		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 189,1 (2023)	14-Feb-2023

Parent: ²⁴⁹Cf: E=0.0; $J^{\pi}=9/2^{-}$; $T_{1/2}=351$ y 2; $Q(\alpha)=6293.3$ 5; % α decay=100

 249 Cf-J^{π},T_{1/2}: From Adopted Levels in 249 Cf (2011Ab07).

- 2015Ah03: α spectra from the decay ²⁴⁹Cf were measured using the Argonne double-focusing magnetic spectrometer in the early 1970s. Precise energies of α groups in the decay of ²⁴⁹Cf were determined with respect to the known energy of ²⁵⁰Cf by 2015Ah03. Measured E α , I α , E(ce), I(ce), E γ , I γ , $\alpha\gamma$ -coin, α (ce)-coin, $\gamma\gamma$ -coin using the magnetic spectrometer, passivated implanted planar silicon (PIPS) detector (FWHM=9.0 keV for α and 2.3 keV for the electron spectrum measurements), cooled Si(Li) spectrometer (FWHM=1.2 keV for 100 keV electron line), and the high-resolution low energy photon spectrometer (LEPS) detector. Deduced levels, J, π , conversion coefficients for K- and higher shells, multipolarity, alpha branching ratios and hindrance factors, bands, configurations, anomalous E1 conversion coefficients. Systematics of anomalous E1 conversion coefficients for E1 transitions in ²²⁷Ac,²³¹,²³³Pa,²³⁷Np,²³⁹Pu,²⁴³Am, and ²⁴⁵Cm.
- 1997Ar31 (same group as 1996Ko73 and 1996Ko29): α decay was re-investigated using HPGe detectors. 43 γ lines were measured and the E γ and I γ were reported. Assigned 4 rotational bands and deduced a level scheme.

1996Ko73: Gammas were investigated using high resolution coaxial and planar HPGe detectors. Energy and intensities of 44 γ -rays were measured.

1996Ko29: Gammas were investigated using high resolution coaxial and planar HPGe detectors. Energy and intensities of 30 γ -rays were measured. Assigned 4 rotational bands.

1986Ah02: ²⁴⁹Cf source was prepared at the Argonne electromagnetic isotope separator. I α of α groups measured with high precision using the passivated ion implanted silicon detectors.

1982Ah04: ²⁴⁹Cf source was prepared at the Argonne electromagnetic isotope separator. Absolute intensities of γ -rays and K X-rays were measured with two high-resolution Ge detectors.

1977Ba67: γ -rays and conversion electrons were measured using a Ge detector and a low background β - spectrometer. Measured E γ , I γ , I(ce). Determined multipolarities and defined level scheme from previous measurements.

1973Ba80: α spectrum measured with a precision magnetic α spectrograph. 23 α groups were observed for levels between 0.5-1.0 MeV. Gammas were measured with a Ge(Li) detector. Determined E α , I α , hindrance factor, E γ , and I γ . Deduced decay scheme and rotational bands.

1971Bb10: Re-determined energies of α group due to change in energy standard ²⁴²Cm used in the 1969Ba57 measurement. The standard used; $E\alpha_0(^{242}Cm)=6112.90$ keV 25.

1971Sc14: ²⁴⁹Cf was produced by the β - decay of ²⁴⁹Bk. Gamma ray following the α decay of ²⁴⁹Cf was measured with Ge(Li) detectors. Measured γ , $\gamma\gamma$ coin, and K x-ray.

1969Ba59: α spectrum measured with a precision magnetic α spectrograph. Sixteen α group were observed and a level scheme was deduced.

1969Ba57: α spectrum measured with a precision magnetic α spectrograph. The standard used; $E\alpha_0(^{242}Cm)=6111.30$ keV 25.

1966Ah02: ²⁴⁹Cf α groups were measured by α -singles and $\alpha\gamma$ - coincidence experiments using a cooled Au-Si surface-barrier detector. The α particle energies have been measured with respect to the 5805 keV of the ²⁴⁴Cm a₀ group. The gamma rays were measured with a Ge(Li) detector. Conversion electrons were measured with a semiconductor detector. Determined E α , I α , hindrance factor, E γ , I γ , $\alpha\gamma$ -coin and conversion electrons. Deduced level scheme.

Others:

1991Po17, 1990Po14, 1972Sc44, 1972Sc44, 1970Fa10, 1967Ko03, 1957St70.

²⁴⁹Cf-Q(α): From 2021Wa16.

From ENSDF

$^{249}{\rm Cf}\,\alpha$ decay 2015Ah03,1982Ah04,1997Ar31 (continued)

²⁴⁵Cm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0#	7/2+	8423 y 74	
54.784 [#] 12	9/2+	≤0.10 ns	
121.574 [#] 15	$11/2^{+}$		
199.8 [#] 5	13/2+		
252.838 [@] 17	5/2+		
295.705 [@] 13	7/2+		
350.64 [@] 3	9/2+		
388.170 ^{&} 12	9/2-	0.450 ns 20	
416.59 [@] 4	$11/2^+$		
442.892 ^{&} 20	$11/2^{-}$		
495.8 [@] 5	$13/2^{+}$		
508.84 ^{&} 3	13/2-		
554.7 3	$(11/2^+)$		Configuration= $1/2[631]$.
585.4 ^{&} 5	15/2-		
643.632 ^{<i>u</i>} 19	7/2-		
674.2°	17/2-		
701.831 ^a 20	9/2		
771.85^{a} 4	$(11/2^{-})$		
774.3 7			$J^{\pi} = (11/2^{-})$ reported by 1997Ar31.
785.22 8	$(9/2^+)$		Configuration= $7/2^{-}[613]$.
841.1 5			
849.2 5 852 58 ^a 10	$(13/2^{-})$		
890.61 9	$(9/2^+)$		
900.1 5			
906.6 5	(7/0+ 0/0+)		
9/1.3/9 21	(7/2*,9/2*)		
1102.3 5			

[†] From least-squares fit to Eγ data by the evaluator.
[‡] From Adopted Levels.
[#] Band(A): ν7/2[624].
[@] Band(B): ν5/2[622].
[&] Band(C): ν9/2[734].
^a Band(D): ν7/2[743].

$E\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\#a}$	HF ^{&}	$E\alpha^{\dagger}$	E(level)	Ια ^{#a}	HF ^{&}
5107.6 [‡] 7	1102.3	0.000003@	2524	5353.3 10	852.58	0.0020 3	149 23
5154.5 [‡] 9	1054.7	$0.000002^{@}$	7787	5356.7 [‡] 6	849.2	0.0001	3131
5236.2 10	971.379	0.0015 3	36 8	5364.6 [‡] 7	841.1	$0.000074^{@}$	4745
5300.2 [‡] 7	906.6	0.000007@	19690	5419.6 [‡] 5	785.22	0.00014 [@]	5493
5306.6 [‡] 7	900.1	$0.00008^{@}$	1892	5430.3 [‡] 8	774.3	$0.00002^{@}$	44756
5315.9 [‡] 5	890.61	0.000025 [@]	6938	5432.8 5	771.85	0.0103 7	90 7

Continued on next page (footnotes at end of table)

 α radiations

2015Ah03,1982Ah04,1997Ar31 (continued)

		α radiations (continued)										
$E\alpha^{\dagger}$	E(level)	Ια [#] <i>a</i>	HF ^{&}	$E\alpha^{\dagger}$	E(level)	Ια ^{#a}	HF&					
5467.7 [‡] 7	736.3	0.00008	18908	5782.4 5	416.59	0.35 1	289 9					
5502.0 5	701.831	0.044 2	55 <i>3</i>	5810.5 5	388.170	82.4 <i>3</i>	1.756 15					
5529.0 10	674.2	0.0022 3	$1.60 \times 10^3 22$	5847.5 5	350.64	1.44 <i>3</i>	160 4					
5559.3 5	643.632	0.115 5	46.2 21	5901.5 5	295.705	3.17 5	143 <i>3</i>					
5616.4 5	585.4	0.022 1	523 25	5943.8 <i>5</i>	252.838	3.29 5	232 4					
5647.0 10	554.7	0.0026 4	6.6×10 ³ 11	5995.8 5	199.8	0.040 2	3.60×10 ⁴ 19					
5692.3 5	508.84	0.29 1	108 4	6072.8 5	121.574	0.34 1	1.064×10 ⁴ 33					
5704.6 10	495.8	0.048 3	770 49	6138.5 5	54.784	1.32 3	5.94×10 ³ 15					
5756.9 5	442.892	4.68 7	15.5 3	6192.4 5	0.0	2.44 5	6.00×10 ³ 14					

 249 Cf α decay

[†] From 2015Ah03, except as noted. The energies were determined with respect to the energy of the ²⁵⁰Cf α_0 group known with high precision of 6030.22 keV 20 as recommended by 1991Ry01. It is however noted that the E α from the ²⁴⁹Cf α decay obtained by 2015Ah03 is ≈ 2 keV lower than recommended by 1991Ry01.

[‡] Estimated by the evaluator from level energies populated by ²⁴⁹Cf α decay and Q α =6293.3 keV 5 for α branches in 1997Ar31.

[#] Except as noted, I α is a combination of results from measurements with the magnetic spectrometer and the passivated implanted planar silicon (PIPS) detector (FWHM=9.0 keV) by 2015Ah03. Values are in agreement with 1986Ah02 and 1966Ah02 but differ with the 1973Ba80, 1971Bb10, and 1969Ba59 values.

with the 1973bado, 1971bado, 1971ba

^a Absolute intensity per 100 decays.

$\gamma(^{245}\text{Cm})$

Iy normalization: From absolute intensities reported in 2015Ah03, 1982Ah04, and 1997Ar31.

Measu	red x-rays intens	sities (<mark>1982</mark>	Ah04)
Energy	Intensity	x-ray	
14.05.4		C I	
14.95 4	6.5 4	$Cm L_{\alpha}$	x ray
19.46 4	7.8 5	Cm L_{β}	x ray
22.79 4	2.00 10	$Cm L_{\gamma}$	x ray
104.59 2	2.15 6	Cm K α_2	x ray
109.27 2	3.40 10	Cm K α_1	x ray
122.29 2	0.413 18	Cm K β_3	x ray
123.38 2	0.78 3	Cm K β_1	x ray
123.97 4	0.055 5	Cm K β_5	x ray
126.82 4 ^a		Cm K β_2	x ray
	0.33 1 ^a		
127.16 4 ^a		Cm K β_4	x ray
128.00 3	0.097 4	Cm KO ₂₃	x ray

^a I(x-ray) for 126.82+127.16

4

Others: 1990Pol4 (relative experimental intensities of L and M x-rays.)

Eγ	I_{γ}^{j}	E _i (level)	\mathbf{J}_i^π	$E_f J_f^{\pi}$	Mult. ^g	δ^{g}	α^{i}	Comments
37.55 [‡] 3	0.0147 ^{<i>f</i>} 7	388.170	9/2-	350.64 9/2+				E_{γ} : 37.57 4 (1997Ar31), 37.54 3 (1982Ah04). Le: 0.0145 8 (1997Ar31), 0.0148 7 (1982Ah04).
42.87 [‡] 2 54.77 2	0.0360 ^b 15 0.083 ^c 13	295.705 54.784	7/2+ 9/2+	252.838 5/2 ⁺ 0.0 7/2 ⁺	M1+E2	1.3 +4-2	219 <i>33</i>	E _γ : 42.86 3 (1997Ar31), 42.88 2 (1982Ah04). α (L)=159 24; α (M)=44 7 α (N)=12.3 19; α (O)=3.0 5; α (P)=0.50 7; α (Q)=0.0040 6 E _γ : 54.77 3 (1997Ar31), 54.77 2 (1982Ah04). Mult.,δ: From E2/(M1+E2)=0.63 10 with δ = 1.3 ⁴⁻² from L x-ray
54.77 [‡] 2	0.0381 ^c 26	442.892	11/2-	388.170 9/2-	M1+E2	0.63 4	121 8	intensities in coincidence with 335- gamma ray with nuclear cascading correction made in the L x-ray spectrum (1972Sc44). I _y : Deduced by evaluator from intensity balance at the 54.8-keV level. $\alpha(L1)\exp+\alpha(L2)\exp=60$ 4; $\alpha(L3)\exp=28$ 2; $\alpha(M)\exp=25$ 2; $\alpha(N)\exp+\alpha(O)\exp=7.8$ 10 (2015Ah03) $\alpha(L)=88$ 5; $\alpha(M)=24.1$ 16 $\alpha(N)=6.7$ 4; $\alpha(O)=1.64$ 10; $\alpha(P)=0.280$ 17; $\alpha(Q)=0.00582$ 16

From ENSDF

				249	$\mathbf{Cf} \alpha \mathbf{de}$	cay 201	5Ah03,1982A	h04,199	7Ar31 (continued)			
	γ ⁽²⁴⁵ Cm) (continued)											
E_{γ}	I_{γ}^{j}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^g	δ^{g}	α^{i}	Comments			
									 E_γ: 54.77 3 (1997Ar31), 54.77 2 (1982Ah04). Mult.,δ: From conversion electron data measured in coincidence with α particles with energies below the 5810.5 keV (2015Ah03). Other:δ=0.69 +16-15 from L x-ray intensities in coincidence with 388-keV gamma ray (1972Sc44). Note the evaluator did not include this value as the authors in 1972Sc44 were not able correct for nuclear cascading in the L x-ray spectrum. I_γ: Deduced by evaluator from intensity balance at the 442.9-keV level. Ice(L1+L2)=12.3% 9, Ice(L3)=5.7% 4, Ice(M)=5.1% 4, Ice(N+O)=1.6% 2 (2015Ah03). 			
65.95 ^{k‡} 2	0.0077 ^{kf} 7	416.59	11/2+	350.64	9/2+				E_{γ} : 65.91 5 (1997Ar31), 65.96 2 (1982Ah04). I_{γ} : 0.0073 7 (1997Ar31), 0.0082 8 (1982Ah04).			
65.95 ^{k‡} 2	0.0077 ^{kf} 5	508.84	13/2-	442.892	11/2-				E _γ : 65.91 5 (1997Ar31), 65.96 2 (1982Ah04). I _γ : 0.0073 7 (1997Ar31), 0.0082 8 (1982Ah04).			
66.80 [‡] 2	0.022 ^{<i>f</i>} 12	121.574	11/2+	54.784	9/2+	M1+E2	0.44 +6-7	39 4	$\begin{aligned} &\alpha(L1)\exp+\alpha(L2)\exp=22\ 3;\ \alpha(M)\exp=7.7\ 10;\\ &\alpha(N)\exp+\alpha(O)\exp\approx2.6\ (2015Ah03)\\ &\alpha(L)=28.8\ 31;\ \alpha(M)=7.6\ 9\\ &\alpha(N)=2.10\ 25;\ \alpha(O)=0.52\ 6;\ \alpha(P)=0.094\ 10;\ \alpha(Q)=0.00357\ 14\\ &E_{\gamma}:\ 66.80\ 4\ (1997Ar31),\ 66.80\ 2\ (1982Ah04).\\ &I_{\gamma}:\ 0.0205\ 15\ (1997Ar31),\ 0.023\ 1\ (1982Ah04).\\ &Ice(L1+L2)=0.68\%\ 8,\ Ice(M)=0.24\%\ 3,\ Ice(N+O)\approx0.08\%\\ &(2015Ah03). \end{aligned}$			
x76 ^l									E_{γ} : From 1967Ko03 but its existence was considered questionable by the authors. Transition was not observed in any other measurements. 1971Sc14 could not confirm the gamma but noted that if present, its intensity should be 10 times less than the reported Iv=0.05 normalized to I(388v)=100 in 1967Ko03			
^x 86 ^l 1									E_{γ} : From 1967Ko03 but its existence was considered questionable by the authors. Transition was not observed in any other measurements. 1971Sc14 could not confirm the gamma but noted that if present, its intensity should be 50 times less than the reported I γ =0.24 (normalized to I(388 γ)=100) in 1967Ko03.			
92.51 [‡] 2	0.308 18	388.170	9/2-	295.705	7/2+				E_{γ} : 95.51 <i>3</i> (2015Ah03), 92.51 <i>2</i> (1982Ah04). I _{\gamma} : From unweighted average of 0.290 <i>11</i> (2015Ah03) and 0.326 <i>10</i> (1982Ah04).			
(97.8 ^{<i>d</i>})		350.64	9/2+	252.838	5/2+				E_{γ} : The gamma was not observed. 2015Ah03 identified the L2 line from the electron spectrum with Ice(L2)=0.10% 2 (2015Ah03).			

S

 $^{245}_{96}\mathrm{Cm}_{149}$ -5

				24	⁴⁹ Cf α d	ecay 2015	5Ah03,1982Ah	04,1997Ar3	1 (continued)
						γ	(²⁴⁵ Cm) (contin	nued)	
Eγ	I_{γ}^{j}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^g	<i>δ8</i>	α^{i}	Comments
121.60 [‡] 4	0.042 6	121.574	11/2+	0.0	7/2+	E2		7.60 11	$\alpha(L2)\exp=3.0 4; \alpha(L3)\exp=1.9 3 (2015Ah03)$ $\alpha(L)=5.49 8; \alpha(M)=1.552 22$ $\alpha(N)=0.432 6; \alpha(O)=0.1047 15; \alpha(P)=0.01749 25;$ $\alpha(Q)=8.63\times10^{-5} 12$ $E_{\gamma}: 121.60 8 (1997Ar31), 121.60 4 (1982Ah04).$ $I_{\gamma}:$ From unweighted average of 0.0488 30 (1997Ar31) and 0.036 3 (1982Ah04). $I_{\gamma}: I_{\gamma}: $
198.1 ^{<i>a</i>} 3	0.0086 ^{<i>a</i>} 33	252.838	5/2+	54.784	9/2+	E2		1.021 15	$\begin{aligned} \alpha(K) = 0.1474 \ 21; \ \alpha(L) = 0.633 \ 10; \ \alpha(M) = 0.1774 \ 27 \\ \alpha(N) = 0.0493 \ 8; \ \alpha(O) = 0.01200 \ 19; \ \alpha(P) = 0.002042 \ 31; \\ \alpha(Q) = 1.827 \times 10^{-5} \ 27 \\ \end{aligned}$
229.20 ^a 8	0.053 ^a 4	350.64	$9/2^{+}$	121.574	$11/2^{+}$				
240.90 <i>4</i>	0.213 ^{<i>f</i>} 8	295.705	7/2+	54.784	9/2+	M1		2.63 4	$\begin{array}{l} \alpha(\mathrm{K}) \exp = 2.10 \ 17; \ \alpha(\mathrm{L}1) \exp + \alpha(\mathrm{L}2) \exp = 0.43 \ 4 \ (2015 \mathrm{Ah03}) \\ \alpha(\mathrm{K}) = 2.064 \ 29; \ \alpha(\mathrm{L}) = 0.423 \ 6; \ \alpha(\mathrm{M}) = 0.1033 \ 14 \\ \alpha(\mathrm{N}) = 0.0284 \ 4; \ \alpha(\mathrm{O}) = 0.00722 \ 10; \ \alpha(\mathrm{P}) = 0.001421 \ 20; \\ \alpha(\mathrm{Q}) = 0.0001015 \ 14 \\ \mathrm{E}_{\gamma}: \ \mathrm{From \ unweighted \ average \ of \ 240.95 \ 3 \ (1997 \mathrm{Ar31}) \ and \\ 240.86 \ 2 \ (1982 \mathrm{Ah04}). \\ \mathrm{I}_{\gamma}: \ 0.218 \ 8 \ (1997 \mathrm{Ar31}), \ 0.208 \ 8 \ (1982 \mathrm{Ah04}). \\ \mathrm{Ice}(\mathrm{K}) = 0.44\% \ 3, \ \mathrm{Ice}(\mathrm{L1} + \mathrm{L2}) = 0.090\% \ 7 \ (2015 \mathrm{Ah03}). \end{array}$
252.82 [‡] 3	2.55 ^f 8	252.838	5/2+	0.0	7/2+	M1+E2	0.16 +6-4	2.25 5	$ \begin{aligned} &\alpha(\text{K})\exp=1.70\ 7;\ \alpha(\text{L}1)\exp+\alpha(\text{L}2)\exp=0.35\ 3;\ \alpha(\text{M})\exp=0.091\\ &8;\ \alpha(\text{N})\exp+\alpha(\text{O})\exp=0.032\ 4\ (2015\text{Ah03})\\ &\alpha(\text{K})=1.76\ 4;\ \alpha(\text{L})=0.366\ 6;\ \alpha(\text{M})=0.0895\ 14\\ &\alpha(\text{N})=0.0246\ 4;\ \alpha(\text{O})=0.00626\ 10;\ \alpha(\text{P})=0.001229\ 20;\\ &\alpha(\text{Q})=8.66\times10^{-5}\ 21\\ &\text{Mult.,}\delta:\ \text{From Adopted Levels.}\\ &\text{E}_{\gamma}:\ 252.86\ 3\ (1997\text{Ar31}),\ 252.80\ 2\ (1982\text{Ah04}).\\ &\text{I}_{\gamma}:\ 2.63\ 10\ (1997\text{Ar31}),\ 2.50\ 8\ (1982\text{Ah04}).\\ &\text{Mult.,}\delta:\ \text{Other: M1+E2\ with}\ \delta=0.40\ +13-15\ (1977\text{Ba67}).\\ &\text{Ice}(\text{K})=4.25\%\ 12,\ \text{Ice}(\text{L1+L2})=0.90\%\ 7,\ \text{Ice}(\text{M})=0.23\%\ 2,\\ &\text{Ice}(\text{N+O})=0.08\%\ 1\ (2015\text{Ah03}). \end{aligned} $
255.47 [#] 3	0.032 [#] 3	643.632	7/2-	388.170	9/2-	M1(+E2)	0.19 23	2.17 21	$\begin{split} &\alpha(\text{K}) \text{exp} = 1.7 \ 2; \ \alpha(\text{L1}) \text{exp} + \alpha(\text{L2}) \text{exp} = 0.34 \ 9 \ (2015 \text{Ah03}) \\ &\alpha(\text{K}) = 1.69 \ 19; \ \alpha(\text{L}) = 0.354 \ 17; \ \alpha(\text{M}) = 0.0867 \ 33 \\ &\alpha(\text{N}) = 0.0238 \ 9; \ \alpha(\text{O}) = 0.0066 \ 24; \ \alpha(\text{P}) = 0.00119 \ 6; \\ &\alpha(\text{Q}) = 8.3 \times 10^{-5} \ 9 \\ &\text{Ice}(\text{K}) = 0.060\% \ 6, \ \text{Ice}(\text{L1} + \text{L2}) = 0.012\% \ 3 \ (2015 \text{Ah03}). \\ &\text{E}_{\gamma}: 255.54 \ 7 \ (2015 \text{Ah03}), \ 255.56 \ 8 \ (1997 \text{Ar31}), \ 255.45 \ 3 \\ &(1982 \text{Ah04}). \\ &\text{I}_{\gamma}: 0.035 \ 3 \ (2015 \text{Ah03}), \ 0.0343 \ 28 \ (1997 \text{Ar31}), \ 0.026 \ 3 \\ &(1982 \text{Ah04}). \end{split}$

6

L

$\frac{249}{\text{Cf} \alpha \text{ decay}} \frac{2015\text{Ah03,1982Ah04,1997Ar31 (continued)}}{\gamma^{(245}\text{Cm}) \text{ (continued)}}$											
259.0 ^{<i>a</i>} 3	0.0073 ^{<i>a</i>} 20	554.7	$(11/2^+)$	295.705	7/2+						
259.15 ^d 7	0.0085 ^e 9	701.831	9/2-	442.892	11/2-	M1		2.143 30	$\begin{aligned} &\alpha(\text{K})\exp=1.8 \ 4; \ \alpha(\text{L}1)\exp+\alpha(\text{L}2)\exp\approx0.5 \ (2015\text{Ah03}) \\ &\alpha(\text{K})=1.684 \ 24; \ \alpha(\text{L})=0.344 \ 5; \ \alpha(\text{M})=0.0842 \ 12 \\ &\alpha(\text{N})=0.02311 \ 32; \ \alpha(\text{O})=0.00589 \ 8; \ \alpha(\text{P})=0.001158 \ 16; \\ &\alpha(\text{Q})=8.26\times10^{-5} \ 12 \\ &\text{Ice}(\text{K})=0.015\% \ 3, \ \text{Ice}(\text{L}1+\text{L}2)\approx 0.004 \ (2015\text{Ah03}). \end{aligned}$		
266.63 [‡] 2	0.707 ^{<i>f</i>} 25	388.170	9/2-	121.574	11/2+	E1+M2	0.076 +7-8	0.094 8	$\begin{aligned} &\alpha(K)\exp=0.068 \ 5; \ \alpha(L1)\exp+\alpha(L2)\exp=0.020 \ 5\\ &(2015Ah03) \\ &\alpha(K)=0.069 \ 5; \ \alpha(L)=0.0183 \ 18; \ \alpha(M)=0.0046 \ 5\\ &\alpha(N)=0.00128 \ 13; \ \alpha(O)=0.000323 \ 34; \ \alpha(P)=6.1\times10^{-5} \ 7; \\ &\alpha(Q)=3.7\times10^{-6} \ 4\\ E_{\gamma}: \ 266.66 \ 3 \ (1997Ar31), \ 266.62 \ 2 \ (1982Ah04).\\ &I_{\gamma}: \ 0.726 \ 26 \ (1997Ar31), \ 0.690 \ 25 \ (1982Ah04).\\ &I_{ce}(K)=0.045\% \ 3, \ Ice(L1+L2)=0.014\% \ 3 \ (2015Ah03). \end{aligned}$		
^x 267.30 <i>10</i>									From 1977Ba67. Gamma was not reported in any other measurements. $I\gamma(266.8\gamma)+I\gamma(267.3\gamma)=1.01~4$ (1977Ba67).		
295.73 [‡] 2	0.139 ^{<i>f</i>} 5	295.705	7/2+	0.0	7/2+	M1+E2	0.39 +17-24	1.32 14	$\begin{array}{l} \alpha(\rm K) \exp = 1.03 \; 9; \; \alpha(\rm L1) \exp + \alpha(\rm L2) \exp = 0.21 \; 3; \\ \alpha(\rm M) \exp = 0.059 \; 15 \; (2015 \rm Ah03) \\ \alpha(\rm K) = 1.02 \; 12; \; \alpha(\rm L) = 0.223 \; 13; \; \alpha(\rm M) = 0.0550 \; 28 \\ \alpha(\rm N) = 0.0151 \; 8; \; \alpha(\rm O) = 0.00384 \; 20; \; \alpha(\rm P) = 0.00075 \; 5; \\ \alpha(\rm Q) = 5.0 \times 10^{-5} \; 6 \\ \rm E_{\gamma}: \; 295.74 \; 3 \; (1997 \rm Ar31), \; 295.72 \; 2 \; (1982 \rm Ah04). \\ \rm I_{\gamma}: \; 0.142 \; 5 \; (1997 \rm Ar31), \; 0.136 \; 6 \; (1982 \rm Ah04). \\ \rm Ice(\rm K) = 0.14\% \; 1, \; Ice(\rm L1 + \rm L2) = 0.028\% \; 3, \; Ice(\rm M) = 0.008\% \\ \; 2 \; (2015 \rm Ah03). \end{array}$		
314.0 ^d 3	0.0029 ^e 6	701.831	9/2-	388.170	9/2-						
321.25 [‡] 3	0.065 ^{<i>f</i>} 3	442.892	11/2-	121.574	11/2+	[E1]		0.0376 5	α (K)=0.0296 4; α (L)=0.00601 8; α (M)=0.001464 20 α (N)=0.000399 6; α (O)=0.0001000 14; α (P)=1.872×10 ⁻⁵ 26; α (Q)=1.066×10 ⁻⁶ 15 E _{γ} : 321.26 3 (1997Ar31), 321.24 3 (1982Ah04). I _{γ} : 0.0680 33 (1997Ar31), 0.063 3 (1982Ah04).		
333.37 [‡] 2	14.8 ^{<i>f</i>} 4	388.170	9/2-	54.784	9/2+	(E1) ^h		0.0348 5	$\begin{aligned} &\alpha(K)\exp=0.050\ 4;\ \alpha(L1)\exp+\alpha(L2)\exp=0.010\ 1;\\ &\alpha(L3)\exp=0.00064\ 7\ (2015Ah03)\\ &\alpha(M)\exp=0.0031\ 3;\ \alpha(N)\exp+\alpha(O)\exp=0.00100\ 9\\ &(2015Ah03)\\ &\alpha(K)=0.0274\ 4;\ \alpha(L)=0.00553\ 8;\ \alpha(M)=0.001347\ 19\\ &\alpha(N)=0.000367\ 5;\ \alpha(O)=9.20\times10^{-5}\ 13;\ \alpha(P)=1.726\times10^{-5}\\ &24;\ \alpha(Q)=9.91\times10^{-7}\ 14\\ &E_{\gamma}:\ 333.37\ 3\ (1997Ar31),\ 333.37\ 2\ (1982Ah04). \end{aligned}$		

7

н

²⁴⁹ Cf α decay 2015Ah03,1982Ah04,1997Ar31 (continued)								,1997Ar31 (continued)
						γ (²⁴⁵ C	m) (continue	ed)
Eγ	I_{γ}^{j}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^g	α^{i}	Comments
,								I _γ : 15.3 6 (1997Ar31), 14.6 4 (1982Ah04). Mult.,δ: Other: E1+M2 with δ =0.084 +14–18 (1977Ba67). Ice(K)=0.73% 5, Ice(L1+L2)=0.15% 1, Ice(L3)=0.009% 1, Ice(M)=0.045% 4, Ice(N+O)=0.014% 1 (2015Ah03).
347.8 ^{<i>d</i>} 3 356 ^{<i>a</i>} 1 ^x 358.80 5	$0.0035^{e} 5 \le 0.014^{a} \le 0.01$	643.632 771.85	7/2 ⁻ (11/2 ⁻)	295.705 416.59	7/2 ⁺ 11/2 ⁺			E_{α} : From 1977Ba67 with $I_{\alpha}=0.0279$ 16. Others: 1967Ko03 with
x365.2 10								I_{γ} =0.08 1971Sc14 with Iγ≤0.01. E _γ : From 1967Ko03 with Iγ=0.08. Iγ≤0.01 was given in 1971Sc14.
388.15 [‡] 2	66.0 ^{<i>f</i>} 20	388.170	9/2-	0.0	7/2+	(E1) ^{<i>h</i>}	0.0254 4	α(K)exp=0.042 2; α(L1)exp+α(L2)exp=0.0097 8; α(L3)exp=0.000360 45 (2015Ah03) α(M)exp=0.0026 3; α(N)exp+α(O)exp=0.00100 13 (2015Ah03) α(K)=0.02012 28; α(L)=0.00396 6; α(M)=0.000962 13 α(N)=0.000263 4; α(O)=6.59×10-5 9; α(P)=1.244×10-5 17; α(Q)=7.38×10-7 10 Eγ: 388.13 3 (1997Ar31), 388.16 2 (1982Ah04). Iγ: 66.0 20 (1997Ar31), 66.0 20 (1982Ah04). Iγ: 66.0 20 (1997Ar31), 66.0 20 (1982Ah04). Mult.δ: Other: E1+M2 with δ=0.13 +1-2 (1977Ba67). Ice(K)=2.95% 10, Ice(L1+L2)=0.64% 5, Ice(L3)=0.025% 3, Ice(M)=0.17% 2, Ice(N+O)=0.065% 8 (2015Ah03).
390.84 [‡] 5	0.0166 ^{&} 17	643.632	7/2-	252.838	5/2+			E _γ : 390.8 <i>I</i> (2015Ah03), 390.8 <i>3</i> (1997Ar31), 390.85 <i>5</i> (1982Ah04). I _γ : 0.016 <i>2</i> (2015Ah03), 0.0170 <i>17</i> (1982Ah04).
405.93 [@] 6	0.0048 [@] 3	701.831	9/2-	295.705	7/2+			E_{γ} : 405.8 2 (2015Ah03), 405.94 6 (1997Ar31). I _y : 0.051 5 (2015Ah03), 0.00469 <i>30</i> (1997Ar31).
$\begin{array}{c} 421.0^{a} \ 3\\ 483.5^{ka} \ 5\\ 483.5^{ka} \ 5\\ 580.27^{a} \ 9\\ 588.79^{a} \ 4\\ 596.1^{a} \ 3\\ 643.64^{a} \ 3\\ 647.04^{a} \ 3\\ 650.30^{a} \ 5\\ 652.7^{a} \ 7\\ 663.65^{a} \ 8\\ {}^{x}670^{\dagger}\\ {}^{x}680^{\dagger}\\ 701.84^{a} \ 3\end{array}$	$\begin{array}{c} 0.00073^{a} \ 7 \\ < 0.0001^{ka} \\ < 0.0001^{ka} \\ 0.00017^{a} \ 2 \\ 0.00053^{a} \ 4 \\ 0.000086^{a} \ 13 \\ 0.0071^{a} \ 4 \\ 0.00058^{a} \ 8 \\ 0.00022^{a} \ 2 \\ 0.00022^{a} \ 7 \\ 0.00012^{a} \ 1 \\ \approx 0.001^{\dagger} \\ 0.007^{\dagger} \\ 0.00099^{a} \ 9 \end{array}$	771.85 736.3 900.1 701.831 643.632 849.2 643.632 701.831 771.85 774.3 785.22	(11/2 ⁻) 9/2 ⁻ 7/2 ⁻ 9/2 ⁻ (11/2 ⁻) (9/2 ⁺) 9/2 ⁻	350.64 252.838 416.59 121.574 54.784 252.838 0.0 54.784 121.574 121.574 121.574 0.0	9/2 ⁺ 5/2 ⁺ 11/2 ⁺ 9/2 ⁺ 5/2 ⁺ 7/2 ⁺ 9/2 ⁺ 11/2 ⁺ 11/2 ⁺ 7/2 ⁺			
^x 708.3 ^a 5	≤0.0002 ^{<i>a</i>}							

L

²⁴⁹Cf α decay **2015Ah03,1982Ah04,1997Ar31** (continued)

γ (²⁴⁵Cm) (continued)

Eγ	I_{γ}^{j}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
717.04 ^{<i>a</i>} 5	0.00031 ^{<i>a</i>} 2	771.85	$(11/2^{-})$	54.784	9/2+
^x 718.5 3	0.0128 12				
718.50 ^a 3	0.00058^a 4	971.379	$(7/2^+, 9/2^+)$	252.838	$5/2^{+}$
731.0 ^a 1	6.6×10 ^{-5<i>a</i>} 7	852.58	$(13/2^{-})$	121.574	$11/2^+$
$x \approx 740^{\dagger}$	0.01 [†]				
$x \approx 760^{\dagger}$	0.03				
$x \approx 770^{\dagger}$	≈0.04 [†]				
798.0 ^a 5	1.3×10^{-5a} 2	852.58	$(13/2^{-})$	54.784	$9/2^{+}$
841.1 ^a 5	0.000007 ^a 1	841.1		0.0	$7/2^{+}$
849.9 ^{ka} 5	0.000012 ^{ka} 2	849.2		0.0	$7/2^{+}$
849.9 ^{ka} 5	0.000012 ^{ka} 2	971.379	$(7/2^+, 9/2^+)$	121.574	$11/2^{+}$
890.61 ^a 9	2.3×10^{-5a} 2	890.61	$(9/2^+)$	0.0	$7/2^{+}$
906.6 ^a 5	7.3×10 ^{-6<i>a</i>} 13	906.6		0.0	$7/2^{+}$
916.63 ^a 3	0.00020 ^a 1	971.379	$(7/2^+, 9/2^+)$	54.784	9/2+
971.38 ^a 4	0.00119 ^a 8	971.379	$(7/2^+, 9/2^+)$	0.0	$7/2^{+}$
^x ≈990 [†]	≈0.0009 [†]				
1054.7 ^a 8	2.0×10 ^{-6<i>a</i>} 13	1054.7		0.0	$7/2^{+}$
1102.3 ^{<i>a</i>} 5	3.3×10 ^{-6<i>a</i>} 13	1102.3		0.0	7/2+

[†] Observed by 1973Ba80 only. These gamma rays are not listed in later work of same authors (1977Ba67).

[‡] Weighted average of E γ data from 1982Ah04 and 1997Ar31. E γ data given in comments.

[#] Weighted average of Ey data from 1982Ah04, 1997Ar31, and 2015Ah03. Ey data given in comments.

[@] Weighted average of Ey data from 2015Ah03 and 1997Ar31. Ey data given in comments.

[&] Weighted average of I γ data from 1982Ah04 and 2015Ah03.

^a From 1997Ar31. The relative intensities provided by the authors (1997Ar31) in Table 1, have been multiplied by 0.660 20 to obtain the absolute intensities.

^b From 1982Ah04.

9

^c Deduced by evaluator from transition intensity balance. See comment for details. Other: 0.206 6 (1982Ah04), 0.185 9 (1997Ar31); the evaluator considers these values are for multiple placed gammas and the intensities given are not divided.

^{*d*} From 2015Ah03.

^e From 2015Ah03.

- f Weighted average of I γ data from 1982Ah04 and 1997Ar31.
- ^g From conversion electron data in 2015Ah03, except as noted. These values are given in the Adopted Gammas.
- ^h Measured L3 conversion coefficient is consistent with theoretical conversion coefficient for pure E1, but K, L1+L2, M and N conversion coefficients are about two times the theoretical conversion coefficients for pure E1, which indicates anomalous nature of E1 conversion coefficient for this transition.

^{*i*} Additional information 1.

249 Cf α decay 2015Ah03,1982Ah04,1997Ar31 (continued)

 $\gamma(^{245}\text{Cm})$ (continued)

^{*j*} Absolute intensity per 100 decays. ^{*k*} Multiply placed with undivided intensity. ^{*l*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

10

Decay Scheme

 $^{245}_{96}Cm_{149}$

 $^{245}_{96}\mathrm{Cm}_{149}$

 $^{245}_{96}\mathrm{Cm}_{149}$