²⁴⁵Bk ε decay 1976Ah03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 189,1 (2023)	14-Feb-2023

Parent: ²⁴⁵Bk: E=0.0; $J^{\pi} = (3/2^{-})$; $T_{1/2} = 4.96$ d 3; $Q(\varepsilon) = 809.3$ 15; % ε decay=99.88 1 ²⁴⁵Bk-Q(ε): From 2021Wa16.

1976Ah03: ²⁴⁵Bk was produced from the irradiation of ²⁴³Am with 34 MeV α particles at the Argonne 152 cm cyclotron. The chemically mass separated ²⁴⁵Bk was then processed into a thin source. The electron capture decay of ²⁴⁵Bk was investigated by measuring the gamma-rays and conversion-electron spectra with Ge(Li) and Si(Li) detectors, respectively. Measured T_{1/2} of ²⁴⁵Bk, E γ , I γ , E(ce), Ice, ce γ -coin. Deduced levels, multipolarity, J^{π} and log*ft*.

1975Ya03: ²⁴⁵Bk was produced from the ²⁴¹Am(α ,x) reaction at the Argonne 60-in cyclotron. The conversion electron spectra from the chemically separated ²⁴⁵Bk were measured with a cooled Si(Li) detector. The γ rays were detected with a NaI(Tl) detector. Measured T_{1/2} of 356-keV level by γ -ce delayed coin.

1956Ch77: ²⁴⁵Bk was produced from the ²⁴³Am(α,2n) and ²⁴⁴Cm(α,p2n) reactions at the Crocker Laboratory. The gammas were measured with a thallium-activated sodium iodide crystal detector and x-rays were detected using a xenon-filled proportional counter. The electron spectrum in coincidence with K x-rays was observed with an anthracene scintillation crystal. Deduced decay scheme.

1956Ma32: ²⁴⁵Bk was produced from the ²⁴⁴Cm(d,n) and ²⁴³Am(α,2n) reactions at the Argonne 60-in. cyclotron. Conversion electrons were measured with electron spectrometer, and the gammas were detected with a NaI detector. Measured ratios of conversion electron to K x-rays. Intensities of the x-rays were measured with the NaI detector.

1979Ah01: The electron spectrum was measured with a cooled Si(Li) spectrometer and the photon spectrum measured with Ge(Li) diodes. From the measured intensities of K-Auger electrons and K x-rays, K-shell fluorescence yield for Cm was deduced: $\omega(K)=97.1\%$ 6.

Using program RADLST, the evaluator has calculated from the decay scheme, x-ray intensities as follows: $K\alpha_2 \times ray=35.1 \ 22$, $K\alpha_1 \times ray=55 \ 4$, $K\beta \times ray=27.9 \ 18$. These values are compared with experimental results (1976Ah03) of $K\alpha_2 \times ray=35.0 \ 24$, $K\alpha_1 \times ray=54.0 \ 34$, and $(K\beta_1' \times ray=20.5 \ 15 + K\beta_2'\xi \ ray=7.3 \ 5)=27.8 \ 16$. This agreement confirms the quality of the data and the consistency of the decay scheme.

²⁴⁵Cm Levels

E(level) [‡]	$J^{\pi^{\dagger}}$	T _{1/2} †	Comments
0.0	7/2+	8423 y 74	
54.819 20	$9/2^{+}$	≤0.10 ns	
252.833 23	$5/2^{+}$		
295.701 17	$7/2^{+}$		
355.95 10	$1/2^{+}$	0.29 µs 2	$T_{1/2}$: From γ -ce delayed coincidence method (1975Ya03).
361.4 4	$3/2^{+}$		
418.7 4	$5/2^{+}$		
633.63 11	$(3/2)^{-}$		
661.52 8	$(5/2)^{-}$		
740.97 12	$(1/2^+)$		
769.2 4	$(3/2)^+$		

[†] From Adopted Levels.

[‡] From least-squares fit to $E\gamma$ data by the evaluator.

$^{245}{\rm Bk}\,\varepsilon$ decay 1976Ah03 (continued)

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	Comments
(40.1 16)	769.2	0.184 20	6.42 8	$\epsilon L=0.38 \ 3; \ \epsilon M+=0.62 \ 3$
(68.3 15)	740.97	1.04 10	6.37 5	εL=0.589 5; εM+=0.411 5
(147.8 15)	661.52	0.62 6	7.46 5	εK=0.076 10; εL=0.633 6; εM+=0.291 4
(175.7 15)	633.63	2.61 26	7.09 5	εK=0.247 9; εL=0.523 6; εM+=0.230 3
(390.6 16)	418.7			
(447.9 16)	361.4			
(453.4 15)	355.95	5.7 14	8.00 11	εK=0.6659 6; εL=0.2420 4; εM+=0.09208 17
(556.5 15)	252.833	90 9	7.02 5	I: Sum of ε intensities to 355.95, 361.4, 418.7 levels. εK =0.6930 3; εL =0.2233 2; εM +=0.08365 10

 † Deduced by the evaluator from intensity balance at each level. ‡ Absolute intensity per 100 decays.

γ (²⁴⁵Cm)

Mea	sured x-	ray intens	sities	(1976Ah	3)				
Energy	Inte	ensity	x-ray	y					
104.6 <i>1</i> 109.3 <i>1</i> 123.2 <i>2</i> 127.1 <i>2</i>	35.0 54.0 20.1 7.3	0 24 0 34 5 15 5	Cm Ka Cm Ka Cm Ka Cm Ka						
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E _f	J_f^π	Mult. [‡]	- δ	α^{a}	Comments
$(42.87^{\&} 2)$		295.701	$7/2^+$	252.833	$5/2^+$				
103.1 1	0.4	355.95	9/2 1/2+	252.833	5/2+	E2		16.25 24	α (L)=11.74 <i>17</i> ; α (M)=3.32 <i>5</i> α (N)=0.924 <i>14</i> ; α (O)=0.2238 <i>33</i> ; α (P)=0.0372 <i>5</i> ; α (Q)=0.0001572 <i>23</i>
198.0 <i>1</i>	0.17 2	252.833	5/2+	54.819	9/2+	E2		1.023 14	L12:L3:M:NO=2.8 2:1.83 <i>13</i> :1.35 <i>13</i> :0.50 6. (1976Ah03); $\alpha(\exp)=16.6$ (1975Ya03). I _y : Deduced by the evaluator from total intensity provided in Fig 10 (see note from pg.15) in 1976Ah03 and $\alpha(BrIcc)$. $\alpha(K)=0.1475$ 21; $\alpha(L)=0.634$ 9; $\alpha(M)=0.1778$ 25 $\alpha(N)=0.0494$ 7; $\alpha(O)=0.01203$ 17; $\alpha(P)=0.002046$ 29;
									$\alpha(Q)=1.829 \times 10^{-5} \ 26$ %I $\gamma=0.167 \ 23$ K:L12:L3= $\leq 0.03:0.065 \ 6:0.025 \ 3; \alpha(K) \exp \leq 0.18, \ \alpha(L12) \exp = 0.38, \ \alpha(L3) \exp = 0.15 \ (1976Ah03).$
(240.90 ^{&} 4)		295.701	7/2+	54.819	9/2+	M1 [#]		2.63 4	α (K)=2.064 29; α (L)=0.423 6; α (M)=0.1033 14 α (N)=0.0284 4; α (O)=0.00722 10; α (P)=0.001421 20; α (Q)=0.0001015 14
252.85 5	31.3 20	252.833	5/2+	0.0	7/2+	M1+E2 [#]	0.16 [@] +6-4	2.25 5	$\alpha(K)=1.76 4; \alpha(L)=0.366 6; \alpha(M)=0.0895 14$ $\alpha(N)=0.0246 4; \alpha(O)=0.00626 10; \alpha(P)=0.001228 20;$ $\alpha(Q)=8.66\times10^{-5} 21$ %1y=30.7.5

ω

²⁴⁵₉₆Cm₁₄₉-3

						245 Bk ε	decay 1976Ah0	3 (continued)	
							γ ⁽²⁴⁵ Cm) (continu	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{a}	Comments
272.2 3	0.013 <i>3</i>	633.63	(3/2)-	361.4	3/2+	[E1]		0.0537 8	K:L12:L3:M:NO=53.2 37:11.1 8:0.081 8:2.86 21:1.11 8; α (K)exp =1.70, α (L12)exp =0.35, α (L3)exp =0.0026, α (M)exp=0.091, α (NO)exp =0.035 (1976Ah03). α (K)=0.0420 6; α (L)=0.00878 12; α (M)=0.002142 30 α (N)=0.000584 8; α (O)=0.0001458 21; α (P)=2.71×10 ⁻⁵ 4; α (Q)=1.486×10 ⁻⁶ 21 %Iy=0.0127 31
(295.73& 2)		295.701	7/2+	0.0	7/2+	M1+E2#	0.39 [@] +17-24	1.32 14	$\alpha(K)=1.02 \ l^2; \ \alpha(L)=0.223 \ l^3; \ \alpha(M)=0.0550 \ 28 \\ \alpha(N)=0.0151 \ 8; \ \alpha(O)=0.00384 \ 20; \ \alpha(P)=0.00075 \ 5; \\ \alpha(Q)=5.0\times10^{-5} \ 6$
350.5 1	0.082 7	769.2	(3/2)+	418.7	5/2+	M1		0.929 13	$\alpha(K)=0.731 \ 10; \ \alpha(L)=0.1487 \ 21; \ \alpha(M)=0.0363 \ 5 \\ \alpha(N)=0.00996 \ 14; \ \alpha(O)=0.00254 \ 4; \ \alpha(P)=0.000499 \ 7; \\ \alpha(Q)=3.56\times10^{-5} \ 5 \\ \%I\gamma=0.080 \ 9 \\ K \ I \ 12=0 \ 061 \ 6:0 \ 014 \ 2; \ \alpha(K) \exp -0.74 \ \alpha(I \ 12) \exp -0.17 $
365.8 1	0.39 3	661.52	(5/2)-	295.701	7/2+	E1		0.0287 4	K.E.12=0.001 0.0.014 2, α (K)exp =0.74, α (E12)exp =0.17 (1976Ah03). α (K)=0.02268 32; α (L)=0.00451 6; α (M)=0.001096 15 α (N)=0.000299 4; α (O)=7.50×10 ⁻⁵ 11; α (P)=1.412×10 ⁻⁵ 20; α (Q)=8.27×10 ⁻⁷ 12 %Iy=0.38 4
380.8 1	2.58 18	633.63	(3/2)-	252.833	5/2+	E1		0.0264 4	Ice(K)=0.013 4; α (K)exp =0.033 (1976Ah03). α (K)=0.02091 29; α (L)=0.00413 6; α (M)=0.001003 14 α (N)=0.000274 4; α (O)=6.87×10 ⁻⁵ 10; α (P)=1.296×10 ⁻⁵ 18; α (Q)=7.65×10 ⁻⁷ 11 %Iy=2.53 24
385.0 <i>1</i>	0.61 4	740.97	(1/2+)	355.95	1/2+	M1		0.718 <i>10</i>	L12:M=0.011 1:0.0043 8; α (L12)exp =0.0043, α (M)exp =0.0017(1976Ah03). α (K)=0.565 8; α (L)=0.1147 16; α (M)=0.0280 4 α (N)=0.00769 11; α (O)=0.001958 27; α (P)=0.000385 5; α (Q)=2.74×10 ⁻⁵ 4 %Iy=0.60 6 K:L12:M:NO=0.340 25:0.075 7:0.023 2:0.010 2; α (K)exp =0.56, α (L12)exp =0.12, α (M)exp =0.038 α (NO)exp
407.8 2	0.03	769.2	$(3/2)^+$	361.4	3/2+				= $0.010(19/6An03)$. %Iy= $0.029.6$ $c_2(K)(407.8x) + 408.7x) = 0.017.2 (107(Ab02))$
408.7 1	0.23 2	661.52	(5/2)-	252.833	5/2+	[E1]		0.02287 32	$ \begin{array}{l} \alpha(\mathbf{K}) = 0.01816 \ 25; \ \alpha(\mathbf{L}) = 0.00355 \ 5; \ \alpha(\mathbf{M}) = 0.00861 \ 12 \\ \alpha(\mathbf{N}) = 0.0002349 \ 33; \ \alpha(\mathbf{O}) = 5.90 \times 10^{-5} \ 8; \ \alpha(\mathbf{P}) = 1.116 \times 10^{-5} \\ 16; \ \alpha(\mathbf{Q}) = 6.69 \times 10^{-7} \ 9 \end{array} $
488.2 2	0.015 3	740.97	$(1/2^+)$	252.833	5/2+	[E2]		0.0623 9	% $I\gamma$ =0.225 25 α (K)=0.0345 5; α (L)=0.02039 29; α (M)=0.00546 8

4

From ENSDF

²⁴⁵₉₆Cm₁₄₉-4

L

γ (²⁴⁵Cm) (continued)

 E_{γ}^{\dagger} E_i (level)

Comments

 α (N)=0.001511 21; α (O)=0.000373 5; α (P)=6.73×10⁻⁵ 9; α (Q)=2.012×10⁻⁶ 28 %I γ =0.0147 31

[†] From 1976Ah03.
[‡] From experimental conversion-electron data in 1976Ah03, except as noted. These values deduced here are given in the Adopted Gammas.

[#] From Adopted Gammas.

^(a) From Adopted Gammas. ^(a) γ -ray not observed in ²⁴⁵Bk ε decay; E γ from Adopted Gammas.

^{*a*} Additional information 1.

^b For absolute intensity per 100 decays, multiply by 0.98 7.

²⁴⁵Bk ε decay 1976Ah03

