		1633.521 ^{<i>i</i>} 32	(2)-
923.297 [@] 28	4-		1659.19 8	(1 ⁻)
1078.844 <mark>&</mark> 20	1-		1661.651 ^j 32	(1^{+})
1104.854 ^{&} 23	2-		1670.990 ⁱ 29	(3 ⁻)
1124.257 ^a 24	2^{+}		1680.80 ^j 5	(2^{+})
1128.009 ^{&} 25	3-		1712.37 <mark>j</mark> 5	(3+)
1165.473 ^{<i>a</i>} 32	3+		1780.799 <i>30</i>	2+
1174.72 ^b 4	0^{+}		1821.75 6	
1210.52 ^b 5	2^{+}		1836.73 6	$2^+, 1^-$
1219.87 ^a 8	4+		1856.55 <i>4</i>	3+
1249.766 ^c 22	1-		1870.19 5	$1,2^{+}$
1289.32 ^d 26	0^{+}		1875.52 11	1,2+
1300.429 ^c 34	3-		1886.756 <i>32</i>	(1^{+})
1317.56? ^d 5	$(2)^{+}$		1898.07 9	2+
1340.18 5			1901.31 6	2+,3
1348.860 ^e 22	1-		1906.10 14	$2^+,3,4^+$
1366.619 ^e 24	(2^{-})		1909.31 5	2+,1
1379.21 ^{<i>a</i>} 7	(4^{+})		1924.55 <i>4</i>	$1,2^{+}$
1451.882 ^{<i>f</i>} 32	1^{+}		1947.07 6	$2^+, 3, 4^+$
1478.42 ^{<i>f</i>} 4	(2^{+})		1983.33 8	$(1^-, 2^+)$
1509.26 ^f 5	(3+)		2032.49 6	1,2+
1525.917 ⁸ 24	3-		2146.04 5	1,2+
1573.74 5	(1^{+})		2171.41 6	2+,3

²⁴⁶Cm Levels

 $^{^{246}}$ Am-E: x=30 10 (1984So03). X=0 is assumed for log*ft* calculation.

²⁴⁶Am β^- decay (25.0 min) 1976Mu03 (continued)

²⁴⁶Cm Levels (continued)

- † From least squares fit to $E\gamma$ data by the evaluator.
- [‡] From Adopted Levels.
- [#] Band(A): g.s. rotational band. ^{(@} Band(B): $K^{\pi}=2^{-}$ octupole vibrational band.
- & Band(C): $K^{\pi} = 1^{-}$ octupole vibrational band.
- ^{*a*} Band(E): $K^{\pi}=1^{-}$ φ vibrational band. ^{*b*} Band(E): $K^{\pi}=0^{+}$ band. ^{*c*} Band(F): $K^{\pi}=0^{-}$ band.

- ^{*d*} Band(G): second $K^{\pi} = 0^+$ band.
- ^{*e*} Band(H): second $K^{\pi} = 1^{-}$ band.
- ^{*f*} Band(I): $K^{\pi} = 1^+$ band.
- ^g Band(J): $K^{\pi}=3^{-}$ octupole vibrational band head.
- ^{*h*} Band(K): second $K^{\pi} = 2^{-}$ band.
- ^{*i*} Band(L): third $K^{\pi} = 1^{-}$ band.
- ^{*j*} Band(M): second $K^{\pi} = 1^+$ band.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†@}	Log ft	Comments
(236 syst)	2171.41	0.0109 27	7.33 17	av E <i>B</i> =55.3 52
(261 syst)	2146.04	0.00461 31	7.87 12	av $E\beta = 62.6 53$
(375 syst)	2032.49	0.012 6	8.00 23	av $E\beta = 96.456$
(424 syst)	1983.33	0.018 4	8.01 12	av $E\beta = 111.757$
(460 syst)	1947.07	0.0081 14	8.48 10	av $E\beta = 123.058$
(482 syst)	1924.55	0.0156 13	8.27 7	av $E\beta = 130.258$
(498 syst)	1909.31	0.0064 11	8.70 10	av $E\beta = 135.158$
(501 syst)	1906.10	0.00184 33	9.25 10	av $E\beta = 136.159$
(506 syst)	1901.31	0.0221 20	8.19 7	av $E\beta = 137.659$
(509 syst)	1898.07	0.014 11	8.4 4	av $E\beta = 138.759$
(520 syst)	1886.756	0.059 10	7.81 9	av $E\beta = 142.359$
(531 syst)	1875.52	0.036 14	8.05 18	av $E\beta = 146.059$
(537 syst)	1870.19	0.025 7	8.23 14	av $E\beta = 147.759$
(550 syst)	1856.55	0.048 16	7.98 16	av $E\beta = 152.159$
(570 syst)	1836.73	0.0105 28	8.69 <i>13</i>	av $E\beta = 158.6 \ 60$
(585 syst)	1821.75	0.0238 17	8.38 6	av $E\beta = 163.6 \ 60$
(626 syst)	1780.799	0.274 16	7.42 6	av $E\beta = 177.1 \ 61$
(695 syst)	1712.37	0.026 4	8.60 8	av $E\beta = 200.2 \ 62$
(726 syst)	1680.80	0.170 28	7.85 9	av $E\beta = 211.0 \ 62$
(736 syst)	1670.990	0.435 25	7.46 5	av $E\beta = 214.3 \ 62$
(745 syst)	1661.651	0.360 19	7.56 5	av $E\beta = 217.5 \ 62$
(748 syst)	1659.19	0.041 4	8.51 6	av E β =218.4 63
(773 syst)	1633.521	0.68 5	7.34 5	av E β =227.3 63
(778 syst)	1628.90?	0.0069 32	9.35 21	av E β =228.9 63
(786 syst)	1621.483	0.94 5	7.23 5	av Eβ=231.4 63
(803 syst)	1604.161	0.207 11	7.92 5	av E β =237.5 63
(806 syst)	1601.219	0.97 5	7.25 5	av E β =238.5 63
(813 syst)	1593.693	1.76 9	7.01 4	av E β =241.1 63
(833 syst)	1573.74	0.074 7	8.42 6	av E β =248.1 64
(881 syst)	1525.917	1.74 9	7.14 4	av E β =265.0 64
(898 syst)	1509.26	< 0.0140	>9.3	av E β =270.9 64
(929 syst)	1478.42	0.092 22	8.49 11	av E β =281.9 65
(955 syst)	1451.882	0.112 17	8.45 8	av E β =291.4 65
(1028 ^{&} syst)	1379.21	0.017 11	9.9^{1u} 3	av $E\beta = 305.6\ 60$
(1040 syst)	1366.619	1.12 27	7.58 11	av E β =322.2 66
· · ·				•

Continued on next page (footnotes at end of table)

²⁴⁶Am $β^-$ decay (25.0 min) 1976Mu03 (continued)

Ιβ^{-†@} Comments E(decay) E(level) Log ft (1058 syst) 6.93 4 1348.860 5.42 29 av Eβ=328.7 66 (1067 syst) 1340.18 0.038 4 9.09 6 av $E\beta = 331.8 \ 66$ (1089[&] syst) 0.276 15 av Eβ=340.1 67 1317.56? 8.26 4 (1107 syst) 1300.429 0.022 13 9.4 3 av Eβ=346.4 67 av $E\beta = 365.1 \ 67$ (1157 syst) 1249.766 0.48 19 8.12 18 (1196 syst) 1210.52 0.024 11 9.47 20 av Eβ=379.6 67 10.29¹*u* 14 (1232 syst) 1174.72 0.017 5 av Eβ=374.7 62 (1279 syst) 1128.009 1.87 19 7.68 5 av E β =410.5 68 (1283 syst) 1124.257 0.25 5 8.56 9 av Eβ=411.9 69 (1302[‡] syst) 1104.854 14.3 8 6.83 4 av Eβ=419.2 69 (1328[‡] syst) 1078.844 37.5 20 6.44 4 av Eβ=429.0 68 (1531 syst) 876.431 7.06 7.40 5 av E\beta=506.2 70 (1565 syst) 841.668 16.4 9 7.06 3 av Eβ=519.6 70 $0.008 \ 7$ (2112 syst) 294.88 10.9 4 av Eβ=734.3 72 (2265[&] syst) 10.4^{1u} 3 141.986 0.42 28 av Eβ=752.5 70 ≈3.5[#] 42.835 (2364 syst) ≈8.4 av Eβ=835.1 73 ≈3.5[#] $\approx 9.6^{1u}$ av Eβ=807.3 70 (2407 syst) 0

 β^{-} radiations (continued)

[†] From level scheme intensity balance. The evaluator notes that several unplaced γ rays may affect the value of I β deduced from intensity balance.

[‡] The Fermi plot of β -spectrum from ²⁴⁶Pu+²⁴⁶Am equilibrium source shows three groups: 2.10 MeV 7%, 1.60 MeV 14% and 1.31 MeV 79% (1956Sm85).

[#] Iβ(g.s.+43 level)≈7 (1956Sm85).

[@] Absolute intensity per 100 decays.

[&] Existence of this branch is questionable.

 γ (²⁴⁶Cm)

I γ normalization: From $\Sigma I(\gamma + ce)(to 0.0+43 \text{ level}) = 93\% 4$. (I($\gamma + ce$)(42.852 γ) not included in this sum), since I $\beta^-(g.s.) + I\beta(42\text{-keV state}) = 7\% 4$ (1956Sm85). Uncertainty was not provided by the authors (1956Sm85), but was assigned by the evaluator.

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	α^{f}	$I_{(\gamma+ce)}^{g}$	Comments
34.76‡		876.431	3-	841.668	2-	(M1,E2)	1.5×10 ³ 14	216 [‡] 20	ce(L)/(γ +ce)=0.7 5; ce(M)/(γ +ce)=0.20 23 ce(N)/(γ +ce)=0.06 7; ce(O)/(γ +ce)=0.014 17; ce(P)/(γ +ce)=0.0022 28; ce(Q)/(γ +ce)=1.4×10 ⁻⁵ 13 α (L)=1.1×10 ³ 10; α (M)=3.1×10 ² 29 α (N)=9; α (O)=21 19; α (P)=3.5 31; α (Q)=0.021 7 Mult.: As given in the Adopted Gammas.
42.9 2	≈2	42.835	2+	0	0+	E2 ^{&}	1058 28		α (L)=766 21; α (M)=216 6 α (N)=60.0 16; α (O)=14.5 4; α (P)=2.37 6; α (Q)=0.00582 14 %I γ ≈0.05
46.87 [‡]		923.297	4-	876.431	3-	[M1,E2]	3.8×10 ² 31	3.5 [‡] 8	ce(L)/(γ +ce)=0.7 4; ce(M)/(γ +ce)=0.20 21 ce(N)/(γ +ce)=0.06 6; ce(O)/(γ +ce)=0.014 16; ce(P)/(γ +ce)=0.0023 26; ce(Q)/(γ +ce)=2.1×10 ⁻⁵ 20 α (L)=2.7×10 ² 23; α (M)=8 α (N)=21 18; α (O)=5 4; α (P)=0.9 7; α (Q)=0.008 4
81.63 [‡]		923.297	4-	841.668	2-	[E2]	48.4 7	5.5 [‡] 12	$\begin{array}{l} \text{ce(L)}/(\gamma+\text{ce})=0.708\ 7;\ \text{ce(M)}/(\gamma+\text{ce})=0.2001\ 35\\ \text{ce(N)}/(\gamma+\text{ce})=0.0557\ 11;\ \text{ce(O)}/(\gamma+\text{ce})=0.01348\ 26;\\ \text{ce(P)}/(\gamma+\text{ce})=0.00223\ 4;\ \text{ce(Q)}/(\gamma+\text{ce})=7.85\times10^{-6}\ 15\\ \alpha(\text{L})=35.0\ 5;\ \alpha(\text{M})=9.90\ 14\\ \alpha(\text{N})=2.75\ 4;\ \alpha(\text{O})=0.666\ 9;\ \alpha(\text{P})=0.1102\ 15;\ \alpha(\text{Q})=0.000388\ 5 \end{array}$
99.2 2 *150.81 <i>14</i>	6.7 <i>5</i> 0.32 <i>6</i>	141.986	4+	42.835	2+	E2 ^{&}	19.43 <i>33</i>		α (L)=14.05 24; α (M)=3.97 7 α (N)=1.105 19; α (O)=0.268 5; α (P)=0.0444 7; α (Q)=0.0001817 29 %Iy=0.166 15 %Iy=0.0079 15
152.9 [#] 2	0.18 6	294.88	6+	141.986	4+	[E2]	2.88 4		$\alpha(K)=0.1739\ 24;\ \alpha(L)=1.957\ 30;\ \alpha(M)=0.551\ 8$ $\alpha(N)=0.1534\ 23;\ \alpha(O)=0.0373\ 6;\ \alpha(P)=0.00627\ 9;$ $\alpha(Q)=4.00\times10^{-5}\ 6$ %1y=0.0045 15
171.02 <i>11</i> <i>x</i> 227.4 2	2.0 8 0.6 2	1249.766	1-	1078.844	1-	[M1,E2]	4.4 25		$\begin{aligned} &\alpha(\mathbf{K})=2.8\ 26;\ \alpha(\mathbf{L})=1.15\ 4;\ \alpha(\mathbf{M})=0.304\ 32\\ &\alpha(\mathbf{N})=0.084\ 9;\ \alpha(\mathbf{O})=0.0209\ 19;\ \alpha(\mathbf{P})=0.00379\ 7;\\ &\alpha(\mathbf{Q})=1.5\times10^{-4}\ 12\\ &\%\mathbf{I}\gamma=0.050\ 20\\ &\%\mathbf{I}\gamma=0.015\ 5 \end{aligned}$
227.4 ^{#i} 2	0.6 2	1593.693	2-	1366.619	(2 ⁻)	[M1,E2]	1.8 12		α(K)=1.3 12; α(L)=0.43 7; α(M)=0.110 11

4

					246 Am β^- de	cay (25.0 min)	1976Mu03	(continued)
						γ ⁽²⁴⁶ Cm) (cc	ontinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ	α^{f}	Comments
228.71 7	1.5 3	1478.42	(2+)	1249.766 1-	[E1]		0.0789 11	$\begin{array}{l} \alpha(\mathrm{N})=0.0304 \ 30; \ \alpha(\mathrm{O})=0.0076 \ 9; \ \alpha(\mathrm{P})=0.00141 \ 26; \ \alpha(\mathrm{Q})=7 \\ \% \mathrm{I}\gamma=0.015 \ 5 \\ \alpha(\mathrm{K})=0.0613 \ 9; \ \alpha(\mathrm{L})=0.01322 \ 19; \ \alpha(\mathrm{M})=0.00324 \ 5 \\ \alpha(\mathrm{N})=0.000882 \ 12; \ \alpha(\mathrm{O})=0.0002195 \ 31; \ \alpha(\mathrm{P})=4.04\times10^{-5} \ 6; \\ \alpha(\mathrm{Q})=2.124\times10^{-6} \ 30 \\ \% \mathrm{Le}=0.027 \ 8 \end{array}$
237.23 4	5.8 <i>3</i>	1078.844	1-	841.668 2-	[M1,E2]		1.6 11	$\alpha(K) = 0.057.8$ $\alpha(K) = 1.1.10; \ \alpha(L) = 0.37.7; \ \alpha(M) = 0.095.13$ $\alpha(N) = 0.0263.33; \ \alpha(O) = 0.0066.10; \ \alpha(P) = 0.00122.26; \ \alpha(Q) = 6$ $\alpha(K) = 0.144.10$
238.64 <i>3</i>	5.9 <i>3</i>	1366.619	(2 ⁻)	1128.009 3-	[M1,E2]		1.6 11	$\alpha(K) = 0.14470$ $\alpha(K) = 1.170; \alpha(L) = 0.367; \alpha(M) = 0.09313$ $\alpha(N) = 0.025833; \alpha(O) = 0.006410; \alpha(P) = 0.0012026; \alpha(Q) = 6$ $\alpha(V) = 0.14610$
244.03 3	27.5 10	1348.860	1-	1104.854 2-	(M1)		2.534 35	$\alpha(K) = 1.99128; \ \alpha(L) = 0.4086; \ \alpha(M) = 0.099614$ $\alpha(N) = 0.02744; \ \alpha(O) = 0.0069710; \ \alpha(P) = 0.00137119;$ $\alpha(Q) = 9.79 \times 10^{-5}14$ %Iy=0.684 Marku $\alpha(K) = 2.020(10000001)$
244.9 2	0.25 15	1593.693	2-	1348.860 1-	[M1,E2]		1.5 10	Mult. $a(K)=2.9 \ 20$ (19000101). $a(K)=1.0 \ 9; \ \alpha(L)=0.33 \ 7; \ \alpha(M)=0.086 \ 13$ $a(N)=0.0236 \ 35; \ \alpha(O)=0.0059 \ 10; \ \alpha(P)=0.00110 \ 26; \ \alpha(Q)=5$ %Ly=0.006 4
251.50 10	0.11 2	1128.009	3-	876.431 3-	[M1,E2]		1.4 10	$\alpha(K) = 0.0034$ $\alpha(K) = 1.0.9; \ \alpha(L) = 0.307; \ \alpha(M) = 0.07813$ $\alpha(N) = 0.021635; \ \alpha(O) = 0.005410; \ \alpha(P) = 0.0010125; \ \alpha(Q) = 5$ $\alpha(V) = 0.00275$
261.73 5	6.3 2	1366.619	(2 ⁻)	1104.854 2-	[M1,E2]		1.2 9	$\alpha(\text{K})=0.00275$ $\alpha(\text{K})=0.98; \alpha(\text{L})=0.277; \alpha(\text{M})=0.06913$ $\alpha(\text{N})=0.0194; \alpha(\text{O})=0.004710; \alpha(\text{P})=8.9\times10^{-4}24; \alpha(\text{Q})=4$
263.17 5	1.35 9	1104.854	2-	841.668 2-	[M1,E2]		1.2 8	$\alpha(K)=0.156 \ 9$ $\alpha(K)=0.9 \ 8; \ \alpha(L)=0.26 \ 7; \ \alpha(M)=0.067 \ 13$ $\alpha(N)=0.019 \ 4; \ \alpha(O)=0.0047 \ 10; \ \alpha(P)=8.7\times10^{-4} \ 24;$ $\alpha(Q)=4.4\times10^{-5} \ 35$ $\%I\gamma=0.0335 \ 27$
267.3 ^h 5	0.2 ^{<i>h</i>} 1	1478.42	(2+)	1210.52 2+	[M1,E2]		1.2 8	$\alpha(K)=0.8\ 7;\ \alpha(L)=0.25\ 7;\ \alpha(M)=0.064\ 13$ $\alpha(N)=0.0177\ 35;\ \alpha(O)=0.0044\ 10;\ \alpha(P)=8.3\times10^{-4}\ 23;$ $\alpha(Q)=4.2\times10^{-5}\ 34$ %I $\gamma=0.0050\ 25$
267.3 ^h 5	0.2 ^{<i>h</i>} 1	1633.521	(2)-	1366.619 (2-)) [M1,E2]		1.2 8	$\alpha(K)=0.8\ 7;\ \alpha(L)=0.25\ 7;\ \alpha(M)=0.064\ 13$ $\alpha(N)=0.0177\ 35;\ \alpha(O)=0.0044\ 10;\ \alpha(P)=8.3\times10^{-4}\ 23;$ $\alpha(Q)=4.2\times10^{-5}\ 34$
270.07 3	41.2 13	1348.860	1-	1078.844 1-	M1+E2	0.36 +10-13	1.73 10	$\alpha(K)=1.34$ 9; $\alpha(L)=0.292$ 9; $\alpha(M)=0.0720$ 20

S

²⁴⁶₉₆Cm₁₅₀-5

				:	²⁴⁶ Am	β^- decay (2	25.0 min)	1976Mu03 (continued)
						<u>γ(</u>	²⁴⁶ Cm) (con	tinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	α^{f}	Comments
								α (N)=0.0198 5; α (O)=0.00502 14; α (P)=0.000979 33; α (Q)=6.6×10 ⁻⁵ 4 %I γ =1.02 6 Mult., δ : α (K)exp=1.34 6, α (L)exp=0.34 10 (1976Mu03); α (K)exp=2.2 16 (1966Or01).
271.1 2 277.0 2	0.2 <i>1</i> 0.08 <i>3</i>	1983.33 1451.882	$(1^{-},2^{+})$ 1^{+}	1712.37 1174.72	(3 ⁺) 0 ⁺	[M1]	1.780 25	% $I\gamma=0.0050\ 25$ $\alpha(K)=1.399\ 20;\ \alpha(L)=0.286\ 4;\ \alpha(M)=0.0698\ 10$ $\alpha(N)=0.01918\ 27;\ \alpha(O)=0.00488\ 7;\ \alpha(P)=0.000961\ 14;\ \alpha(Q)=6.86\times10^{-5}\ 10$
287.78 3	5.20 18	1366.619	(2 ⁻)	1078.844	1-	(M1)	1.601 22	%Iγ=0.0020 8 α (K)=1.259 <i>18</i> ; α (L)=0.257 <i>4</i> ; α (M)=0.0628 <i>9</i> α (N)=0.01724 <i>24</i> ; α (O)=0.00439 <i>6</i> ; α (P)=0.000864 <i>12</i> ; α (Q)=6.16×10 ⁻⁵ <i>9</i> %Iγ=0.129 <i>7</i> Mult.: α (K)exp=1.5 <i>12</i> (1966Or01).
289.3 ^h 2	0.19 ^h 5	1165.473	3+	876.431	3-	[E1]	0.0470 7	α (K)=0.0369 5; α (L)=0.00763 11; α (M)=0.001860 26 α (N)=0.000507 7; α (O)=0.0001268 18; α (P)=2.362×10 ⁻⁵ 33; α (Q)=1.314×10 ⁻⁶ 18 %I γ =0.0047 13
289.3 ^h 2	0.19 ^h 5	1509.26	(3+)	1219.87	4+	[M1,E2]	0.9 7	α (K)=0.7 6; α (L)=0.19 6; α (M)=0.049 12 α (N)=0.0136 34; α (O)=0.0034 9; α (P)=6.4×10 ⁻⁴ 21; α (Q)=3.4×10 ⁻⁵ 27 %1 γ =0.0047 13
293.37 ^h 15	0.18 ^h 5	1593.693	2-	1300.429	3-	[M1,E2]	0.9 6	α (K)=0.6 6; α (L)=0.19 6; α (M)=0.047 12 α (N)=0.0130 33; α (O)=0.0033 9; α (P)=6.2×10 ⁻⁴ 20; α (Q)=3.2×10 ⁻⁵ 26 %I γ =0.0045 13
293.37 ^h 15 *302.96.5	0.18 ^h 5 0.28 3	1633.521	(2) ⁻	1340.18				$\%_{1\gamma=0.0045}$ 13 $\%_{1\gamma=0.0069.8}$
306.0 3	0.05 3	1525.917	3-	1219.87	4+	[E1]	0.0417 6	$\begin{array}{l} \alpha(\mathrm{K})=0.0328\ 5;\ \alpha(\mathrm{L})=0.00671\ 10;\ \alpha(\mathrm{M})=0.001635\ 23\\ \alpha(\mathrm{N})=0.000446\ 6;\ \alpha(\mathrm{O})=0.0001115\ 16;\ \alpha(\mathrm{P})=2.084\times10^{-5}\ 30;\\ \alpha(\mathrm{Q})=1.174\times10^{-6}\ 17\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
321.07 4	0.75 5	1621.483	3-	1300.429	3-	[M1,E2]	0.7 5	$\alpha(K)=0.54$; $\alpha(L)=0.145$; $\alpha(M)=0.03511$ $\alpha(N)=0.009829$; $\alpha(O)=0.00258$; $\alpha(P)=4.6\times10^{-4}17$; $\alpha(Q)=2.5\times10^{-5}20$ %1 $\gamma=0.018615$
325.61 8 327.81 <i>17</i>	0.24 <i>4</i> 0.12 <i>4</i>	1947.07 1451.882	2 ⁺ ,3,4 ⁺ 1 ⁺	1621.483 1124.257	3 ⁻ 2 ⁺	[M1,E2]	0.6 5	% I γ =0.0060 10 α (K)=0.5 4; α (L)=0.13 5; α (M)=0.033 10 α (N)=0.0092 28; α (O)=0.0023 8; α (P)=4.4×10 ⁻⁴ 17; α (Q)=2.4×10 ⁻⁵ 19 % I γ =0.0030 10
x329.87 <i>14</i> 343.93 <i>4</i>	0.13 <i>4</i> 1.04 <i>4</i>	1593.693	2-	1249.766	1-	[M1,E2]	0.6 4	% $I\gamma=0.0032$ 10 $\alpha(K)=0.42$ 35; $\alpha(L)=0.11$ 4; $\alpha(M)=0.029$ 10

From ENSDF

²⁴⁶₉₆Cm₁₅₀-6

					²⁴⁶ Ai	m β^- decay	(25.0 min)	1976Mu03	(continued)
							$\gamma(^{246}{ m Cm})$ (co	ntinued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.@	δ	αf	Comments
									α (N)=0.0079 26; α (O)=0.0020 7; α (P)=3.8×10 ⁻⁴ 15; α (Q)=2.1×10 ⁻⁵ 17 %1 γ =0.0258 15
347.26 ⁱ 4	0.97 5	1856.55	3+	1509.26	(3+)				%I γ =0.0241 <i>17</i> Mult.: α (K)exp=4.4 8 (1976Mu03). Theory: α (K)(M1)=0.806, α (K)(E2)=0.0632. Since this ce(K) is only 0.5 keV from the ce(L1) of the strong 244.03 γ , and since 1976Mu03 do not give the Ice(L)(244.03 γ) the α (K)exp must be considered guestionable
354.45 6	0.26 4	1604.161	(1 ⁻)	1249.766	1-	[M1,E2]		0.5 4	$\alpha(K)=0.38\ 32;\ \alpha(L)=0.10\ 4;\ \alpha(M)=0.026\ 9$ $\alpha(N)=0.0072\ 25;\ \alpha(O)=0.0018\ 7;\ \alpha(P)=3.4\times10^{-4}\ 14;$ $\alpha(Q)=1.9\times10^{-5}\ 15$
360.39 4	2.29 9	1525.917	3-	1165.473	3+	E1+M2	1.1 +8-4	1.4 6	%1γ=0.0065 10 $\alpha(K)=1.0 4$; $\alpha(L)=0.30 13$; $\alpha(M)=0.078 33$ $\alpha(N)=0.022 9$; $\alpha(O)=0.0055 23$; $\alpha(P)=0.0011 5$; $\alpha(Q)=7.1\times10^{-5} 30$ %1γ=0.0568 34 Mult.,δ: $\alpha(K)exp=1.0 4$ (1976Mu03). M1 given by 1976Mu03 but disagrees with assignment in level scheme.
361.85 ⁱ 9	0.49 6	1983.33	$(1^{-},2^{+})$	1621.483	3-				%Iγ=0.0122 <i>16</i>
370.81 ⁱ 13	0.17 4	2032.49	1,2+	1661.651	(1^+)				%Iy=0.0042 <i>10</i>
373.36 5	0.84 5	1249.766	1-	876.431	3-	[E2]		0.1251 18	$\alpha(\mathbf{K})=0.0549 \ 8; \ \alpha(\mathbf{L})=0.0512 \ 7; \ \alpha(\mathbf{M})=0.01397 \ 20 \ \alpha(\mathbf{N})=0.00388 \ 5; \ \alpha(\mathbf{O})=0.000952 \ 13; \ \alpha(\mathbf{P})=0.0001682 \ 24; \ \alpha(\mathbf{Q})=3.64\times10^{-6} \ 5 \ \%$
377.2 2	0.11 4	1300.429	3-	923.297	4-	[M1,E2]		0.44 32	$\begin{aligned} &\alpha(\mathbf{K}) = 0.33\ 27;\ \alpha(\mathbf{L}) = 0.09\ 4;\ \alpha(\mathbf{M}) = 0.022\ 8\\ &\alpha(\mathbf{N}) = 0.0059\ 22;\ \alpha(\mathbf{O}) = 0.0015\ 6;\ \alpha(\mathbf{P}) = 2.8 \times 10^{-4}\ 12;\\ &\alpha(\mathbf{Q}) = 1.6 \times 10^{-5}\ 13\\ &\%\mathbf{I}\gamma = 0.0027\ 10 \end{aligned}$
381.0 ^{<i>h</i>} 3	0.06 ^{<i>h</i>} 2	1509.26	(3 ⁺)	1128.009	3-	[E1]		0.0264 4	α (K)=0.02089 29; α (L)=0.00413 6; α (M)=0.001002 14 α (N)=0.000273 4; α (O)=6.86×10 ⁻⁵ 10; α (P)=1.294×10 ⁻⁵ 18; α (Q)=7.65×10 ⁻⁷ 11 %I γ =0.0015 5
381.0 ^{<i>h</i>} 3	0.06 ^{<i>h</i>} 2	1601.219	(2,3)+	1219.87	4+	[M1,E2]		0.43 <i>31</i>	$\alpha(\mathbf{K})=0.32\ 26;\ \alpha(\mathbf{L})=0.083\ 35;\ \alpha(\mathbf{M})=0.021\ 8$ $\alpha(\mathbf{N})=0.0058\ 22;\ \alpha(\mathbf{O})=0.0014\ 6;\ \alpha(\mathbf{P})=2.8\times10^{-4}\ 12;$ $\alpha(\mathbf{Q})=1.6\times10^{-5}\ 12$ $\alpha(\mathbf{Q})=0.0015\ 5$
383.73 6	0.75 8	1633.521	(2)-	1249.766	1-	(M1)		0.724 10	$\alpha(K)=0.570$ 8; $\alpha(L)=0.1158$ 16; $\alpha(M)=0.0283$ 4

²⁴⁶₉₆Cm₁₅₀-7

н

					24	246 Am β^- decay (25.0 min)		1976Mu03 (continued)
							γ ⁽²⁴⁶ Cm) (co	ontinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	α^{f}	Comments
398.14 <i>12</i>	0.33 5	1525.917	3-	1128.009	3-	[M1,E2]	0.38 27	$\begin{aligned} &\alpha(\text{N}) = 0.00776 \ 11; \ \alpha(\text{O}) = 0.001976 \ 28; \ \alpha(\text{P}) = 0.000389 \ 5; \ \alpha(\text{Q}) = 2.77 \times 10^{-5} \ 4 \\ &\% \text{I}\gamma = 0.0186 \ 22 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.68 \ 10 \ (1976\text{Mu03}). \\ &\alpha(\text{K}) = 0.28 \ 23; \ \alpha(\text{L}) = 0.073 \ 32; \ \alpha(\text{M}) = 0.018 \ 7 \\ &\alpha(\text{N}) = 0.0050 \ 20; \ \alpha(\text{O}) = 0.0013 \ 5; \ \alpha(\text{P}) = 2.4 \times 10^{-4} \ 11; \ \alpha(\text{Q}) = 1.4 \times 10^{-5} \ 11 \end{aligned}$
401.68 <i>3</i>	10.7 <i>3</i>	1525.917	3-	1124.257	2+	E1	0.02368 <i>33</i>	%1 γ =0.0082 13 α (K)=0.01879 26; α (L)=0.00368 5; α (M)=0.000894 13 α (N)=0.0002438 34; α (O)=6.12×10 ⁻⁵ 9; α (P)=1.157×10 ⁻⁵ 16; α (Q)=6.91×10 ⁻⁷ 10 %1 γ =0.265 14
407.99 6	0.41 4	1249.766	1-	841.668	2-	[M1,E2]	0.36 26	Mult.: α (K)exp<0.03 (1976Mu03). α (K)=0.26 22; α (L)=0.068 30; α (M)=0.017 7 α (N)=0.0047 19; α (O)=0.0012 5; α (P)=2.3×10 ⁻⁴ 10; α (Q)=1.3×10 ⁻⁵ 10
414.16 6	0.42 5	1780.799	2+	1366.619	(2 ⁻)	[E1]	0.02227 31	% $l\gamma = 0.0102 \ II$ $\alpha(K) = 0.01768 \ 25; \ \alpha(L) = 0.00345 \ 5; \ \alpha(M) = 0.000837 \ I2$ $\alpha(N) = 0.0002283 \ 32; \ \alpha(O) = 5.74 \times 10^{-5} \ 8; \ \alpha(P) = 1.085 \times 10^{-5} \ I5; \ \alpha(Q) = 6.52 \times 10^{-7} \ 9$
421.08 5	0.89 7	1525.917	3-	1104.854	2-	[M1,E2]	0.33 24	%1γ=0.0104 13 $\alpha(K)=0.24$ 20; $\alpha(L)=0.062$ 28; $\alpha(M)=0.015$ 6 $\alpha(N)=0.0043$ 17; $\alpha(O)=0.0011$ 5; $\alpha(P)=2.1\times10^{-4}$ 10; $\alpha(Q)=1.2\times10^{-5}$ 9 %1γ=0.0221 20
423.4 ^h 5	0.16 ^h 7	1300.429	3-	876.431	3-	[M1,E2]	0.32 23	$\alpha(K)=0.022120$ $\alpha(K)=0.02420; \ \alpha(L)=0.06128; \ \alpha(M)=0.0156$ $\alpha(N)=0.004217; \ \alpha(O)=0.00115; \ \alpha(P)=2.0\times10^{-4}9; \ \alpha(Q)=1.2\times10^{-5}9$ $\%_{1\gamma}=0.004018$
423.4 ^h 5	0.16 ^h 7	1633.521	(2)-	1210.52	2+	[E1]	0.02130 <i>30</i>	$\alpha(K)=0.01693\ 24;\ \alpha(L)=0.00329\ 5;\ \alpha(M)=0.000798\ 11$ $\alpha(N)=0.0002178\ 31;\ \alpha(O)=5.47\times10^{-5}\ 8;\ \alpha(P)=1.037\times10^{-5}\ 15;$ $\alpha(Q)=6.25\times10^{-7}\ 9$
434.92 <i>13</i>	0.35 11	1886.756	(1 ⁺)	1451.882	1+	(M1+E0)	1.2 2	%1 γ =0.0040 73 %1 γ =0.0087 28 Mult.: α (K)exp=0.9 3 (1976Mu03). From α (K)exp the transition is either Mult E0 or M2
443.25 18	0.14 4	1366.619	(2 ⁻)	923.297	4-	[E2]	0.0792 11	$\alpha(K)=0.0408 \ 6; \ \alpha(L)=0.0281 \ 4; \ \alpha(M)=0.00758 \ 11$ $\alpha(N)=0.002098 \ 30; \ \alpha(O)=0.000517 \ 7; \ \alpha(P)=9.26\times10^{-5} \ 13;$ $\alpha(Q)=2.477\times10^{-6} \ 35$
446.8 5	0.05 4	1525.917	3-	1078.844	1-	[E2]	0.0776 11	$\alpha_{(K)=0.0035} I_{U}$ $\alpha_{(K)=0.0402} 6; \alpha_{(L)=0.0273} 4; \alpha_{(M)=0.00737} I_{I}$ $\alpha_{(N)=0.002041} 30; \alpha_{(O)=0.000503} 7; \alpha_{(P)=9.01\times10^{-5}} I_{3};$

 ∞

	246 Am β^- decay (25.0 min) 1976Mu03 (continued)												
							γ (²⁴⁶ C	m) (continued)					
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ	α^{f}	Comments				
									$\alpha(Q)=2.435\times10^{-6} 35$ %I $\gamma=0.0012 10$				
451.2 ^h 2	0.10 ^{<i>h</i>} 4	1661.651	(1 ⁺)	1210.52	2+	[M1,E2]		0.27 19	α (K)=0.20 <i>16</i> ; α (L)=0.050 <i>24</i> ; α (M)=0.013 <i>5</i> α (N)=0.0035 <i>15</i> ; α (O)=9; α (P)=1.7×10 ⁻⁴ <i>8</i> ; α (Q)=1.0×10 ⁻⁵ <i>8</i> %I γ =0.0025 <i>10</i>				
451.2 ^h 2	0.10 ^{<i>h</i>} 4	1670.990	(3-)	1219.87	4+	[E1]		0.01878 26	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.01495 \ 21; \ \alpha(\mathrm{L}) = 0.00288 \ 4; \ \alpha(\mathrm{M}) = 0.000698 \ 10 \\ &\alpha(\mathrm{N}) = 0.0001904 \ 27; \ \alpha(\mathrm{O}) = 4.79 \times 10^{-5} \ 7; \ \alpha(\mathrm{P}) = 9.09 \times 10^{-6} \ 13; \\ &\alpha(\mathrm{Q}) = 5.55 \times 10^{-7} \ 8 \end{aligned} $				
456.11 6	0.56 7	1621.483	3-	1165.473	3+	[E1]		0.01838 26	%Iγ=0.0025 10 $\alpha(K)$ =0.01464 20; $\alpha(L)$ =0.00282 4; $\alpha(M)$ =0.000682 10 $\alpha(N)$ =0.0001861 26; $\alpha(O)$ =4.68×10 ⁻⁵ 7; $\alpha(P)$ =8.89×10 ⁻⁶ 12; $\alpha(Q)$ =5.44×10 ⁻⁷ 8 %Iγ=0.0139 19				
461.2 ⁱ 2	0.13 5	1680.80	(2+)	1219.87	4+	[E2]		0.0717 10	$\alpha(K)=0.0381\ 5;\ \alpha(L)=0.02459\ 35;\ \alpha(M)=0.00661\ 9$ $\alpha(N)=0.001830\ 26;\ \alpha(O)=0.000452\ 6;\ \alpha(P)=8.11\times10^{-5}\ 11;$ $\alpha(Q)=2.273\times10^{-6}\ 32$				
465.61 5	1.03 8	1593.693	2-	1128.009	3-	[M1,E2]		0.25 18	$\alpha(K)=0.0052$ 15; $\alpha(L)=0.046$ 22; $\alpha(M)=0.012$ 5 $\alpha(N)=0.0032$ 14; $\alpha(O)=8$; $\alpha(P)=1.5\times10^{-4}$ 7; $\alpha(Q)=9$ $\alpha(V)=0.0255$ 23				
469.71 8	0.41 5	1593.693	2-	1124.257	2+	[E1]		0.01735 24	$\% I_{\gamma} = 0.0102 \ I3$ $\alpha(K) = 0.01383 \ I9; \ \alpha(L) = 0.00265 \ 4; \ \alpha(M) = 0.000641 \ 9$ $\alpha(N) = 0.0001750 \ 25; \ \alpha(O) = 4.40 \times 10^{-5} \ 6; \ \alpha(P) = 8.37 \times 10^{-6} \ I2;$ $\alpha(Q) = 5.15 \times 10^{-7} \ 7$				
472.33 5	1.47 7	1348.860	1-	876.431	3-	[E2]		0.0676 9	$\alpha(K)=0.0366\ 5;\ \alpha(L)=0.02272\ 32;\ \alpha(M)=0.00610\ 9$ $\alpha(N)=0.001688\ 24;\ \alpha(O)=0.000417\ 6;\ \alpha(P)=7.50\times10^{-5}\ 10;$ $\alpha(Q)=2.159\times10^{-6}\ 30$				
476.89 5	0.86 6	1601.219	(2,3)+	1124.257	2+	(M1)		0.400 6	$%1\gamma = 0.0365\ 24$ $\alpha(K) = 0.315\ 4;\ \alpha(L) = 0.0638\ 9;\ \alpha(M) = 0.01555\ 22$ $\alpha(N) = 0.00427\ 6;\ \alpha(O) = 0.001087\ 15;\ \alpha(P) = 0.0002139\ 30;$ $\alpha(Q) = 1.524 \times 10^{-5}\ 21$				
487.2 <i>3</i>	0.37 8	1661.651	(1+)	1174.72	0+	[M1]		0.378 5	$\begin{array}{l} & \alpha(K) = 0.0213 \ log{} & \text{Mult.: } \alpha(K) = 0.34 \ 8 \ (1976 \text{Mu03}). \\ & \alpha(K) = 0.298 \ 4; \ \alpha(L) = 0.0601 \ 8; \ \alpha(M) = 0.01467 \ 21 \\ & \alpha(N) = 0.00403 \ 6; \ \alpha(O) = 0.001025 \ 14; \ \alpha(P) = 0.0002017 \ 28; \\ & \alpha(Q) = 1.438 \times 10^{-5} \ 20 \\ & \approx 10^{-9} \ 20 \end{array}$				
488.82 4	3.70 14	1593.693	2^{-}	1104.854	2^{-}	M1+E2	0.25 20	0.356 35	$\alpha(K)=0.280\ 29;\ \alpha(L)=0.057\ 4;\ \alpha(M)=0.0140\ 10$				

From ENSDF

²⁴⁶₉₆Cm₁₅₀-9

				2	46 Am β^- dec	ay (25.0 i	min) 1976 N	1u03 (continued)
						γ(²⁴⁶ C	m) (continued))
${\rm E_{\gamma}}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.@	δ	α^f	Comments
493.46 4	4.34 15	1621.483	3-	1128.009 3-	(M1)	_	0.365 5	$\begin{aligned} \alpha(N) &= 0.00384 \ 28; \ \alpha(O) &= 0.00098 \ 7; \ \alpha(P) &= 0.000192 \ 15; \\ \alpha(Q) &= 1.35 \times 10^{-5} \ 14 \\ \% I\gamma &= 0.092 \ 6 \\ \text{Mult:} \ \alpha(K) &= xp = 0.280 \ 20, \ K/L &= 5.0 \ 17 \ (1976 \text{Mu03}). \\ \alpha(K) &= 0.288 \ 4; \ \alpha(L) &= 0.0581 \ 8; \ \alpha(M) &= 0.01416 \ 20 \\ \alpha(N) &= 0.00389 \ 5; \ \alpha(O) &= 0.000990 \ 14; \ \alpha(P) &= 0.0001948 \ 27; \\ \alpha(Q) &= 1.388 \times 10^{-5} \ 19 \\ \% I\gamma &= 0.108 \ 6 \\ \text{Mult:} \ \alpha(K) &= xp = 0.250 \ 20, \ K/L &= 4.6 \ 10 \ (1076 \text{Mu03}). \end{aligned}$
505.61^{h} 13	0.40 <mark>h</mark> 0	1633 521	$(2)^{-}$	1128 000 3-	с			$\alpha_{L_{1}} = 0.0122.23$
505.01 I3 $505.61^{h} I3$	$0.49^{h} g$	1670 990	(2) (3^{-})	1128.009 3 1165 473 3 ⁺	(F1) ^C		0.01504.21	$\alpha(\mathbf{K}) = 0.0122.23$ $\alpha(\mathbf{K}) = 0.01201.17; \ \alpha(\mathbf{L}) = 0.002278.32; \ \alpha(\mathbf{M}) = 0.000551.8$
507.10.5	0.70.12	1248.860	(5)	041.669 2-	6		0.01304 21	$\begin{aligned} \alpha(\mathbf{N}) = 0.0001503 \ 21; \ \alpha(\mathbf{O}) = 3.79 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 7.22 \times 10^{-6} \ 10; \\ \alpha(\mathbf{Q}) = 4.50 \times 10^{-7} \ 6 \\ \% I\gamma = 0.0122 \ 23 \\ \% I\gamma = 0.067 \ 4 \end{aligned}$
507.10 5 514.79 4	2.70 12 3.48 15	1348.860	$\frac{1}{2^{-}}$	841.668 2 1078.844 1 ⁻	M1+(E2)	0.4 4	0.29 7	$\%_{1}\gamma = 0.0674$ $\alpha(K) = 0.236; \alpha(L) = 0.0479; \alpha(M) = 0.011520$ $\alpha(K) = 0.0226; \alpha(C) = 0.0008044 \times (D) = 0.00015720$
516.60 <i>13</i>	0.40 10	1621.483	3-	1104.854 2-	[M1,E2]		0.19 <i>13</i>	$\begin{aligned} \alpha(N) &= 0.0032 \ 6; \ \alpha(O) &= 0.00080 \ 14; \ \alpha(P) &= 0.000157 \ 30; \\ \alpha(Q) &= 1.09 \times 10^{-5} \ 27 \\ \% I_{\gamma} &= 0.086 \ 5 \\ \text{Mult.:} \ \alpha(K) &= p = 0.23 \ 6 \ (1976 \text{Mu03}). \\ \alpha(K) &= 0.14 \ 11; \ \alpha(L) &= 0.034 \ 17; \ \alpha(M) &= 0.009 \ 4 \\ \alpha(N) &= 0.0023 \ 11; \ \alpha(O) &= 5.9 \times 10^{-4} \ 28; \ \alpha(P) &= 1.1 \times 10^{-4} \ 6; \ \alpha(Q) &= 7 \\ \end{cases}$
x577 53 5	1 85 8				(M 1)		0312 1	$\%1\gamma = 0.0099 25$ $\alpha(K) = 0.2463 - 34$; $\alpha(L) = 0.0497 7$; $\alpha(M) = 0.01212 - 17$
522.55 5	1.05 0				(111)		0.312 +	$\alpha(R) = 0.245354$, $\alpha(L) = 0.049777$, $\alpha(R) = 0.01212477$ $\alpha(R) = 0.003325$; $\alpha(O) = 0.00084712$; $\alpha(P) = 0.000166623$; $\alpha(Q) = 1.187 \times 10^{-5}17$ $\% I \gamma = 0.045929$ Mult: $\alpha(R) = 0.226(1976 Mu 03)$
524.92 4	2.95 11	1366.619	(2-)	841.668 2-	M1+(E2)	0.4 5	0.27 8	$\begin{aligned} \alpha(\mathbf{K}) = 0.21 \ 7; \ \alpha(\mathbf{L}) = 0.045 \ 10; \ \alpha(\mathbf{M}) = 0.0109 \ 24 \\ \alpha(\mathbf{N}) = 0.0030 \ 6; \ \alpha(\mathbf{O}) = 0.00076 \ 17; \ \alpha(\mathbf{P}) = 0.000149 \ 34; \\ \alpha(\mathbf{Q}) = 1.03 \times 10^{-5} \ 31 \\ \% \mathbf{I}\gamma = 0.073 \ 4 \end{aligned}$
528.69 7	0.60 <i>6</i>	1633.521	(2)-	1104.854 2-	(M1)		0.303 4	Mult.: $\alpha(K)\exp=0.22$ 6 (19/6Mu03). $\alpha(K)=0.2386$ 33; $\alpha(L)=0.0481$ 7; $\alpha(M)=0.01173$ 16 $\alpha(N)=0.00322$ 5; $\alpha(O)=0.000820$ 11; $\alpha(P)=0.0001613$ 23; $\alpha(Q)=1.150\times10^{-5}$ 16 %I $\gamma=0.0149$ 16 Matrix (10) = 0.21.0 (107(M-02))
542.92 5	1.6 2	1670.990	(3 ⁻)	1128.009 3-	(M1+E2)	0.5 4	0.24 6	α (K)=0.18 5; α (L)=0.039 8; α (M)=0.0095 18

²⁴⁶₉₆Cm₁₅₀-10

				-	$^{246}A_{1}$	m β^- decay (25.0 min) 197	7 <mark>6Mu03</mark> (conti	nued)
						<u> </u>	(²⁴⁶ Cm) (continu	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ	α^f	Comments
			_						$\alpha(N)=0.0026 5; \alpha(O)=0.00066 12; \alpha(P)=0.000130 25; \alpha(Q)=8.9\times10^{-6} 23 \%I\gamma=0.040 5 Mult \delta: \alpha(K)exp=0.18 5 (1976Mu03)$
554.4 2	0.89 7	1659.19	(1-)	1104.854	2-	(M1,E2) ^e		0.16 11	$\alpha(\mathbf{K})=0.12 \ 9; \ \alpha(\mathbf{L})=0.028 \ 14; \ \alpha(\mathbf{M})=0.0070 \ 34 \\ \alpha(\mathbf{N})=0.0019 \ 9; \ \alpha(\mathbf{O})=4.8\times10^{-4} \ 24; \ \alpha(\mathbf{P})=9; \ \alpha(\mathbf{Q})=6 \\ \%_1 v_2 = 0.0221 \ 20 $
554.68 6	0.59 6	1633.521	(2)-	1078.844	1-	(M1,E2) ^e		0.16 11	$\alpha(K)=0.12 \ 9; \ \alpha(L)=0.028 \ 14; \ \alpha(M)=0.0070 \ 33 \ \alpha(N)=0.0019 \ 9; \ \alpha(O)=4.8\times10^{-4} \ 24; \ \alpha(P)=9; \ \alpha(Q)=6 \ \%[\gamma=0.0146 \ 16 \ 16 \ 16 \ 16 \ 16 \ 16 \ 16 \$
566.12 5	1.72 10	1670.990	(3 ⁻)	1104.854	2-	M1+(E2)	0.3 4	0.23 5	α(K)=0.18 4; α(L)=0.038 7; α(M)=0.0092 16 α(N)=0.0025 4; α(O)=0.00064 11; α(P)=0.000126 23; α(Q)=8.9×10-6 20 %Iγ=0.0427 31 Mult.,δ: α(K)exp=0.18 4 (1976Mu03).
577.9 ⁱ 3	0.34 9	2171.41	2+,3	1593.693	2-				%Iy=0.0084 23
580.9 ^h 3	0.34 <mark>h</mark> 9	1870.19	$1,2^{+}$	1289.32	0^+				%Iγ=0.0084 23
580.9 ^h 3	0.34 ^h 9	2032.49	$1,2^{+}$	1451.882	1^{+}				%Iy=0.0084 23
602.54 6	9.4 5	1525.917	3-	923.297	4-	E2+M1	3.2 +21-8	0.054 10	$\alpha(K)=0.037 \ 8; \ \alpha(L)=0.0127 \ 14; \ \alpha(M)=0.00327 \ 32$ $\alpha(N)=0.00090 \ 9; \ \alpha(O)=0.000225 \ 23; \ \alpha(P)=4.2\times10^{-5} \ 5;$ $\alpha(Q)=1.9\times10^{-6} \ 4$ %Iy=0.233 16 M k = (V) = 0.027 \ 8 (1070 M \ 02)
609.98 <i>9</i>	1.8 3	1451.882	1+	841.668	2-	E1		0.01055 <i>15</i>	Mult.,o: α (K)exp=0.037 8 (1976Mu03). %I γ =0.045 8 α (K)=0.00847 12; α (L)=0.001568 22; α (M)=0.000378 5 α (N)=0.0001032 14; α (O)=2.60×10 ⁻⁵ 4; α (P)=4.99×10 ⁻⁶ 7; α (Q)=3.21×10 ⁻⁷ 4 Mult.: α (K)exp<0.012 6 (1976Mu03).
636.72 ^{<i>h</i>} 12	0.48 ^h 11	1478.42	(2+)	841.668	2-	[E1]		0.00975 14	$\begin{aligned} &\alpha(\text{K}) = 0.00783 \ 11; \ \alpha(\text{L}) = 0.001443 \ 20; \ \alpha(\text{M}) = 0.000348 \ 5 \\ &\alpha(\text{N}) = 9.49 \times 10^{-5} \ 13; \ \alpha(\text{O}) = 2.396 \times 10^{-5} \ 34; \\ &\alpha(\text{P}) = 4.60 \times 10^{-6} \ 6; \ \alpha(\text{Q}) = 2.98 \times 10^{-7} \ 4 \\ &\% \text{I}\gamma = 0.0119 \ 28 \end{aligned}$
636.72 ^{h#i} 12	0.48 ^h 11	1856.55	3+	1219.87	4+	[M1,E2]		0.11 7	$\alpha(K)=0.08\ 6;\ \alpha(L)=0.019\ 10;\ \alpha(M)=0.0047\ 24$ $\alpha(N)=0.0013\ 6;\ \alpha(O)=3.3\times10^{-4}\ 17;\ \alpha(P)=6.4\times10^{-5}\ 34;$ $\alpha(Q)=4.1\times10^{-6}\ 29$
649.48 <i>4</i>	14.8 5	1525.917	3-	876.431	3-	E2+M1	1.96 +31-23	0.062 6	$\alpha(K)=0.045\ 5;\ \alpha(L)=0.0124\ 9;\ \alpha(M)=0.00315\ 20$

From ENSDF

 $^{246}_{96}\mathrm{Cm}_{150}\text{--}11$

					246	Am β^- decay	(25.0 min) 1	976Mu03 (con	tinued)
							γ ⁽²⁴⁶ Cm) (conti	nued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ	α^{f}	Comments
									$\begin{aligned} &\alpha(\text{N}) = 0.00087 \ 6; \ \alpha(\text{O}) = 0.000218 \ 14; \ \alpha(\text{P}) = 4.14 \times 10^{-5} \ 29; \\ &\alpha(\text{Q}) = 2.24 \times 10^{-6} \ 24 \\ &\% \text{I}\gamma = 0.367 \ 21 \\ &\text{Mult.}, \delta: \ \alpha(\text{K}) \text{exp} = 0.045 \ 5 \ (1976\text{Mu03}). \end{aligned}$
656.35 14	0.47 11	1780.799	2+	1124.257	2+	M1+E0			%1 γ =0.0117 28 Mult.: α (K)exp=0.63 18 (1976Mu03).
670.1 2	0.33 12	1593.693	2-	923.297	4-	[E2]		0.0306 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.02004 \ 28; \ \alpha(\mathrm{L}) = 0.00779 \ 11; \ \alpha(\mathrm{M}) = 0.002031 \ 28 \\ \alpha(\mathrm{N}) = 0.000561 \ 8; \ \alpha(\mathrm{O}) = 0.0001395 \ 20; \ \alpha(\mathrm{P}) = 2.58 \times 10^{-5} \ 4; \\ \alpha(\mathrm{Q}) = 1.048 \times 10^{-6} \ 15 \\ \% \mathrm{I}\gamma = 0.0082 \ 30 \end{array} $
677.86 6	1.81 <i>15</i>	1601.219	(2,3)+	923.297	4-	[E1]		0.00869 12	$\begin{aligned} \alpha(\mathbf{K}) = 0.00699 \ 10; \ \alpha(\mathbf{L}) = 0.001280 \ 18; \ \alpha(\mathbf{M}) = 0.000308 \ 4 \\ \alpha(\mathbf{N}) = 8.41 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 2.124 \times 10^{-5} \ 30; \ \alpha(\mathbf{P}) = 4.09 \times 10^{-6} \\ 6; \ \alpha(\mathbf{Q}) = 2.67 \times 10^{-7} \ 4 \\ \% \mathbf{I}\gamma = 0.045 \ 4 \end{aligned}$
684.28 5	23.6 8	1525.917	3-	841.668	2-	(E2+M1)	1.24 +11-10	0.077 5	$\begin{aligned} &\alpha(\mathbf{K}) = 0.059 \ 4; \ \alpha(\mathbf{L}) = 0.0139 \ 7; \ \alpha(\mathbf{M}) = 0.00345 \ 17 \\ &\alpha(\mathbf{N}) = 0.00095 \ 5; \ \alpha(\mathbf{O}) = 0.000240 \ 12; \ \alpha(\mathbf{P}) = 4.63 \times 10^{-5} \ 24; \\ &\alpha(\mathbf{Q}) = 2.86 \times 10^{-6} \ 20 \\ &\% \mathbf{I}\gamma = 0.585 \ 33 \end{aligned}$
698.27 5	4.7 3	1621.483	3-	923.297	4-	(M1)		0.1430 20	Mult., δ : α (K)exp=0.060 4, α (L)exp=0.012 2 (1976Mu03). α (K)=0.1128 16; α (L)=0.02263 32; α (M)=0.00551 8 α (N)=0.001512 21; α (O)=0.000385 5; α (P)=7.58×10 ⁻⁵ 11; α (Q)=5.41×10 ⁻⁶ 8 %I γ =0.117 9
717.24 5	10.2 4	1593.693	2-	876.431	3-	M1		0.1330 <i>19</i>	Mult.: α (K)exp=0.125 <i>14</i> (1976Mu03). α (K)=0.1050 <i>15</i> ; α (L)=0.02104 <i>29</i> ; α (M)=0.00513 7 α (N)=0.001406 <i>20</i> ; α (O)=0.000358 <i>5</i> ; α (P)=7.05×10 ⁻⁵ <i>10</i> ; α (Q)=5.03×10 ⁻⁶ 7 %I γ =0.253 <i>15</i>
724.79 4	8.6 <i>3</i>	1601.219	(2,3)+	876.431	3-	E1		0.00770 11	Mult.: $\alpha(K)\exp=0.106\ 7\ (1976Mu03)$. $\alpha(K)=0.00621\ 9;\ \alpha(L)=0.001128\ 16;\ \alpha(M)=0.000271\ 4$ $\alpha(N)=7.40\times10^{-5}\ 10;\ \alpha(O)=1.871\times10^{-5}\ 26;\ \alpha(P)=3.60\times10^{-6}$ $5;\ \alpha(Q)=2.380\times10^{-7}\ 33$ %Iy=0.213\ 12 Mult: $\alpha(K)\exp=0.007\ (1976Mu03)$
732.5 ^h 2	0.61 ^{<i>h</i>} 17	1856.55	3+	1124.257	2+	[M1,E2]		0.08 5	$\begin{aligned} &\alpha(\mathbf{K}) = 0.06 \ 4; \ \alpha(\mathbf{L}) = 0.013 \ 7; \ \alpha(\mathbf{M}) = 0.0032 \ 16 \\ &\alpha(\mathbf{N}) = 9; \ \alpha(\mathbf{O}) = 2.2 \times 10^{-4} \ 12; \ \alpha(\mathbf{P}) = 4.3 \times 10^{-5} \ 23; \\ &\alpha(\mathbf{Q}) = 2.8 \times 10^{-6} \ 19 \\ &\% \mathbf{I}\gamma = 0.015 \ 4 \end{aligned}$
732.5 ^h 2	0.61 ^h 17	1898.07	2^{+}	1165.473	3+	[M1,E2]		0.08 5	$\alpha(K)=0.06$ 4; $\alpha(L)=0.013$ 7; $\alpha(M)=0.0032$ 16

From ENSDF

²⁴⁶₉₆Cm₁₅₀-12

				2	46 Am β^- deca	y (25.0 min)	1976Mu03 (continued)
						γ ⁽²⁴⁶ Cm) (co	ntinued)
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^π	E_f J'	f Mult. [@]	αf	Comments
734.41 4	47.1 <i>14</i>	876.431	3-	141.986 4	+ E1	0.00752 11	$\begin{split} &\alpha(\mathrm{N}){=}9; \ \alpha(\mathrm{O}){=}2.2{\times}10^{-4} \ 12; \ \alpha(\mathrm{P}){=}4.3{\times}10^{-5} \ 23; \ \alpha(\mathrm{Q}){=}2.8{\times}10^{-6} \ 19 \\ &\%\mathrm{I}\gamma{=}0.015 \ 4 \\ &\%\mathrm{I}\gamma{=}1.17 \ 6 \\ &\alpha(\mathrm{K}){=}0.00606 \ 8; \ \alpha(\mathrm{L}){=}0.001100 \ 15; \ \alpha(\mathrm{M}){=}0.000264 \ 4 \\ &\alpha(\mathrm{N}){=}7.22{\times}10^{-5} \ 10; \ \alpha(\mathrm{O}){=}1.825{\times}10^{-5} \ 26; \ \alpha(\mathrm{P}){=}3.52{\times}10^{-6} \ 5; \\ &\alpha(\mathrm{Q}){=}2.327{\times}10^{-7} \ 33 \end{split}$
745.05.4	9.5.3	1621 483	3-	876.431 3 ⁻	- (M1+E0)		Mult.: As given in the Adopted Gammas. Mult.: α (K)exp<0.007, K/L<0.3 (1976Mu03). E1 α (K)exp is in agreement with the BrIcc value of 0.00606 9, however disagrees with the ratio of 5.51 <i>11</i> from BrIcc. %Iv=0.236 <i>13</i>
115.05 1	7.5 5	1021.105	5	070.151 5	(1011 + 120)		α (K)exp=0.144 <i>18</i> (1976Mu03).
747.74 8	1.0 2	1670.990	(3 ⁻)	923.297 4	- [M1,E2]	0.07 5	$\alpha(K)=0.06\ 4;\ \alpha(L)=0.012\ 7;\ \alpha(M)=0.0030\ 15$ $\alpha(N)=8;\ \alpha(O)=2.1\times10^{-4}\ 11;\ \alpha(P)=4.1\times10^{-5}\ 22;\ \alpha(Q)=2.7\times10^{-6}\ 18$
751.0 <i>3</i>	1.4 5	1875.52	$1,2^{+}$	1124.257 2 ⁻	F		%Iy=0.035 <i>13</i>
752.06 4	33.0 12	1593.693	2-	841.668 2	- (M1+E0)		%Iy=0.82 5
759.59 4	25.9 8	1601.219	(2,3)+	841.668 2	- E1	0.00708 10	Mult.: α (K)exp=0.143 6 (1976Mu03). α (K)=0.00571 8; α (L)=0.001033 14; α (M)=0.0002482 35 α (N)=6.77×10 ⁻⁵ 9; α (O)=1.713×10 ⁻⁵ 24; α (P)=3.30×10 ⁻⁶ 5; α (Q)=2.196×10 ⁻⁷ 31 %I γ =0.642 35 Mult.: α (K)exp<0.006 (1976Mu03).
*776.3 <i>3</i> 779.76 8	0.16 5 2.7 4	1621.483	3-	841.668 2	- M1	0.1063 15	%1 γ =0.0040 13 α (K)=0.0840 12; α (L)=0.01679 24; α (M)=0.00409 6 α (N)=0.001122 16; α (O)=0.000286 4; α (P)=5.62×10 ⁻⁵ 8; α (Q)=4.01×10 ⁻⁶ 6 %1 γ =0.067 11
781.28 6	6.8 <i>5</i>	923.297	4-	141.986 4	⁺ [E1]	0.00674 9	Mult.: α (K)exp=0.089 23 (1976Mu03). α (K)=0.00544 8; α (L)=0.000980 14; α (M)=0.0002355 33 α (N)=6.43×10 ⁻⁵ 9; α (O)=1.626×10 ⁻⁵ 23; α (P)=3.14×10 ⁻⁶ 4; α (Q)=2.094×10 ⁻⁷ 29 α (L)=0.160 15
791.5 2	2.6 5	1633.521	(2)-	841.668 2	- [M1,E2]	0.06 4	$\begin{array}{l} \alpha(\mathrm{K}) = 0.048 \ 33; \ \alpha(\mathrm{L}) = 0.011 \ 6; \ \alpha(\mathrm{M}) = 0.0026 \ 13 \\ \alpha(\mathrm{N}) = 7; \ \alpha(\mathrm{O}) = 1.8 \times 10^{-4} \ 9; \ \alpha(\mathrm{P}) = 3.5 \times 10^{-5} \ 19; \ \alpha(\mathrm{Q}) = 2.3 \times 10^{-6} \ 16 \\ \alpha(\mathrm{K}) = 0.065 \ 13 \end{array}$
798.80 <i>4</i>	1000	841.668	2-	42.835 2	+ E1	0.00648 9	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00513 \\ \alpha(\mathrm{K}) = 0.005237;\alpha(\mathrm{L}) = 0.00094113;\alpha(\mathrm{M}) = 0.000225932 \\ \alpha(\mathrm{N}) = 6.17 \times 10^{-5}9;\alpha(\mathrm{O}) = 1.560 \times 10^{-5}22;\alpha(\mathrm{P}) = 3.01 \times 10^{-6}4; \\ \alpha(\mathrm{Q}) = 2.016 \times 10^{-7}28 \end{array}$

²⁴⁶₉₆Cm₁₅₀-13

	246 Am β^- decay (25.0 min) 1976Mu03 (continued)											
							γ ⁽²⁴⁶ Cm) ((continued)				
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α^f	Comments				
^x 810.2 3	0.25 11							%I γ =25 Mult.: α (K)exp=0.0052 2, K/L=5.6 11 (1976Mu03). %I γ =0.0062 28 Mult.: α (K)exp=0.4 2 (1976Mu03). 1976Mu03 suggests that this is a M1+E0 γ deexciting to the 1289 0+ level.				
820.7 ^{#i} 3	0.15 9	1661.651	(1+)	841.668	2-	[E1]	0.00617 9	However, in that case, the γ must have pure multipolarity. $\alpha(K)=0.004997; \alpha(L)=0.00089513; \alpha(M)=0.000214930$ $\alpha(N)=5.87\times10^{-5}8; \alpha(O)=1.484\times10^{-5}21; \alpha(P)=2.87\times10^{-6}4;$ $\alpha(Q)=1.926\times10^{-7}27$				
829.37 8	0.72 14	1670.990	(3 ⁻)	841.668	2-	[M1,E2]	0.055 35	6 1 γ =0.003/23 α (K)=0.043 29; α (L)=0.009 5; α (M)=0.0023 12 α (N)=6.3×10 ⁻⁴ 32; α (O)=1.6×10 ⁻⁴ 8; α (P)=3.1×10 ⁻⁵ 17; α (Q)=2.0×10 ⁻⁶ 14				
833.60 4	72 2	876.431	3-	42.835	2+	E1	0.00601 8	$\begin{array}{l} \alpha(\mathrm{K}) = 0.018\ 4 \\ \alpha(\mathrm{K}) = 0.00485\ 7;\ \alpha(\mathrm{L}) = 0.000870\ 12;\ \alpha(\mathrm{M}) = 0.0002088\ 29 \\ \alpha(\mathrm{N}) = 5.70 \times 10^{-5}\ 8;\ \alpha(\mathrm{O}) = 1.442 \times 10^{-5}\ 20;\ \alpha(\mathrm{P}) = 2.79 \times 10^{-6}\ 4; \\ \alpha(\mathrm{Q}) = 1.876 \times 10^{-7}\ 26 \\ \% \mathrm{Iy} = 1.79\ 9 \end{array}$				
904.42 5	2.31 9	1780.799	2+	876.431	3-	(E1)	0.00521 7	Mult.: α (K)exp=0.0043 8 (1976Mu03). α (K)=0.00422 6; α (L)=0.000750 10; α (M)=0.0001798 25 α (N)=4.91×10 ⁻⁵ 7; α (O)=1.243×10 ⁻⁵ 17; α (P)=2.408×10 ⁻⁶ 34; α (Q)=1.636×10 ⁻⁷ 23 %Iy=0.0573 34 Mult.: α (K)exp<0.09 (1976Mu03); E1,M1 or E2 from α (K)exp, E1 from level				
925.0 ^{#i} 3	0.37 13	1219.87	4+	294.88	6+	[E2]	0.01602 22	scheme. $\alpha(K)=0.01155 \ 16; \ \alpha(L)=0.00332 \ 5; \ \alpha(M)=0.000845 \ 12$ $\alpha(N)=0.0002327 \ 33; \ \alpha(O)=5.83\times10^{-5} \ 8; \ \alpha(P)=1.101\times10^{-5} \ 15;$ $\alpha(Q)=5.60\times10^{-7} \ 8$				
939.15 5	3.1 2	1780.799	2+	841.668	2-	(E1)	0.00488 7	$\alpha(K) = 0.003256; \ \alpha(L) = 0.000701 \ 10; \ \alpha(M) = 0.0001680 \ 24$ $\alpha(N) = 4.58 \times 10^{-5} \ 6; \ \alpha(O) = 1.161 \times 10^{-5} \ 16; \ \alpha(P) = 2.251 \times 10^{-6} \ 32; \alpha(Q) = 1.537 \times 10^{-7} \ 22 \% Iy = 0.077 \ 6 Mult.: \ \alpha(K) exp < 0.09 \ (1976Mu03); E1,M1 or E2 \ from \ \alpha(K) exp, E1 \ from \ level scheme.$				
960.2 <i>3</i> 962.9 <i>4</i>	0.22 <i>9</i> 0.02 <i>2</i>	1836.73 1104.854	2 ⁺ ,1 ⁻ 2 ⁻	876.431 141.986	3- 4+	[M2]	0.1366 <i>19</i>	%I γ =0.0055 23 α (K)=0.1039 15; α (L)=0.02438 34; α (M)=0.00609 9				

14

					246	$Am \beta^-$ deca	ay (25.0 min)	1976Mu03 (continued)
							γ ⁽²⁴⁶ Cm) (co	ontinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α^f	Comments
982.73 15	0.7 2	1124.257	2+	141.986	4+	[E2]	0.01427 20	α (N)=0.001679 24; α (O)=0.000427 6; α (P)=8.37×10 ⁻⁵ 12; α (Q)=5.79×10 ⁻⁶ 8 %I γ =5×10 ⁻⁴ 5 %I γ =0.017 5 α (K)=0.01041 15; α (L)=0.00287 4; α (M)=0.000726 10 α (N)=0.0001998 28; α (O)=5.01×10 ⁻⁵ 7; α (P)=9.50×10 ⁻⁶ 13;
986.03 <i>4</i>	38.6 12	1128.009	3-	141.986	4+	(E1)	0.00449 6	$\begin{aligned} &\alpha(\mathbf{Q}) = 4.99 \times 10^{-7} \ 7 \\ & \mathbf{E}_{\gamma}: \text{ poor fit.} \\ &\alpha(\mathbf{K}) = 0.00364 \ 5; \ \alpha(\mathbf{L}) = 0.000642 \ 9; \ \alpha(\mathbf{M}) = 0.0001539 \ 22 \\ &\alpha(\mathbf{N}) = 4.20 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 1.064 \times 10^{-5} \ 15; \ \alpha(\mathbf{P}) = 2.065 \times 10^{-6} \ 29; \\ &\alpha(\mathbf{Q}) = 1.417 \times 10^{-7} \ 20 \end{aligned}$
1023.44 7	1.6 2	1165.473	3+	141.986	4+	[E2]	0.01321 18	%I γ =0.96 5 Mult.: α (K)exp<0.009 (1976Mu03), α (K)exp<0.008 (1966Or01). α (K)=0.00971 14; α (L)=0.00260 4; α (M)=0.000657 9 α (N)=0.0001807 25; α (O)=4.54×10 ⁻⁵ 6; α (P)=8.62×10 ⁻⁶ 12; α (Q)=4.63×10 ⁻⁷ 6
1036.00 4	512 <i>15</i>	1078.844	1-	42.835	2+	E1 ^{<i>a</i>}	0.00412 6	%1γ=0.040 5 α (K)=0.00334 5; α (L)=0.000588 8; α (M)=0.0001409 20 α (N)=3.84×10 ⁻⁵ 5; α (O)=9.75×10 ⁻⁶ 14; α (P)=1.893×10 ⁻⁶ 27; α (Q)=1.306×10 ⁻⁷ 18
1045.08 6	0.73 12	1886.756	(1+)	841.668	2-	[E1]	0.00406 6	%lγ=12.7 7 Mult.: α (K)exp≤0.003 (1966Or01); α (K)exp=0.0035 1 (1976Mu03). α (K)=0.00329 5; α (L)=0.000579 8; α (M)=0.0001387 19 α (N)=3.79×10 ⁻⁵ 5; α (O)=9.60×10 ⁻⁶ 13; α (P)=1.864×10 ⁻⁶ 26; α (Q)=1.287×10 ⁻⁷ 18 α (L)=0.0181 31
^x 1045.66 6 1062.04 4	0.73 <i>12</i> 691 <i>14</i>	1104.854	2-	42.835	2+	E1 ^a	0.00395 6	% <i>I</i> γ =0.0181 37 % <i>I</i> γ =0.0181 37 α (K)=0.00320 4; α (L)=0.000563 8; α (M)=0.0001348 19 α (N)=3.68×10 ⁻⁵ 5; α (O)=9.33×10 ⁻⁶ 13; α (P)=1.813×10 ⁻⁶ 25; α (Q)=1.254×10 ⁻⁷ 18 % <i>I</i> γ =17.1 9
1078.86 <i>4</i>	1120 40	1078.844	1-	0	0+	E1 <i>a</i>	0.00385 5	Mult.: $\alpha(K)\exp\leq 0.003$ (1966Or01); $\alpha(K)\exp=0.0033 I$ (1976Mu03). $\alpha(K)=0.00312 4$; $\alpha(L)=0.000548 8$; $\alpha(M)=0.0001311 I8$ $\alpha(N)=3.58\times10^{-5} 5$; $\alpha(O)=9.07\times10^{-6} I3$; $\alpha(P)=1.764\times10^{-6} 25$; $\alpha(Q)=1.222\times10^{-7} I7$ %I $\gamma=27.8 I6$ Mult.: $\alpha(K)\exp\leq 0.003$ (1966Or01); $\alpha(K)\exp=0.00294 I3$ (1976Mu03).

From ENSDF

					246 Am β^{-} de	ecay (25.0 min)	1976Mu03 (continued)
						γ ⁽²⁴⁶ Cm) ((continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	$\frac{\pi}{f}$ Mult. [@]	αf	Comments
1081.40 6	13.8 14	1124.257	2+	42.835 2	+ E2 ^{&}	0.01190 <i>17</i>	$\begin{aligned} \alpha(\text{K}) = 0.00884 \ 12; \ \alpha(\text{L}) = 0.002286 \ 32; \ \alpha(\text{M}) = 0.000575 \ 8 \\ \alpha(\text{N}) = 0.0001581 \ 22; \ \alpha(\text{O}) = 3.98 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 7.57 \times 10^{-6} \ 11; \\ \alpha(\text{Q}) = 4.17 \times 10^{-7} \ 6 \\ \% \text{I}\gamma = 0.34 \ 4 \\ \text{I} = 0.1 \ \text{h} \ \h} \ \ \text{h} \ \h} \ \ \text{h} \ \h} \ \ \h} \ \ \h} \ \ \h} \ \h$ {h} \ \h} \ \h\ \h} \ \h\ \h\ \h} \ \h\ \h
1085.15 6	61.6 <i>19</i>	1128.009	3-	42.835 2	+ E1	0.00381 5	<i>I</i> _γ : Calculated from <i>I</i> γ(1081)/ <i>I</i> γ(1124)=1.32 <i>I</i> 3 in ²⁺⁰ BK ε decay (1976Ah03). 1976Mu03 measured <i>I</i> γ≈10. α (K)=0.00309 4; α (L)=0.000542 8; α (M)=0.0001297 <i>I</i> 8 α (N)=3.54×10 ⁻⁵ 5; α (O)=8.98×10 ⁻⁶ <i>I</i> 3; α (P)=1.746×10 ⁻⁶ 24; α (Q)=1.210×10 ⁻⁷ <i>I</i> 7 % <i>I</i> γ=1.53 8 Mult.: α (K)exp=0.0024 <i>I</i> 0 (1976Mu03).
^x 1102.5 2 ^x 1105.0 5	0.14 <i>4</i> 0.03 <i>2</i>						%I γ =0.0035 <i>10</i> %I γ =7×10 ⁻⁴ 5 Assigned by 1976Mu03 as sum peak.
^x 1113.6 2 1122.64 6	0.27 <i>5</i> 4.0 <i>2</i>	1165.473	3+	42.835 2	+ E2 ^b	0.01110 <i>16</i>	%Iγ=0.0067 13 α (K)=0.00829 12; α (L)=0.002097 29; α (M)=0.000526 7 α (N)=0.0001446 20; α (O)=3.64×10 ⁻⁵ 5; α (P)=6.94×10 ⁻⁶ 10; α (Q)=3.89×10 ⁻⁷ 5 α (IPF)=2.167×10 ⁻⁷ 31 %I ₂ =0.009 7
1124.29 4	10.5 4	1124.257	2+	0 0	+ Ε2 ^b	0.01107 <i>15</i>	$\alpha(K) = 0.00827 \ 12; \ \alpha(L) = 0.002090 \ 29; \ \alpha(M) = 0.000524 \ 7$ $\alpha(N) = 0.0001441 \ 20; \ \alpha(O) = 3.63 \times 10^{-5} \ 5; \ \alpha(P) = 6.92 \times 10^{-6} \ 10;$ $\alpha(Q) = 3.88 \times 10^{-7} \ 5$ $\alpha(IPF) = 2.327 \times 10^{-7} \ 33$
1131.88 7	0.44 5	1174.72	0+	42.835 2	+ [E2]	0.01093 15	%Iγ=0.260 15 α (K)=0.00817 11; α (L)=0.002058 29; α (M)=0.000516 7 α (N)=0.0001419 20; α (O)=3.57×10 ⁻⁵ 5; α (P)=6.81×10 ⁻⁶ 10; α (Q)=3.83×10 ⁻⁷ 5; α (IPF)=3.19×10 ⁻⁷ 5 %Iγ=0.0109 13
^x 1148.62 6 1158.47 6	0.74 6 0.50 4	1300.429	3-	141.986 4	+ [E1]	0.00341 5	%Iγ=0.0184 <i>17</i> α (K)=0.00277 <i>4</i> ; α (L)=0.000483 <i>7</i> ; α (M)=0.0001156 <i>16</i> α (N)=3.16×10 ⁻⁵ <i>4</i> ; α (O)=8.01×10 ⁻⁶ <i>11</i> ; α (P)=1.559×10 ⁻⁶ <i>22</i> ; α (Q)=1.087×10 ⁻⁷ <i>15</i> α (IPF)=3.52×10 ⁻⁶ <i>5</i> %Let α be a set of the set of
1167.74 5	1.01 6	1210.52	2+	42.835 2	+ E0+(M1,E2)	0.023 13	

					24	6 Am β^{-} dec	cay (25.0 min)	1976M	u03 (continued)
							$\gamma(^{246}{\rm Cm})$ (c	continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α^{f}	$I_{(\gamma+ce)}^{g}$	Comments
1174.72		1174.72	0+	0	0+	E0		0.99 4	Mult.: no γ observed; K/L=4.2 5 (1976Mu03). I _{($\gamma+ce$}): From experimental I(ce(K))+I(ce(L)) of 1976Mu03. K/L(E0) = 4.82 (theory) (2020Do01).
1177.2 2	0.15 4	1219.87	4+	42.835	2+	[E2]	0.01016 14		$\begin{aligned} \alpha(K) &= 0.00764 \ I1; \ \alpha(L) &= 0.001882 \ 26; \ \alpha(M) &= 0.000471 \ 7 \\ \alpha(N) &= 0.0001294 \ I8; \ \alpha(O) &= 3.26 \times 10^{-5} \ 5; \ \alpha(P) &= 6.23 \times 10^{-6} \ 9; \\ \alpha(Q) &= 3.56 \times 10^{-7} \ 5 \\ \alpha(IPF) &= 1.528 \times 10^{-6} \ 23 \\ \% I\gamma &= 0.0037 \ I0 \end{aligned}$
$1198.19^{\#i}$ 6	1.24 6	1340.18		141.986	4+				%Iy=0.0308 20 %Iy=0.0050 18
1206.96 4	6.0 2	1249.766	1-	42.835	2+	E1	0.00319 4		$\alpha(K) = 0.00258 \ 4; \ \alpha(L) = 0.000450 \ 6; \ \alpha(M) = 0.0001076 \ 15$ $\alpha(K) = 2.94 \times 10^{-5} \ 4; \ \alpha(O) = 7.46 \times 10^{-6} \ 10; \ \alpha(P) = 1.452 \times 10^{-6} \ 20; \ \alpha(Q) = 1.017 \times 10^{-7} \ 14$ $\alpha(IPF) = 1.208 \times 10^{-5} \ 17$ $\%_{I} \gamma = 0.149 \ 8$
1210.35 9	0.45 7	1210.52	2+	0	0+	[E2]	0.00965 14		Mult.: $\alpha(K)\exp<0.005$ (1976Mu03). $\alpha(K)=0.00728$ 10; $\alpha(L)=0.001767$ 25; $\alpha(M)=0.000441$ 6 $\alpha(N)=0.0001213$ 17; $\alpha(O)=3.06\times10^{-5}$ 4; $\alpha(P)=5.85\times10^{-6}$ 8; $\alpha(Q)=3.38\times10^{-7}$ 5; $\alpha(IPF)=3.44\times10^{-6}$ 5 $\alpha(V)=0.0112$ 18
1237.2 2	0.29 4	1379.21	(4 ⁺)	141.986	4+	[M1,E2]	0.020 11		$\alpha(K)=0.0112 \ 1/3 \\ \alpha(K)=0.016 \ 9; \ \alpha(L)=0.0033 \ 16; \ \alpha(M)=8 \\ \alpha(N)=2.2\times10^{-4} \ 10; \ \alpha(O)=5.6\times10^{-5} \ 27; \ \alpha(P)=1.1\times10^{-5} \ 5; \\ \alpha(Q)=7; \ \alpha(IPF)=1.2\times10^{-5} \ 6 \\ \%_{I}v=0.0072 \ 11 $
1249.79 <i>4</i>	6.0 2	1249.766	1-	0	0+	[E1]	0.00302 4		$\alpha(K) = 0.002438 \ 34; \ \alpha(L) = 0.000424 \ 6; \ \alpha(M) = 0.0001013 \ 14$ $\alpha(N) = 2.77 \times 10^{-5} \ 4; \ \alpha(O) = 7.02 \times 10^{-6} \ 10; \ \alpha(P) = 1.368 \times 10^{-6} \ 19;$ $\alpha(Q) = 9.61 \times 10^{-8} \ 13$ $\alpha(IPF) = 2.379 \times 10^{-5} \ 33$ $\%_{I\gamma} = 0.149 \ 8$ Mult.: $\alpha(K) \exp = 0.018 \ 4 \ (1976Mu03) \text{ is in disagreement with an}$ E1 assignment γ is possibly a doublet
1257.62 6	1.57 10	1300.429	3-	42.835	2+	[E1]	0.00299 4		$\alpha(K)=0.002413 \ 34; \ \alpha(L)=0.000419 \ 6; \ \alpha(M)=0.0001002 \ 14$ $\alpha(N)=2.74\times10^{-5} \ 4; \ \alpha(O)=6.94\times10^{-6} \ 10; \ \alpha(P)=1.353\times10^{-6} \ 19;$ $\alpha(Q)=9.51\times10^{-8} \ 13; \ \alpha(IPF)=2.62\times10^{-5} \ 4$ %Iv=0.0389 30
1274.72 <i>4</i>	10.8 <i>3</i>	1317.56?	(2)+	42.835	2^{+}	M1	0.0285 4		$\alpha(K)=0.02252 \ 32; \ \alpha(L)=0.00446 \ 6; \ \alpha(M)=0.001084 \ 15$

 $^{246}_{96}\mathrm{Cm}_{150}$ -17

246 Am β^- decay (25.0 min) 1976Mu03 (continued)											
							$\gamma(^{246}Cm)$ (continued)			
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α^{f}	$I_{(\gamma+ce)}^{g}$	Comments		
			_		<u> </u>				$\alpha(N)=0.000297 \ 4; \ \alpha(O)=7.58\times10^{-5} \ 11; \ \alpha(P)=1.491\times10^{-5} \ 21; \\ \alpha(Q)=1.069\times10^{-6} \ 15 \\ \alpha(IPF)=2.91\times10^{-5} \ 4 \\ \%_{I}\gamma=0.268 \ 14 \\ Mult.; \ \alpha(K)exp=0.028 \ 10, \ K/L1=5.0 \ 23 \ (1976Mu03).$		
1289.4		1289.32	0+	0	0+	E0		0.08 1	Mult.: γ not observed (1976Mu03). $I_{(\gamma+ce)}$: deduced from I(ce(K))=0.07 <i>I</i> (1976Mu03) with K/L(E0) = 4.82 (theory) (2020Do01).		
1297.34 ^{#i} 9 ^x 1303.20 11	0.42 <i>5</i> 0.35 <i>4</i>	1340.18		42.835	2+				%Iγ=0.0104 <i>13</i> %Iγ=0.0087 <i>11</i>		
1306.8 ^{#i} 2	0.25 4	1348.860	1-	42.835	2+	[E1]	0.00283 4		%I γ =0.0062 10 α (K)=0.002263 32; α (L)=0.000392 5; α (M)=9.38×10 ⁻⁵ 13 α (N)=2.56×10 ⁻⁵ 4; α (O)=6.50×10 ⁻⁶ 9; α (P)=1.267×10 ⁻⁶ 18; α (Q)=8.94×10 ⁻⁸ 13; α (IPF)=4.28×10 ⁻⁵ 6 E ₄ : poor fit.		
1323.77 8	1.0 2	1366.619	(2 ⁻)	42.835	2+	[E1]	0.00277 4		$\alpha(K) = 0.002215 \ 31; \ \alpha(L) = 0.000384 \ 5; \ \alpha(M) = 9.17 \times 10^{-5} \ 13$ $\alpha(N) = 2.504 \times 10^{-5} \ 35; \ \alpha(O) = 6.36 \times 10^{-6} \ 9; \ \alpha(P) = 1.240 \times 10^{-6} \ 17;$ $\alpha(Q) = 8.76 \times 10^{-8} \ 12$ $\alpha(IPF) = 4.96 \times 10^{-5} \ 7$ $\%_{I} \gamma = 0.025 \ 5$		
1336.38 ^h 7	0.74 ^{<i>h</i>} 5	1379.21	(4 ⁺)	42.835	2+	[E2]	0.00805 11		$\begin{aligned} &\alpha(\mathbf{K}) = 0.00614 \ 9; \ \alpha(\mathbf{L}) = 0.001419 \ 20; \ \alpha(\mathbf{M}) = 0.000352 \ 5 \\ &\alpha(\mathbf{N}) = 9.68 \times 10^{-5} \ 14; \ \alpha(\mathbf{O}) = 2.442 \times 10^{-5} \ 34; \ \alpha(\mathbf{P}) = 4.69 \times 10^{-6} \ 7; \\ &\alpha(\mathbf{Q}) = 2.82 \times 10^{-7} \ 4 \\ &\alpha(\mathbf{IPF}) = 1.752 \times 10^{-5} \ 25 \\ &\%_{\mathbf{I}\gamma} = 0.0184 \ 15 \end{aligned}$		
1336.38 ^h 7	0.74 ^{<i>h</i>} 5	1478.42	(2+)	141.986	4+	[E2]	0.00805 11		$\begin{aligned} \alpha(\mathrm{K}) &= 0.00614 \ 9; \ \alpha(\mathrm{L}) &= 0.001419 \ 20; \ \alpha(\mathrm{M}) &= 0.000352 \ 5 \\ \alpha(\mathrm{N}) &= 9.68 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) &= 2.442 \times 10^{-5} \ 34; \ \alpha(\mathrm{P}) &= 4.69 \times 10^{-6} \ 7; \\ \alpha(\mathrm{Q}) &= 2.82 \times 10^{-7} \ 4 \\ \alpha(\mathrm{IPF}) &= 1.752 \times 10^{-5} \ 25 \\ \%_{\mathrm{I}\gamma} &= 0.0184 \ 15 \end{aligned}$		
1348.81 <i>4</i>	4.84 17	1348.860	1-	0	0+	(E1)	0.00270 4		$\alpha(\mathbf{K})=0.002147 \ 30; \ \alpha(\mathbf{L})=0.000372 \ 5; \ \alpha(\mathbf{M})=8.88\times10^{-5} \ 12 \\ \alpha(\mathbf{N})=2.424\times10^{-5} \ 34; \ \alpha(\mathbf{O})=6.15\times10^{-6} \ 9; \ \alpha(\mathbf{P})=1.201\times10^{-6} \ 17; \\ \alpha(\mathbf{Q})=8.49\times10^{-8} \ 12 \\ \alpha(\mathbf{IPF})=6.09\times10^{-5} \ 9 \\ \%\mathbf{I}\gamma=0.120 \ 7 \\ \mathbf{Mult}: \ \alpha(\mathbf{K})\approx\mathbf{p}<0.005 \ (1976\mathrm{Mu}03) $		
1367.9 2	0.63 11	1509.26	(3 ⁺)	141.986	4+	[M1,E2]	0.016 8		$\% I\gamma = 0.0156\ 28$		

²⁴⁶₉₆Cm₁₅₀-18

²⁴⁶₉₆Cm₁₅₀-18

					246	6 Am β^{-} dec	ay (25.0 min)	1976Mu03 (continued)
							γ ⁽²⁴⁶ Cm) (co	ntinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	α^f	Comments
			_					$\alpha(K)=0.012 \ 6; \ \alpha(L)=0.0025 \ 12; \ \alpha(M)=6.2\times10^{-4} \ 28 \\ \alpha(N)=1.7\times10^{-4} \ 8; \ \alpha(O)=4.3\times10^{-5} \ 20; \ \alpha(P)=8; \ \alpha(Q)=5.8\times10^{-7} \ 31; \\ \alpha(IPF)=4.6\times10^{-5} \ 23 \\ F \ : \ \text{poor fit}$
^x 1379.3 4	0.07 4							$\%$ I γ =0.0017 10
1383.94 17	0.22 4	1525.917	3-	141.986	4^{+}	[E1]	0.00261 4	$\alpha(K)=0.002058\ 29;\ \alpha(L)=0.000356\ 5;\ \alpha(M)=8.50\times10^{-5}\ 12$
								$\alpha(N)=2.319\times10^{-5} 32; \ \alpha(O)=5.89\times10^{-6} 8; \ \alpha(P)=1.150\times10^{-6} 16; \\ \alpha(Q)=8.15\times10^{-8} 11 \\ \alpha(IPF)=7.87\times10^{-5} 11 \\ \%_{1}x=0.0055 10$
1409.12 8	1.35 7	1451.882	1+	42.835	2+	(M1)	0.02181 <i>31</i>	$\alpha(K)=0.01719\ 24;\ \alpha(L)=0.00340\ 5;\ \alpha(M)=0.000826\ 12$ $\alpha(N)=0.0002267\ 32;\ \alpha(O)=5.77\times10^{-5}\ 8;\ \alpha(P)=1.137\times10^{-5}\ 16;$ $\alpha(Q)=8.16\times10^{-7}\ 11$ $\alpha(IPF)=9.37\times10^{-5}\ 13$ $\%_{IY}=0.0335\ 23$ Mult: $\alpha(K)\exp=0.037\ 14\ (1976Mu03)$
1435.59 6	1.04 10	1478.42	(2+)	42.835	2+	[M1,E2]	0.014 7	$\alpha(K) = 0.011 \ 5; \ \alpha(L) = 0.0022 \ 10; \ \alpha(M) = 5.4 \times 10^{-4} \ 24 \\ \alpha(N) = 1.5 \times 10^{-4} \ 7; \ \alpha(O) = 3.8 \times 10^{-5} \ 17; \ \alpha(P) = 7.4 \times 10^{-6} \ 34; \\ \alpha(Q) = 5.1 \times 10^{-7} \ 26; \ \alpha(IPF) = 7 \\ \% I_{X} = 0.0258 \ 27 $
1451.91 <i>4</i>	1.83 8	1451.882	1+	0	0+	(M1)	0.02016 28	$\alpha(K)=0.01586\ 22;\ \alpha(L)=0.00314\ 4;\ \alpha(M)=0.000762\ 11$ $\alpha(N)=0.0002091\ 29;\ \alpha(O)=5.33\times10^{-5}\ 7;\ \alpha(P)=1.048\times10^{-5}\ 15;$ $\alpha(Q)=7.53\times10^{-7}\ 11$ $\alpha(IPF)=0.0001217\ 17$ %Iy=0.0454\ 28 Mult: $\alpha(K)\exp=0.019\ 9\ (1976Mu03).$
1459.32 6	0.38 4	1601.219	(2,3)+	141.986	4+	[M1,E2]	0.013 7	$\alpha(K)=0.010 \ 5; \ \alpha(L)=0.0021 \ 10; \ \alpha(M)=5.2\times10^{-4} \ 23$ $\alpha(N)=1.4\times10^{-4} \ 6; \ \alpha(O)=3.6\times10^{-5} \ 16; \ \alpha(P)=7.1\times10^{-6} \ 32;$ $\alpha(Q)=4.9\times10^{-7} \ 25; \ \alpha(IPF)=9$ %Iy=0.0094 11
1466.33 6	0.30 4	1509.26	(3 ⁺)	42.835	2+	[M1,E2]	0.013 6	$\alpha(K)=0.010 5; \alpha(L)=0.0021 9; \alpha(M)=5.1\times10^{-4} 23$ $\alpha(N)=1.4\times10^{-4} 6; \alpha(O)=3.6\times10^{-5} 16; \alpha(P)=7.0\times10^{-6} 32;$ $\alpha(Q)=4.9\times10^{-7} 25; \alpha(IPF)=9$ %Iy=0.0074 11
1479.43 <i>4</i>	9.2 3	1621.483	3-	141.986	4+	E1	2.40×10 ⁻³ 3	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.001844 \ 26; \ \alpha(\mathrm{L}) = 0.000318 \ 4; \ \alpha(\mathrm{M}) = 7.59 \times 10^{-5} \ 11 \\ \alpha(\mathrm{N}) = 2.071 \times 10^{-5} \ 29; \ \alpha(\mathrm{O}) = 5.26 \times 10^{-6} \ 7; \ \alpha(\mathrm{P}) = 1.028 \times 10^{-6} \ 14; \\ \alpha(\mathrm{Q}) = 7.32 \times 10^{-8} \ 10 \end{array} $

					246	5 Am β^{-} dec	cay (25.0 min)	1976Mu03 (continued)
							γ ⁽²⁴⁶ Cm) (co	ontinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^f	Comments
1483.09 9	0.83 7	1525.917	3-	42.835	2+	[E1]	2.39×10 ⁻³ 3	$\begin{aligned} &\alpha(\text{IPF})=0.0001332\ 19\\ &\%_{\text{I}}\gamma=0.228\ 13\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}<0.003\ (1976\text{Mu03}).\\ &\alpha(\text{K})=0.001837\ 26;\ \alpha(\text{L})=0.000316\ 4;\ \alpha(\text{M})=7.55\times10^{-5}\ 11\\ &\alpha(\text{N})=2.062\times10^{-5}\ 29;\ \alpha(\text{O})=5.24\times10^{-6}\ 7;\ \alpha(\text{P})=1.023\times10^{-6}\ 14;\\ &\alpha(\text{Q})=7.29\times10^{-8}\ 10\\ &\alpha(\text{PF})=0\ 0001354\ 19\end{aligned}$
1486.90 ⁱ 7 ^x 1497.0 4	0.08 <i>6</i> 0.024 <i>15</i>	1628.90?		141.986	4+			%Iy=0.0206 20 %Iy=0.0020 15 %Iy=6×10 ⁻⁴ 4
1509.0 ^{<i>i</i>} 4	0.030 15	1509.26	(3+)	0	0+	[M3]	0.0681 10	$\alpha(K)=0.0510 \ 7; \ \alpha(L)=0.01271 \ 18; \ \alpha(M)=0.00320 \ 4$ $\alpha(N)=0.000885 \ 12; \ \alpha(O)=0.0002249 \ 32; \ \alpha(P)=4.39\times10^{-5} \ 6; \ \alpha(Q)=2.95\times10^{-6} \ 4$ $\alpha(IPF)=1.938\times10^{-5} \ 28 \ \%Iv=7\times10^{-4} \ 4$
^x 1526.30 <i>15</i>	0.55 11							$\%_{1\gamma}=0.0136$ 28 Assigned by 1976Mu03 as sum peak.
1529.00 7	9.0 4	1670.990	(3-)	141.986	4+	(E1) ^d	2.31×10 ⁻³ 3	$\begin{aligned} &\alpha(\text{K}) = 0.001748 \ 24; \ \alpha(\text{L}) = 0.000301 \ 4; \ \alpha(\text{M}) = 7.18 \times 10^{-5} \ 10 \\ &\alpha(\text{N}) = 1.959 \times 10^{-5} \ 27; \ \alpha(\text{O}) = 4.98 \times 10^{-6} \ 7; \ \alpha(\text{P}) = 9.73 \times 10^{-7} \ 14; \\ &\alpha(\text{Q}) = 6.95 \times 10^{-8} \ 10 \\ &\alpha(\text{IPF}) = 0.0001639 \ 23 \\ &\%_{\text{I}} \gamma = 0.223 \ 14 \end{aligned}$
1530.7 5	1.0 2	1573.74	(1+)	42.835	2+	(M1) ^d	0.01756 25	α (K)=0.01376 <i>19</i> ; α (L)=0.00272 <i>4</i> ; α (M)=0.000661 <i>9</i> α (N)=0.0001812 <i>25</i> ; α (O)=4.62×10 ⁻⁵ <i>6</i> ; α (P)=9.09×10 ⁻⁶ <i>13</i> ; α (Q)=6.53×10 ⁻⁷ <i>9</i> α (IPF)=0.0001792 <i>25</i> α [V=0.025 5
1538.9 2	0.055 19	1680.80	(2+)	141.986	4+	[E2]	0.00627 9	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00481\ 7;\ \alpha(\mathrm{L}) = 0.001050\ 15;\ \alpha(\mathrm{M}) = 0.000259\ 4\\ &\alpha(\mathrm{N}) = 7.10 \times 10^{-5}\ 10;\ \alpha(\mathrm{O}) = 1.796 \times 10^{-5}\ 25;\ \alpha(\mathrm{P}) = 3.47 \times 10^{-6}\ 5;\\ &\alpha(\mathrm{Q}) = 2.176 \times 10^{-7}\ 30\\ &\alpha(\mathrm{IPF}) = 6.54 \times 10^{-5}\ 9\\ &\%\mathrm{I}\gamma = 0.0014\ 5 \end{aligned}$
x1540.6 2 x1545.0 5 x1550.0 2	0.03 2 0.09 4 2.1 10							$\% I\gamma = 7 \times 10^{-4} 5$ $\% I\gamma = 0.0022 \ I0$ $\% I\gamma = 0.052 \ 25$ Mult : $\alpha(K) \exp < 0.01 \ (1976 Mu03)$
1550.94 9	11.0 10	1593.693	2-	42.835	2^{+}	E1	2.27×10 ⁻³ 3	$\alpha(K)=0.001707\ 24;\ \alpha(L)=0.000294\ 4;\ \alpha(M)=7.00\times10^{-5}\ 10$

 $^{246}_{96}\mathrm{Cm}_{150}$ -20

From ENSDF

					246	$\operatorname{Am} \beta^{-} \operatorname{deca}$	ay (25.0 m	in) 1976Mu (03 (continued)
							γ (²⁴⁶ Cn	n) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [@]	δ	α^f	Comments
					_				$\alpha(N)=1.912\times10^{-5}\ 27;\ \alpha(O)=4.86\times10^{-6}\ 7;\ \alpha(P)=9.50\times10^{-7}$ 13; $\alpha(Q)=6.79\times10^{-8}\ 10$ $\alpha(IPF)=0.0001780\ 25$ %Iy=0.273\ 28 Mult: $\alpha(K)=x_{P}<0.003\ (1976Mu03)$
^x 1552.22 <i>16</i>	2.1 10								$\% I\gamma = 0.052 \ 25$ $Mult: \alpha(K) \exp < 0.01 \ (1976 Mu03).$
1558.35 10	0.68 7	1601.219	(2,3)+	42.835	2+	[M1,E2]		0.011 5	$\alpha(\mathbf{K}) = 0.009 \ 4; \ \alpha(\mathbf{L}) = 0.0018 \ 8; \ \alpha(\mathbf{M}) = 4.4 \times 10^{-4} \ 19$ $\alpha(\mathbf{N}) = 1.2 \times 10^{-4} \ 5; \ \alpha(\mathbf{O}) = 3.1 \times 10^{-5} \ 13; \ \alpha(\mathbf{P}) = 6.0 \times 10^{-6} \ 26;$ $\alpha(\mathbf{Q}) = 4.2 \times 10^{-7} \ 20; \ \alpha(\mathbf{IPF}) = 1.4 \times 10^{-4} \ 6$ $\% \mathbf{I}_{\mathbf{V}} = 0.0169 \ 19$
1561.30 5	3.84 15	1604.161	(1 ⁻)	42.835	2+	[E1]		2.26×10 ⁻³ 3	$\alpha(K) = 0.001689\ 24;\ \alpha(L) = 0.000290\ 4;\ \alpha(M) = 6.93 \times 10^{-5}\ 10$ $\alpha(K) = 1.891 \times 10^{-5}\ 26;\ \alpha(O) = 4.81 \times 10^{-6}\ 7;\ \alpha(P) = 9.39 \times 10^{-7}$ $I3;\ \alpha(Q) = 6.72 \times 10^{-8}\ 9$ $\alpha(IPF) = 0.0001848\ 26$ $\% I\gamma = 0.095\ 6$ Mult : $\alpha(K) \approx p_{0} = 0.005\ (1976Mu03)$
1570.46 7	0.62 5	1712.37	(3+)	141.986	4+	[M1,E2]		0.011 5	$\begin{aligned} \alpha(\mathbf{K}) &= 0.009 \ 4; \ \alpha(\mathbf{L}) &= 0.0018 \ 8; \ \alpha(\mathbf{M}) &= 4.3 \times 10^{-4} \ 18 \\ \alpha(\mathbf{N}) &= 1.2 \times 10^{-4} \ 5; \ \alpha(\mathbf{O}) &= 3.0 \times 10^{-5} \ 13; \ \alpha(\mathbf{P}) &= 5.9 \times 10^{-6} \ 26; \\ \alpha(\mathbf{Q}) &= 4.1 \times 10^{-7} \ 20; \ \alpha(\mathbf{IPF}) &= 1.4 \times 10^{-4} \ 7 \\ \% \mathbf{L}_{\mathbf{Q}} &= 0.0154 \ 14 \end{aligned}$
1573.74 5	1.95 8	1573.74	(1 ⁺)	0	0+	(M1)		0.01634 23	$\alpha(K) = 0.01277 \ 18; \ \alpha(L) = 0.002521 \ 35; \ \alpha(M) = 0.000613 \ 9$ $\alpha(N) = 0.0001681 \ 24; \ \alpha(O) = 4.28 \times 10^{-5} \ 6; \ \alpha(P) = 8.43 \times 10^{-6}$ $12; \ \alpha(Q) = 6.06 \times 10^{-7} \ 8$ $\alpha(IPF) = 0.0002136 \ 30$ $\% I\gamma = 0.0484 \ 29$ Mult.: $\alpha(K) \exp = 0.014 \ 5 \ (1976Mu03).$
1578.62 5	3.12 12	1621.483	3-	42.835	2+	[E1]		2.23×10 ⁻³ 3	$\begin{aligned} \alpha(\text{K}) &= 0.001659\ 23;\ \alpha(\text{L}) = 0.000285\ 4;\ \alpha(\text{M}) = 6.80 \times 10^{-5}\ 10\\ \alpha(\text{N}) &= 1.856 \times 10^{-5}\ 26;\ \alpha(\text{O}) = 4.72 \times 10^{-6}\ 7;\ \alpha(\text{P}) = 9.22 \times 10^{-7}\\ 13;\ \alpha(\text{Q}) &= 6.60 \times 10^{-8}\ 9\\ \alpha(\text{IPF}) &= 0.0001962\ 27\\ \% \text{I}\gamma &= 0.077\ 5\\ \text{Mult.:}\ \alpha(\text{K}) \exp < 0.005\ (1976\text{Mu03}). \end{aligned}$
1586.1 ^{<i>i</i>} 2	0.2 1	1628.90?		42.835	2^{+}				%Iy=0.0050 25
1590.68 5	21.0 15	1633.521	(2)-	42.835	2+	E1+M2	0.12 8	0.0027 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0020 \ 6; \ \alpha(\mathbf{L}) = 3.6 \times 10^{-4} \ 14; \ \alpha(\mathbf{M}) = 8.7 \times 10^{-5} \ 35 \\ &\alpha(\mathbf{N}) = 2.4 \times 10^{-5} \ 10; \ \alpha(\mathbf{O}) = 6.1 \times 10^{-6} \ 24; \ \alpha(\mathbf{P}) = 1.2 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{Q}) = 8.5 \times 10^{-8} \ 34; \ \alpha(\mathbf{IPF}) = 0.000202 \ 4 \end{aligned}$

						246 Am β^{-}	decay (25.0 mir	1) 1976Mu03 (continued)
							γ ⁽²⁴⁶ Cm)	(continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α^f	Comments
^x 1601.8 <i>3</i> 1604.14 <i>5</i>	0.11 5 4.11 <i>15</i>	1604.161	(1 ⁻)	0	0+	[E1]	2.20×10 ⁻³ 3	%I γ =0.52 5 Mult.: α (K)exp=0.0020 6 (1976Mu03). %I γ =0.0027 13 α (K)=0.001616 23; α (L)=0.000277 4; α (M)=6.62×10 ⁻⁵ 9 α (N)=1.807×10 ⁻⁵ 25; α (O)=4.59×10 ⁻⁶ 6; α (P)=8.98×10 ⁻⁷ 13; α (Q)=6.44×10 ⁻⁸ 9 α (PE)=0.0002133 30
1616.3 2	0.12 3	1659.19	(1 ⁻)	42.835	2+	[E1]	2.18×10 ⁻³ 3	$\alpha(\text{IPF})=0.000213530$ %I γ =0.102 6 Mult.: $\alpha(\text{K})$ exp<0.005 (1976Mu03). $\alpha(\text{K})=0.00159622; \ \alpha(\text{L})=0.0002744; \ \alpha(\text{M})=6.53\times10^{-5}9$ $\alpha(\text{N})=1.784\times10^{-5}25; \ \alpha(\text{O})=4.53\times10^{-6}6; \ \alpha(\text{P})=8.87\times10^{-7}12; \ \alpha(\text{Q})=6.36\times10^{-8}9$
1618.80 <i>4</i>	4.64 18	1661.651	(1+)	42.835	2+	(M1)	0.01519 <i>21</i>	$\alpha(\text{IPF})=0.0002215 \ 31$ %I γ =0.0030 8 $\alpha(\text{K})=0.01183 \ 17; \ \alpha(\text{L})=0.002335 \ 33; \ \alpha(\text{M})=0.000568 \ 8$ $\alpha(\text{N})=0.0001557 \ 22; \ \alpha(\text{O})=3.97\times10^{-5} \ 6; \ \alpha(\text{P})=7.81\times10^{-6} \ 11; \ \alpha(\text{Q})=5.61\times10^{-7} \ 8$ $\alpha(\text{IPF})=0.0002516 \ 35$
1628.17 5	2.21 11	1670.990	(3-)	42.835	2+	(E1)	2.16×10 ⁻³ 3	%Iγ=0.115 7 Mult.: α (K)exp=0.014 2 (1976Mu03). α (K)=0.001577 22; α (L)=0.000270 4; α (M)=6.45×10 ⁻⁵ 9 α (N)=1.762×10 ⁻⁵ 25; α (O)=4.48×10 ⁻⁶ 6; α (P)=8.76×10 ⁻⁷ 12; α (Q)=6.29×10 ⁻⁸ 9 α (IPF)=0.0002295 32
1637.95 5	6.5 8	1680.80	(2+)	42.835	2+	(M1)	0.01474 <i>21</i>	%Iγ=0.055 4 Mult.: α(K)exp<0.005 (1976Mu03). E1 or E2 from α(K)exp, Δπ=yes from level scheme. α(K)=0.01146 16; α(L)=0.002262 32; α(M)=0.000550 8 α(N)=0.0001508 21; α(O)=3.84×10 ⁻⁵ 5; α(P)=7.56×10 ⁻⁶ 11; α(Q)=5.44×10 ⁻⁷ 8 α(PE)=0.000268 4
1659.18 <i>10</i>	0.51 4	1659.19	(1-)	0	0+	[E1]	2.13×10 ⁻³ 3	$\begin{aligned} &\alpha(\mathbf{R}^{-1}) = 0.000200^{-7} \\ &\% I\gamma = 0.161 \ 21 \\ &\text{Mult.: } \alpha(\mathbf{K}) \exp = 0.014 \ 2 \ (1976 \text{Mu03}). \\ &\alpha(\mathbf{K}) = 0.001529 \ 21; \ \alpha(\mathbf{L}) = 0.000262 \ 4; \ \alpha(\mathbf{M}) = 6.25 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 1.707 \times 10^{-5} \ 24; \ \alpha(\mathbf{O}) = 4.34 \times 10^{-6} \ 6; \ \alpha(\mathbf{P}) = 8.49 \times 10^{-7} \ 12; \\ &\alpha(\mathbf{Q}) = 6.10 \times 10^{-8} \ 9 \\ &\alpha(\mathbf{IPF}) = 0.0002507 \ 35 \end{aligned}$
1661.63 5	9.1 3	1661.651	(1 ⁺)	0	0^+	(M1)	0.01421 20	% $I_{\gamma}=0.0127 \ 12$ $\alpha(K)=0.01102 \ 15; \ \alpha(L)=0.002175 \ 30; \ \alpha(M)=0.000529 \ 7$

From ENSDF

 $^{246}_{96}\mathrm{Cm}_{150}$ -22

					²⁴⁶ Aı	$m \beta^- decay$	(25.0 min)	1976Mu03 (continued)
							γ ⁽²⁴⁶ Cm) (con	tinued)
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α^{f}	Comments
								$\alpha(N)=0.0001450\ 20;\ \alpha(O)=3.69\times10^{-5}\ 5;\ \alpha(P)=7.27\times10^{-6}\ 10;$ $\alpha(Q)=5.23\times10^{-7}\ 7$ $\alpha(IPF)=0.000290\ 4$ $\%I\gamma=0.226\ 13$ Mult: $\alpha(K)=y=0.010\ L\ (1976Mu03)$
1669.50 <i>5</i>	0.63 4	1712.37	(3+)	42.835	2+	[M1,E2]	0.010 4	$\alpha(\mathbf{K}) = 0.0075 \ 34; \ \alpha(\mathbf{L}) = 0.0015 \ 6; \ \alpha(\mathbf{M}) = 3.7 \times 10^{-4} \ 15$ $\alpha(\mathbf{N}) = 1.0 \times 10^{-4} \ 4; \ \alpha(\mathbf{O}) = 2.6 \times 10^{-5} \ 11; \ \alpha(\mathbf{P}) = 5.1 \times 10^{-6} \ 21; \ \alpha(\mathbf{Q}) = 3.5 \times 10^{-7} \ 16; \ \alpha(\mathbf{IPF}) = 2.0 \times 10^{-4} \ 9$
1680.69 <i>18</i>	0.043 8	1680.80	(2+)	0	0+	[E2]	0.00540 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00412 \ 6; \ \alpha(\mathbf{L}) = 0.000873 \ 12; \ \alpha(\mathbf{M}) = 0.0002145 \ 30 \\ &\alpha(\mathbf{N}) = 5.88 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 1.489 \times 10^{-5} \ 21; \ \alpha(\mathbf{P}) = 2.89 \times 10^{-6} \ 4; \\ &\alpha(\mathbf{Q}) = 1.852 \times 10^{-7} \ 26 \\ &\alpha(\mathbf{IPF}) = 0.0001130 \ 16 \\ &\%_{\mathbf{I}} \gamma = 0.00107 \ 21 \end{aligned}$
^x 1690.15 16	0.05 2							%I _y =0.0012 5
1714.61 9	0.087 9	1856.55	3+	141.986	4+			%Iγ=0.00216 24
1737.94 5	4.5 3	1780.799	2+	42.835	2+	(M1)	0.01267 18	$\alpha(K)=0.00975\ 14;\ \alpha(L)=0.001924\ 27;\ \alpha(M)=0.000468\ 7$ $\alpha(N)=0.0001283\ 18;\ \alpha(O)=3.27\times10^{-5}\ 5;\ \alpha(P)=6.43\times10^{-6}\ 9;$ $\alpha(Q)=4.63\times10^{-7}\ 6;\ \alpha(IPF)=0.000360\ 5$ $\%I\gamma=0.112\ 9$ Mult : $\alpha(K)\exp=0.013\ 2\ (1976Mu03)$
1756.1 2	0.057 9	1898.07	2+	141.986	4+	[E2]	0.00502 7	$\begin{aligned} \alpha(\mathbf{K}) = 0.00381 \ 5; \ \alpha(\mathbf{L}) = 0.000797 \ 11; \ \alpha(\mathbf{M}) = 0.0001955 \ 27 \\ \alpha(\mathbf{N}) = 5.36 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 1.358 \times 10^{-5} \ 19; \ \alpha(\mathbf{P}) = 2.63 \times 10^{-6} \ 4; \\ \alpha(\mathbf{Q}) = 1.709 \times 10^{-7} \ 24 \\ \alpha(\mathbf{IFF}) = 0.0001411 \ 20 \\ \% \mathbf{Iv} = 0.001411 \ 23 \end{aligned}$
1759.30 5	0.86 7	1901.31	2+,3	141.986	4+			$\%$ I γ =0.0213 20
1764.2 <i>2</i> ^x 1769.47 <i>7</i>	0.036 8 0.079 <i>14</i>	1906.10	2+,3,4+	141.986	4+			$\%$ I γ =8.9×10 ⁻⁴ 20 %I γ =0.0020 4
1778.92 6	0.90 5	1821.75		42.835	2^{+}			%Iy=0.0223 <i>16</i>
1780.5 2	0.16 4	1780.799	2+	0	0+	[E2]	0.00491 7	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00372 \ 5; \ \alpha(\mathbf{L}) = 0.000775 \ 11; \ \alpha(\mathbf{M}) = 0.0001900 \ 27 \\ &\alpha(\mathbf{N}) = 5.21 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 1.319 \times 10^{-5} \ 18; \ \alpha(\mathbf{P}) = 2.56 \times 10^{-6} \ 4; \\ &\alpha(\mathbf{Q}) = 1.666 \times 10^{-7} \ 23 \\ &\alpha(\mathbf{IPF}) = 0.0001504 \ 21 \\ &\%\mathbf{I}\gamma = 0.0040 \ 10 \end{aligned}$
1794.7 <i>4</i> ^x 1801.53 <i>6</i>	0.015 5 0.38 4	1836.73	2+,1-	42.835	2+			$\%$ I γ =3.7×10 ⁻⁴ 13 %I γ =0.0094 11
1804.8 2	0.037 9	1947.07	$2^+, 3, 4^+$	141.986	4+			$\%$ I γ =9.2×10 ⁻⁴ 23
1813.73 6	0.110 10	1856.55	3+	42.835	2^+			$\%$ l γ =0.00273 28
1821.70 12	0.059 12	1821.75		0	0'			$\%1\gamma = 0.00146\ 31$

 $^{246}_{96}\mathrm{Cm}_{150}$ -23

н

²⁴⁶Am $β^-$ decay (25.0 min) 1976Mu03 (continued)

γ (²⁴⁶Cm) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α^{f}	Comments
1827.39 5	0.77 6	1870.19	$1,2^{+}$	42.835	2^{+}			%Iy=0.0191 <i>17</i>
1832.6 <i>3</i>	0.019 9	1875.52	1.2^{+}	42.835	2^{+}			%Iy=4.7×10 ⁻⁴ 23
1836.71 6	0.19 2	1836.73	$2^{+}, 1^{-}$	0	0^{+}			%Iy=0.0047 6
1843.86 5	0.36 3	1886.756	(1^{+})	42.835	2^{+}	[M1,E2]	0.0078 32	$\alpha(K)=0.0059\ 24;\ \alpha(L)=0.0012\ 5;\ \alpha(M)=2.9\times10^{-4}\ 11$
								$\alpha(N)=7.9\times10^{-5} 30; \ \alpha(O)=2.0\times10^{-5} 8; \ \alpha(P)=3.9\times10^{-6} 15; \ \alpha(Q)=2.8\times10^{-7}$ 12; $\alpha(IPF)=3.2\times10^{-4} 14$ %Iv=0.0089.9
1855.34 12	0.06.2	1898.07	2+	42.835	2+	[M1.E2]	0.0077 31	$\alpha(K) = 0.0058 24; \alpha(L) = 0.0012 4; \alpha(M) = 2.8 \times 10^{-4} 11$
100010112	0.00 2	10,000	-	121000	-	[,22]		$ \alpha(N) = 7.8 \times 10^{-5} \ 30; \ \alpha(O) = 2.0 \times 10^{-5} \ 8; \ \alpha(P) = 3.9 \times 10^{-6} \ 15; \ \alpha(Q) = 2.7 \times 10^{-7} $ $ I2; \ \alpha(IPF) = 3.3 \times 10^{-4} \ 15 $ $ \% I\gamma = 0.0015 \ 5 $
1858.7 2	0.031 5	1901.31	2+,3	42.835	2^{+}			$%I\gamma = 7.7 \times 10^{-4} 13$
1863.19 18	0.038 6	1906.10	2+,3,4+	42.835	2^{+}			$%I\gamma = 9.4 \times 10^{-4} 16$
1866.48 6	0.20 3	1909.31	$2^+, 1$	42.835	2^{+}			%Iy=0.0050 8
1869.81 <i>15</i>	0.040 8	1870.19	$1,2^{+}$	0	0^+			$%I\gamma = 9.9 \times 10^{-4} 20$
1875.56 12	0.034 8	1875.52	1,2+	0	0^+			$%I\gamma = 8.4 \times 10^{-4} 20$
1881.70 5	0.30 3	1924.55	$1,2^{+}$	42.835	2^{+}			%Iy=0.0074 8
1886.80 5	0.50 3	1886.756	(1^{+})	0	0^{+}	[M1]	0.01034 14	α (K)=0.00779 <i>11</i> ; α (L)=0.001536 <i>22</i> ; α (M)=0.000373 <i>5</i>
								α (N)=0.0001024 <i>14</i> ; α (O)=2.61×10 ⁻⁵ <i>4</i> ; α (P)=5.14×10 ⁻⁶ <i>7</i> ; α (Q)=3.70×10 ⁻⁷ <i>5</i> ; α (IPF)=0.000502 <i>7</i> %I γ =0.0124 <i>9</i>
1897.8 2	0.018 4	1898.07	2+	0	0^+	[E2]	0.00443 6	$\alpha(K)=0.00333$ 5; $\alpha(L)=0.000680$ 10; $\alpha(M)=0.0001663$ 23
								$\alpha(N)=4.56\times10^{-5} \ 6; \ \alpha(O)=1.156\times10^{-5} \ 16; \ \alpha(P)=2.247\times10^{-6} \ 31; \\ \alpha(Q)=1.482\times10^{-7} \ 21 \\ \alpha(PF)=0.0001977 \ 28 \\ \%I\gamma=4.5\times10^{-4} \ 10 $
1904.26 10	0.049 6	1947.07	$2^+, 3, 4^+$	42.835	2^{+}			%Iy=0.00122 <i>16</i>
1909.27 9	0.057 6	1909.31	2+,1	0	0^{+}			%Iy=0.00141 16
1924.56 5	0.33 3	1924.55	$1,2^{+}$	0	0^+			%Iy=0.0082 8
1940.43 18	0.022 4	1983.33	$(1^{-},2^{+})$	42.835	2^{+}			$%I\gamma = 5.5 \times 10^{-4} 10$
^x 1944.79 15	0.014 7							$\%$ I γ =3.5×10 ⁻⁴ 18
^x 1953.6 5	0.004 2							$\%$ I γ =1.0×10 ⁻⁴ 5
^x 1974.2 3	0.012 4							%Iy=3.0×10 ⁻⁴ 10
1983.2 <i>3</i>	0.012 4	1983.33	$(1^{-},2^{+})$	0	0^{+}			%Iy=3.0×10 ⁻⁴ 10
1989.63 8	0.042 8	2032.49	1,2+	42.835	2^{+}			%Iy=0.00104 21
^x 2000.3 5	0.005 3							%Iy=1.2×10 ⁻⁴ 8
2029.39 8	0.047 5	2171.41	2+,3	141.986	4+			%Iy=0.00117 14
2032.49 11	0.041 15	2032.49	$1,2^{+}$	0	0^+			%Iy=0.0010 4
^x 2058.18 6	0.058 4							%Iy=0.00144 <i>12</i>

From ENSDF

γ (²⁴⁶Cm) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger g}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
x2065.0 2	0.017 4					$\%$ I γ =4.2×10 ⁻⁴ 10
^x 2068.69 8	0.061 4					$\%1\gamma = 0.00151$ 12
^x 2083.1 2	0.013 3					%ly=3.2×10 ⁻⁴ 8
^x 2091.4 3	0.008 2					$\%$ l γ =2.0×10 ⁻⁴ 5
2103.18 7	0.063 6	2146.04	$1,2^{+}$	42.835	2^{+}	%1y=0.00156 <i>17</i>
^x 2123.66 7	0.105 7					$\%1\gamma = 0.00260\ 21$
2128.57 9	0.052 5	2171.41	2+,3	42.835	2^{+}	%I _Y =0.00129 14
^x 2140.2 3	0.009 2					$\%$ I γ =2.2×10 ⁻⁴ 5
2146.05 7	0.123 7	2146.04	$1,2^{+}$	0	0^{+}	%I _Y =0.00305 22
x2149.5 2	0.019 3					$%I\gamma = 4.7 \times 10^{-4} 8$
x2156.05 17	0.014 3					%ly=3.5×10 ⁻⁴ 8
^x 2168.33 7	0.044 4					%1y=0.00109 11
^x 2184.79 15	0.011 2					%ly=2.7×10 ⁻⁴ 5
^x 2203.4 5	0.003 1					%Iy=7.4×10 ⁻⁵ 25
^x 2234.4 3	0.006 2					%Iy=1.5×10 ⁻⁴ 5
^x 2259.2 4	0.004 2					$\%$ I γ =1.0×10 ⁻⁴ 5
^x 2287.0 6	0.002 1					$\%$ 1 γ =5.0×10 ⁻⁵ 25

25

[†] From 1976Mu03.

[‡] I(γ +ce) deduced from coincidence measurements. E γ from E(level) difference.

 $^{\#}$ $\gamma\text{-ray}$ placed by the evaluator on basis of good energy fit.

^(e) From conversion electron data in 1976Mu03, 1966Or01, except as noted. These multipolarities are provided in the Adopted Gammas. 1976Mu03 normalized the $\alpha(K)\exp(E1)$ for 1036, 1062 and 1079 γ rays to the weighted average of the three theoretical values by Hager Seltzer. The evaluator deduced the re-normalization value using BrICC and considered the correction factor to be negligible (0.997) for the conversion electron data in 1976Mu03. 1966Or01 normalized the 800 γ ray to $\alpha(K)\exp(E1) = 0.00524$. The evaluator deduced the re-normalization factor using BrICC and considered it to be negligible (0.998) for the conversion electron data for $E\gamma = 798.804$ in 1966Or01.

[&] From Adopted Gammas.

^{*a*} From Adopted Gammas. α (K)exp used for normalization of γ - and ce-spectra. See general comments for multi.

^b α (K)exp=0.009 2 for the 1123+1124 peak (1976Mu03); α (K)exp=0.007 2 (1966Or01). α (K)exp indicates that both γ rays are predominantly E2.

^c α (K)exp=0.050 *10* for the 505.61+507.10 multiplet (1976Mu03).

 $^{d} \alpha$ (K)exp=0.0045 *14* for the 1529.00+1530.7 doublet (1976Mu03).

^e α (K)exp=0.17 6 for the 554.4+554.68 doublet (1976Mu03).

^f Additional information 1.

^g For absolute intensity per 100 decays, multiply by 0.0248 11.

^{*h*} Multiply placed with undivided intensity.

^{*i*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

²⁴⁶₉₆Cm₁₅₀

30

246 Am β^- decay (25.0 min) 1976Mu03

Decay Scheme (continued)

32

Band(**F**): $K^{\pi} = \mathbf{0}^{-}$ band

3- 1300.429

²⁴⁶₉₆Cm₁₅₀

 $\mathbf{0}^+$

²⁴⁶Am β^- decay (25.0 min) <u>1976Mu03 (continued)</u> **Band(L):** Third $K^{\pi}=1^{-}$ band (3^-) 1670.990 Band(K): Second $K^{\pi}=2^{-1}$ $(2)^{-}$ 1633.521 band 3-1621.483 (1^-) 1604.161 2- 1593.693 Band(J): $K^{\pi}=3^{-}$ octupole vibrational band head 1525.917 3-**Band(I):** $K^{\pi} = 1^{+}$ band (3^+) 1509.26 (2+) 1478.42 1451.882 1+ **Band(G): Second** $K^{\pi}=0^+$ band Band(H): Second $K^{\pi}=1^{-}$ (4+) 1379.21 band (2^-) 1366.619 1-1348.860 <u>(2)</u>⁺ _ <u>1317.56</u> 1289.32

 $^{246}_{96}\mathrm{Cm}_{150}$

246 Am β^- decay (25.0 min) 1976Mu03 (continued)

Band(M): Second $K^{\pi}=1^+$ band (3⁺) 1712.37

(2+) 1680.80

(1⁺) 1661.651

²⁴⁶₉₆Cm₁₅₀