245 Pu β^- decay 1968Da02,1968WaZZ

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 189,1 (2023)	14-Feb-2023

Parent: ²⁴⁵Pu: E=0.0; $J^{\pi} = (9/2^{-})$; $T_{1/2} = 10.54$ h 6; $Q(\beta^{-}) = 1278$ 14; $\%\beta^{-}$ decay=100 ²⁴⁵Pu-Q(β^{-}): From 2021Wa16.

1979Bo30: ²⁴⁵Pu produced from ²⁴⁴Pu neutron capture reaction. Gammas from the ²⁴⁵Pu β decay were measured with high precision curved crystal γ -ray spectrometers at the high flux reactor in Grenoble. Deduced levels energies.

- 1968Da02: ²⁴⁵Pu produced from thermal neutron incident on enriched ²⁴⁴Pu at Oak Ridge National Laboratory followed by chemical purification. ²⁴⁵Pu was prepared into thin films for the conversion electron, β and X-ray measurements, and thicker sources for the γ -ray measurements. Conversion electrons and the β -spectrum were measured using Si(Li) detectors. Gamma rays were measured with a Ge(Li) and NaI(Tl) detectors. For the low energy region, a Xe-filled proportional counter and Si(Li) detector were used. Measured t_{1/2}, E γ , I γ , Ice, E β , I β , $\gamma\gamma$ -coin, and $\beta\gamma$ -coin. Deduced levels, J^{π} , and log*ft*.
- 1968WaZZ: ²⁴⁵Pu was produced at the Oak Ridge Research Reactor from neutron incident on enriched ²⁴⁴Pu. Gamma rays were measured with a Ge(Li) detector with a FWHM=2.48 keV for 1.332-MeV γ rays.
- The ²⁴⁵Pu β^- decay scheme shown is basically that proposed by 1968Da02 and 1968WaZZ. Two additional levels, at 757 and 796 keV, were tentatively proposed by 1968Da02. Of the transitions suggested to deexcite these levels, 670, 738, and 796 γ rays were placed elsewhere in the decay scheme; energy fits of remaining γ rays are poor. These two proposed levels and their de-excitation γ rays are not given here.

²⁴⁵Am Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0 [‡]	5/2+	2.05 h 1	T _{1/2} : From Adopted Level.
19.198 [‡] <i>11</i>	7/2+		
27.95 [#] 14	$(5/2^{-})$		
47.075 [‡] 12	$(9/2^+)$		
70.42 [#] 9	$(7/2^{-})$		
87.65 4	$(11/2^+)$		
124.66 [#] 8	(9/2 ⁻)		
134.49 11	$(13/2^+)$		
190.81 [#] 13	$(11/2^{-})$		
327.429 [@] 8	7/2+		
395.873 [@] 11	9/2+		
475.522 [@] 22	$11/2^+$		
563.04 [@] 20	$(13/2^+)$		
887.468 14	$(7/2^+)$		
920.97 7	$(9/2^+, 11/2^+)$		
957.534 16	$(9/2)^+$		
987.52 4	$(7/2^+, 9/2^+)$		
1024.23 14	$(1/2^+, 9/2^-)$		
1005.25 9			
1111.10 10			
1105.0 5			

²⁴⁵Pu β^- decay 1968Da02,1968WaZZ (continued)

²⁴⁵Am Levels (continued)

 † From least-squares fit to $E\gamma$ data by the evaluator.

[‡] Band(A): 5/2[642] rotational band.

[#] Band(B): 5/2[523] rotational band.

[@] Band(C): 7/2[633] rotational band.

β^{-} radiations

 β branch intensities shown on the decay scheme have been deduced by the evaluator from γ -ray transition intensity balances. The individual branchings to levels in the 5/2[642] and 5/2[523] bands could not be deduced because the low-energy gammas expected between them were not observed. The total β^- intensity to these levels is taken to be 1/5 of the total β intensity to the 7/2[633] band, as reported in 1968Da02.

Beta spectrum measured by 1968Da02:

Singles: $E(\beta)=1210 \ 40$, $I(\beta) \approx 1/5$ of 930-keV β^- .

 $(327\gamma)\beta$ -coincidence: E(β)=930 30.

 $(800\gamma)\beta$ coincidence: $E(\beta) \approx 400$.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(92 14)	1185.6	0.12 2	6.58 23	av E β =23.9 38
(167 14)	1111.18	0.66 14	6.63 15	av E β =44.3 40
(213 14)	1065.23	1.7 <i>3</i>	6.55 12	av E β =57.4 41
(254 14)	1024.23	1.1 3	6.98 15	av E β =69.3 42
(291 14)	987.52	2.9 5	6.74 11	av E β =80.2 42
(321 14)	957.534	8.3 13	6.42 10	av E β =89.2 43
(357 14)	920.97	2.2 4	7.15 10	av E β =100.4 44
(391 14)	887.468	14.7 22	6.45 9	av E β =110.8 44
(715 14)	563.04	0.02 4	10.4^{1u} 9	av E β =215.3 45
(803 14)	475.522	0.40 19	9.05 21	av E β =248.3 50
(882 14)	395.873	3.8 9	8.21 11	av E β =276.6 51
(951 14)	327.429	51 <i>13</i>	7.20 12	av E β =301.2 51
				E(decay): 930 keV 30 (1968Da02).
(1087 14)	190.81			
(1144 [‡] 14)	134.49			
(1153 14)	124.66			
(1190 14)	87.65			
(1208 14)	70.42			
(1231 14)	47.075	≈10	≈8.3	av E β =404.8 54
				E(decay): 1210 keV 40 (1968Da02. $I\beta^-$: total β intensity to 5/2[642] and 5/2[523] bands.
(1259 14)	19.198			
(1278 [‡] 14)	0.0			

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

²⁴⁵Pu β^- decay 1968Da02,1968WaZZ (continued)

 $\gamma(^{245}\text{Am})$

I γ normalization: Deduced by the evaluator using: I β (930)/I β (1210)=5, as measured in 1968Da02, and sum of γ -ray transition intensities to levels below 327 keV equal to [100% – I β (1210)]. The uncertainty in I γ normalization=0.18 2 includes 4% from the total intensity of γ rays unplaced in the decay scheme, and 5%, estimated by the evaluator for the experimental reported ratio of I β (930)/I β (1210)=5.

Of the 114 γ rays observed, 47 γ rays have not been placed on the decay scheme. Sum of photon intensities of unplaced gammas amounts to about 14% of the 327 γ photon intensity. The expected low-energy intra- and inter-band transition between the states in the 5/2[642] and 5/2[523] bands, except the 28-keV transition, have not been observed. These transitions should settle the imbalances at those levels with the present decay scheme.

E_{γ}^{\dagger}	Ι _γ #b	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{a}	Comments
28 <i>1</i> *277.0 <i>5</i>	4 2	27.95	(5/2-)	0.0	5/2+	(E1)		3.8 4	%Iγ=0.7 4 α (L)=2.78 27; α (M)=0.73 7 α (N)=0.195 20; α (O)=0.044 4; α (P)=0.0059 5; α (Q)=0.000138 10 Mult.: From nonobservation of any ce-line, 1968Da02 suggested that 28γ was an E1 transition as any other multipolarity would have a very high conversion coefficient. %Iγ=0.018 9
280.385 [‡] 13 ^x 293.2 5 ^x 299.8 7	7.6 8 0.10 <i>5</i> 0.10 <i>5</i>	327.429	7/2+	47.075	(9/2+)	(M1+E2)	0.7 +7-6	1.1 4	% $I_{\gamma}=1.34\ 23$ $\alpha(K)=0.9\ 4;\ \alpha(L)=0.21\ 4;\ \alpha(M)=0.054\ 8$ $\alpha(N)=0.0147\ 20;\ \alpha(O)=0.0037\ 5;\ \alpha(P)=0.00068\ 13;$ $\alpha(Q)=3.6\times10^{-5}\ 15$ $ce(K)=0.83\ 38.$ % $I_{\gamma}=0.018\ 9$ % $I_{\gamma}=0.018\ 9$
$308.222^{d\ddagger} 8$ $308.222^{d\ddagger} e$	29 ^d 3 d	327.429	7/2 ⁺	19.198 87.65	7/2+	M1(+E2)	0.6 9	0.9 4	% I γ =5.1 9 α (K)=0.7 4; α (L)=0.17 4; α (M)=0.041 9 α (N)=0.0113 24; α (O)=0.0028 6; α (P)=5.3×10 ⁻⁴ 14; α (Q)=3.0×10 ⁻⁵ 15 ce(K)=0.74 33, ce(L)=0.15 6, K/L=4.9 29.
x333 1 3	150 <i>15</i>	327.429	9/2 7/2+	0.0	(11/2) 5/2 ⁺	M1(+E2)	0.5 7	0.85 <i>33</i>	%I γ =26 4 α (K)=0.66 29; α (L)=0.145 34; α (M)=0.036 7 α (N)=0.0098 20; α (O)=0.0025 5; α (P)=0.00046 11; α (Q)=2.7×10 ⁻⁵ 11 ce(K)=0.66 24, ce(L)=0.15 6, K/L=4.4 23. %I γ =0 035 18
341.00 15	0.6 1	475.522	$11/2^{+}$	134.49	$(13/2^+)$	[M1]		0.917 13	%Iγ=0.106 23

 $^{245}_{95}\mathrm{Am}_{150}$ -3

				²⁴⁵ Pu	β^- decay	1968Da	02,1968WaZ	Z (continued)
						γ ⁽²⁴⁵ Am) (continued)	
E_{γ}^{\dagger}	I_{γ} #b	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{a}	Comments
								$ \begin{array}{l} \alpha(\mathrm{K}) = 0.724 \ 10; \ \alpha(\mathrm{L}) = 0.1453 \ 20; \ \alpha(\mathrm{M}) = 0.0354 \ 5 \\ \alpha(\mathrm{N}) = 0.00967 \ 14; \ \alpha(\mathrm{O}) = 0.002434 \ 34; \ \alpha(\mathrm{P}) = 0.000465 \ 7; \\ \alpha(\mathrm{Q}) = 2.95 \times 10^{-5} \ 4 \end{array} $
348.782 [‡] 9	5.7 6	395.873	9/2+	47.075	(9/2+)	[M1]	0.862 12	%I γ =1.00 <i>17</i> α (K)=0.680 <i>10</i> ; α (L)=0.1365 <i>19</i> ; α (M)=0.0332 <i>5</i> α (N)=0.00908 <i>13</i> ; α (O)=0.002286 <i>32</i> ; α (P)=0.000437 <i>6</i> ; α (O)=2.77×10 ⁻⁵ <i>4</i>
357.90 20	0.37 10	920.97	$(9/2^+, 11/2^+)$	563.04	$(13/2^+)$			%Iy=0.065 20
376.676 [‡] 3	19 2	395.873	9/2+	19.198	7/2+	(M1)	0.698 10	%Iγ=3.3 6 α (K)=0.551 8; α (L)=0.1104 15; α (M)=0.0269 4 α (N)=0.00734 10; α (O)=0.001849 26; α (P)=0.000353 5; α (Q)=2.241×10 ⁻⁵ 31 ce(K)=0.61 26.
387.879 [‡] 32	1.7 4	475.522	11/2+	87.65	(11/2 ⁺)	[M1]	0.644 9	%I γ =0.30 8 α (K)=0.509 7; α (L)=0.1019 14; α (M)=0.02479 35 α (N)=0.00677 9; α (O)=0.001705 24; α (P)=0.000326 5; α (Q)=2.067×10 ⁻⁵ 29 (1 to 0.075
395.87 <i>15</i>	0.4 5	395.873	9/2+	0.0	5/2+	[E2]	0.1004 14	% <i>I</i> γ =0.075 % <i>I</i> γ =0.114 α (K)=0.04827; α (L)=0.03825; α (M)=0.0103315 α (N)=0.002854; α (O)=0.00069110; α (P)=0.000118717; α (Q)=2.505×10 ⁻⁶ 35
411.935 [‡] <i>41</i>	2.9 3	887.468	(7/2+)	475.522	11/2+	[E2]	0.0903 13	%I γ =0.51 9 α (K)=0.0450 6; α (L)=0.0332 5; α (M)=0.00896 13 α (N)=0.002470 35; α (O)=0.000600 8; α (P)=0.0001034 14; α (Q)=2.293×10 ⁻⁶ 32
⁴ 423.2 3 428.438 ^{d‡} 22	<0.2 3.1 ^d 3	475.522	11/2+	47.075	(9/2+)	[M1]	0.491 7	%1 γ =0.055 5 %1 γ =0.55 9 α (K)=0.388 5; α (L)=0.0775 11; α (M)=0.01886 26 α (N)=0.00515 7; α (O)=0.001297 18; α (P)=0.0002481 35; α (Q)=1.573×10 ⁻⁵ 22
428.438 ^{de}	d	563.04	$(13/2^+)$	134.49	$(13/2^+)$			
⁴ 439.0 <i>10</i> 445.34 <i>10</i>	0.2 <i>1</i> 1.8 <i>3</i>	920.97	(9/2+,11/2+)	475.522	11/2+	[M1]	0.442 6	%1 γ =0.035 18 %1 γ =0.32 7 α (N)=0.00464 6; α (O)=0.001167 16; α (P)=0.0002231 31; α (Q)=1.414×10 ⁻⁵ 20
^x 450.0 <i>10</i> 475.1 <i>6</i>	0.2 <i>1</i> 0.35 <i>15</i>	563.04	(13/2+)	87.65	(11/2+)	[M1]	0.371 5	α (K)=0.349 5; α (L)=0.0697 10; α (M)=0.01696 24 %I γ =0.035 18 %I γ =0.062 28 α (K)=0.293 4; α (L)=0.0584 8; α (M)=0.01421 20

4

 $^{245}_{95}\mathrm{Am}_{150}$ -4

L

				²⁴⁵ Pu	β^- deca	ny 1968	Da02,1968Wa	ZZ (continued)		
$\gamma^{(245}$ Am) (continued)										
$\mathrm{E}_{\gamma}^{\dagger}$	Ι _γ #b	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{a}	Comments		
^x 479.8 <i>10</i> 481.9 <i>10</i>	0.12 6 0.08 4	957.534	(9/2)+	475.522	11/2+	[M1]	0.357 5	$\begin{split} &\alpha(\mathrm{N}){=}0.00388\ 6;\ \alpha(\mathrm{O}){=}0.000977\ 14;\ \alpha(\mathrm{P}){=}0.0001869\ 27;\\ &\alpha(\mathrm{Q}){=}1.185{\times}10^{-5}\ 17\\ &\%\mathrm{I}\gamma{=}0.021\ 11\\ &\%\mathrm{I}\gamma{=}0.014\ 7\\ &\alpha(\mathrm{K}){=}0.282\ 4;\ \alpha(\mathrm{L}){=}0.0562\ 8;\ \alpha(\mathrm{M}){=}0.01367\ 21\\ &\alpha(\mathrm{N}){=}0.00373\ 6;\ \alpha(\mathrm{O}){=}0.000940\ 14;\ \alpha(\mathrm{P}){=}0.0001798\ 27;\\ &\alpha(\mathrm{Q}){=}1.140{\times}10^{-5}\ 17 \end{split}$		
^x 486.3 6	0.2 1				I			%Iy=0.035 <i>18</i>		
491.591+ 9	16 2	887.468	(7/2+)	395.873	9/2+	(E2)	0.0579 8	$%1\gamma$ =2.8 5 α (K)=0.0329 5; α (L)=0.01835 26; α (M)=0.00489 7 α (N)=0.001345 19; α (O)=0.000328 5; α (P)=5.74×10 ⁻⁵ 8; α (Q)=1.564×10 ⁻⁶ 22 ce(K)<0.4.		
511.5 <i>10</i> x514.6 2 x518 2 5	$\begin{array}{c} 0.2 \ l \\ 1.0 \ 2 \\ 0.3 \ l \end{array}$	987.52	(7/2 ⁺ ,9/2 ⁺)	475.522	11/2+			%Iy=0.035 18 %Iy=0.18 4 %Iy=0.053 19		
525.08 15	1.6 2	920.97	(9/2+,11/2+)	395.873	9/2+	[M1]	0.283 4	$%I\gamma = 0.285 I^{\circ}$ $\alpha(K) = 0.2237 31; \alpha(L) = 0.0445 6; \alpha(M) = 0.01082 I5$ $\alpha(N) = 0.00296 4; \alpha(O) = 0.000744 I0; \alpha(P) = 0.0001423 20;$ $\alpha(Q) = 9.02 \times 10^{-6} I^{\circ}$		
x530.6 3	0.2 1	1024 23	$(7/2^+ 0/2^-)$	175 522	11/2+			$\%$ I γ =0.035 18 $\%$ I γ =0.035 18		
549.20 560 13/ d / 10	$32\frac{d}{3}$	887.468	$(7/2^+, 9/2^-)$	475.522	11/2 7/2+	(F2)	0.0427.6	$\%1\gamma = 0.035$ 18 $\%1\gamma = 5.6.9$		
500.154 * 49	52 5	007.400	(1/2)	527.429	1/2	(E2)	0.0427 0	$\alpha(K) = 0.0262 \ 4; \ \alpha(L) = 0.01217 \ 17; \ \alpha(M) = 0.00321 \ 4$ $\alpha(N) = 0.000882 \ 12; \ \alpha(O) = 0.0002158 \ 30; \ \alpha(P) = 3.81 \times 10^{-5} \ 5;$ $\alpha(Q) = 1.191 \times 10^{-6} \ 17$ $ce(K) = 0.024 \ 11.$		
560.134 ^{de} 49 591.6 3 593.7 6 ^x 598.8 3 ^x 624.4 4	<i>d</i> 1.0 2 0.2 <i>I</i> 0.7 2 1.3 2	957.534 987.52 920.97	$(9/2)^+$ $(7/2^+,9/2^+)$ $(9/2^+,11/2^+)$	395.873 395.873 327.429	9/2 ⁺ 9/2 ⁺ 7/2 ⁺			Poor fit, calculated final level=397.40 keV 6. %I γ =0.18 4 %I γ =0.035 18 %I γ =0.12 4 %I γ =0.23 5		
630.102 ^{d‡} 14	16 ^d 2	957.534	(9/2)+	327.429	7/2+	M1	0.1730 24	%Iy=2.8 5 $\alpha(K)=0.1370 \ 19; \ \alpha(L)=0.0271 \ 4; \ \alpha(M)=0.00659 \ 9$ $\alpha(N)=0.001801 \ 25; \ \alpha(O)=0.000453 \ 6; \ \alpha(P)=8.67\times10^{-5} \ 12; \ \alpha(Q)=5.50\times10^{-6} \ 8$ ce(K)=0.14 6 , ce(L)=0.04 2, K/L=3.5 22.		
630.102 ^{de} ^x 642 ^x 657.2 7	d <0.2 0.8 4	1024.23	(7/2+,9/2-)	395.873	9/2+			Poor fit, calculated final level=394.13 keV 14. %I γ =0.035 5 %I γ =0.14 7		

²⁴⁵₉₅Am₁₅₀-5

L

245 Pu β^- decay 1968Da02,1968WaZZ (continued)													
$\gamma^{(245}\text{Am})$ (continued)													
E_{γ}^{\dagger}	Ι _γ #b	E _i (level)	${ m J}^{\pi}_{i}$	E_f	\mathbf{J}_{f}^{π}	Mult.@	α ^{<i>a</i>}	Comments					
$660.082^{\ddagger} 42$	5.07	987.52	$(7/2^+, 9/2^+)$	327.429	7/2+			%Iγ=0.88 <i>17</i>					
669.28 <i>10</i> ^x 687.6 8 ^x 691	0.3 2 2.0 3 0.2 1	1065.23		395.873	9/2+			$\% I\gamma = 0.05 4$ $\% I\gamma = 0.35 7$ $\% I\gamma = 0.035 18$ $\% I_{V} = 0.035 5$					
696.8 <i>4</i> ^x 701.7 <i>3</i> ^x 707.98 <i>20</i>	0.5 2 0.4 2 1.6 3	1024.23	(7/2 ⁺ ,9/2 ⁻)	327.429	7/2+			$\% I_{\gamma} = 0.053 \ S$ $\% I_{\gamma} = 0.09 \ 4$ $\% I_{\gamma} = 0.07 \ 4$ $\% I_{\gamma} = 0.28 \ 7$					
730.40 20	<0.2 1.1 2	920.97	(9/2+,11/2+)	190.81	(11/2 ⁻)	[E1]	0.00732 10	%1 γ =0.055 5 %1 γ =0.19 4 α (K)=0.00592 8; α (L)=0.001061 15; α (M)=0.000255 4 α (N)=6.92×10 ⁻⁵ 10; α (O)=1.728×10 ⁻⁵ 24; α (P)=3.23×10 ⁻⁶ 5; α (O)=1.909×10 ⁻⁷ 27					
^x 733.5 4 737.96 20 ^x 740.2 7 ^x 743.70 20 ^x 750.1 10 x750.2 9	0.5 2 1.3 3 0.8 3 0.9 2 0.1 1	1065.23		327.429	7/2+			$\% I_{\gamma} = 0.09 4$ $\% I_{\gamma} = 0.23 6$ $\% I_{\gamma} = 0.14 6$ $\% I_{\gamma} = 0.16 4$ $\% I_{\gamma} = 0.018 18$ $\% I_{\gamma} = 0.025 18$					
762.73 10	0.2 <i>I</i> 4.2 <i>4</i>	887.468	(7/2 ⁺)	124.66	(9/2 ⁻)	[E1]	0.00677 9	% <i>I</i> γ=0.055 78 % <i>I</i> γ=0.74 <i>I</i> 2 α (K)=0.00548 8; α (L)=0.000978 <i>I</i> 4; α (M)=0.0002346 <i>33</i> α (N)=6.37×10 ⁻⁵ 9; α (O)=1.593×10 ⁻⁵ 22; α (P)=2.98×10 ⁻⁶ 4; α (O)=1.772×10 ⁻⁷ 25					
766.59 15	2.1 3	957.534	(9/2)+	190.81	(11/2-)	[E1]	0.00671 <i>9</i>	$ \begin{aligned} &\alpha(Q) = 1.772 \times 10^{-2.5} \\ &\beta(I_{\gamma} = 0.37\ 7) \\ &\alpha(K) = 0.00543\ 8;\ \alpha(L) = 0.000969\ 14;\ \alpha(M) = 0.0002324\ 33 \\ &\alpha(N) = 6.31 \times 10^{-5}\ 9;\ \alpha(O) = 1.578 \times 10^{-5}\ 22;\ \alpha(P) = 2.96 \times 10^{-6}\ 4; \\ &\alpha(Q) = 1.756 \times 10^{-7}\ 25 \end{aligned} $					
^x 776.66 20 ^x 781.55 30	$1.2\ 2$ $0.4\ 2$							%Iy=0.21 5 %Iy=0.07 4					
786.54 15	2.2 3	920.97	$(9/2^+, 11/2^+)$	134.49	$(13/2^+)$			%I _y =0.39 7					
796.37 17	1.5 4	920.97	(9/2+,11/2+)	124.66	(9/2 ⁻)	[E1]	0.00627 9	%I _γ =0.26 8 α (K)=0.00508 7; α (L)=0.000903 13; α (M)=0.0002164 30 α (N)=5.88×10 ⁻⁵ 8; α (O)=1.470×10 ⁻⁵ 21; α (P)=2.76×10 ⁻⁶ 4; α (O)=1.645×10 ⁻⁷ 23					
799.87 10	9.3 10	887.468	(7/2+)	87.65	(11/2+)	[E2]	0.02015 28	$\%_{1\gamma=1.64}$ 28 $\alpha(K)=0.01416$ 20; $\alpha(L)=0.00445$ 6; $\alpha(M)=0.001139$ 16 $\alpha(N)=0.000312$ 4; $\alpha(O)=7.71\times10^{-5}$ 11; $\alpha(P)=1.400\times10^{-5}$ 20; $\alpha(O)=5.86\times10^{-7}$ 8					
817.04 10	5.0 5	887.468	(7/2 ⁺)	70.42	$(7/2^{-})$	[E1]	0.00599 8	$\alpha(Q) = 3.00 \times 10^{-6}$ %I $\gamma = 0.88$ 15					

From ENSDF

²⁴⁵₉₅Am₁₅₀-6

L

245 Pu β^- decay 1968Da02,1968WaZZ (continued)										
						γ ⁽²⁴⁵ Am)	(continued)			
${\rm E_{\gamma}}^{\dagger}$	Ι _γ #b	E _i (level)	J^π_i	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.@	α^{a}	Comments		
								$\alpha(K)=0.00485\ 7;\ \alpha(L)=0.000861\ 12;\ \alpha(M)=0.0002063\ 29$		
								$\alpha(N) = 5.60 \times 10^{-5} 8$; $\alpha(O) = 1.401 \times 10^{-5} 20$; $\alpha(P) = 2.63 \times 10^{-6} 4$;		
x821.0.7	052							$\alpha(Q) = 1.5/5 \times 10^{-5} 22$		
821.9 7 824 ^e	<0.2	957 534	$(9/2)^+$	134 49	$(13/2^+)$			%Iy=0.035 5		
833.14 ^c 20	<3.1 ^C	920.97	$(9/2^+, 11/2^+)$	87.65	$(13/2^{+})$ $(11/2^{+})$			%Iy=0.55 7		
833.14 ^c 20	≤3.1 ^{<i>c</i>}	957.534	$(9/2)^+$	124.66	$(9/2^{-})$			%Iy=0.55 7		
								$I\gamma=3.1$ 3 was measured.		
840.56 10	7.6 8	887.468	$(7/2^+)$	47.075	$(9/2^+)$			%Iy=1.34 23		
859.53 15	3.0 3	887.468	$(7/2^+)$	27.95	$(5/2^{-})$	[E1]	0.00548 8	$\%$ I γ =0.53 9		
								$\alpha(K) = 0.004446; \alpha(L) = 0.000/8411; \alpha(M) = 0.00018/826$		
								$\alpha(N) = 5.10 \times 10^{-7}$; $\alpha(O) = 1.276 \times 10^{-7}$ 18; $\alpha(P) = 2.399 \times 10^{-7}$ 34;		
868.8 1	072	887 468	$(7/2^+)$	10 108	7/2+			$\alpha(Q) = 1.440 \times 10^{-12} 20^{-12}$		
870.5.5	0.72 0.42	957.534	$(1/2)^+$	87.65	$(11/2^+)$			%1y=0.124 %1y=0.074		
874.16 20	0.8 2	920.97	$(9/2^+, 11/2^+)$	47.075	$(9/2^+)$			%Iy=0.14 4		
^x 879.6 4	0.3 1							%Iγ=0.053 <i>19</i>		
887.14 ^{de}	d	887.468	$(7/2^+)$	0.0	$5/2^{+}$					
887.14 ^d 15	4.2 ^d 5	957.534	$(9/2)^+$	70.42	$(7/2^{-})$			%Iy=0.74 <i>13</i>		
899.3 10	0.2 1	1024.23	$(7/2^+, 9/2^-)$	124.66	$(9/2^{-})$			%Iγ=0.035 <i>18</i>		
901.9 8	0.30 15	920.97	$(9/2^+, 11/2^+)$	19.198	7/2+			%Iy=0.053 27		
910.46 7	8.2 8	957.534	$(9/2)^+$	47.075	$(9/2^+)$			$\%$ I γ =1.44 24		
917.0 5 x022.0 6	0.52	987.52	(7/2+,9/2+)	70.42	(7/2)			$\%_{1}\gamma = 0.094$		
x925.0 0	0.5 I 0.10 5							$\%1\gamma = 0.035 19$ $\%1\gamma = 0.018 9$		
930.3 6	0.30 15	1065.23		134.49	$(13/2^+)$			%[y=0.053 27		
938.4 2	6.0 10	957.534	$(9/2)^+$	19.198	7/2+			%Iy=1.06 23		
941.0 10	1.5 10	987.52	$(7/2^+, 9/2^+)$	47.075	$(9/2^+)$			%Iy=0.26 <i>18</i>		
x945.2 5	0.3 1		(= (a + a (a -)					$\%$ I γ =0.053 19		
953 2	0.10 5	1024.23	$(7/2^+, 9/2^-)$	70.42	$(1/2^{-})$			$\%_{1\gamma=0.018}$ 9		
^x 964.0.7	5.8 0 0 25 10	957.554	(9/2)	0.0	5/2			$\%1\gamma = 1.02$ 1/ $\%1\gamma = 0.044$ 19		
968.5.7	0.2.1	987.52	$(7/2^+, 9/2^+)$	19,198	$7/2^{+}$			$\%1\gamma = 0.035 \ 18$		
x972.6 5	0.5 2	207102	(7= ,7=)	171170	.,=			$\%$ I γ = 0.09 4		
^x 975 1	1.5 10							%Iγ=0.26 <i>18</i>		
977.2 ^d 2	2.3 ^d 10	1024.23	$(7/2^+, 9/2^-)$	47.075	$(9/2^+)$			%Iy=0.40 <i>18</i>		
977.2 ^{de}	d	1065.23		87.65	$(11/2^+)$					
^x 982.4 7	0.5 2				/			%Iγ=0.09 <i>4</i>		
987.60 10	7.8 8	987.52	$(7/2^+, 9/2^+)$	0.0	5/2+			%Iy=1.37 23		
996.0 <i>3</i>	1.2 2	1024.23	$(7/2^+, 9/2^-)$	27.95	$(5/2^{-})$			%Iγ=0.21 5		
^x 1001.0 <i>10</i>	0.15 10							%1γ=0.026 <i>18</i>		

From ENSDF

²⁴⁵₉₅Am₁₅₀-7

²⁴⁵Pu β^- decay 1968Da02,1968WaZZ (continued)

γ (²⁴⁵Am) (continued)

E_{γ}^{\dagger}	I_{γ} #b	E _i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
1005.1 3	1.6 6	1024.23	$(7/2^+, 9/2^-)$	19.198	$7/2^{+}$	%Iy=0.28 11
x1007.31 15	2.4 6					%1 _y =0.42 12
^x 1013.2 3	0.6 2					%1 ₇ =0.11 4
1018.33 20	6.1 8	1065.23		47.075	$(9/2^+)$	%I _Y =1.07 20
1023.32 20	3.2 6	1111.18		87.65	$(11/2^+)$	%1 ₇ =0.56 13
^x 1028.2 10	0.10 4					%1 ₇ =0.018 7
^x 1036.2 8	0.05 2					%I ₇ =0.009 4
1040.2 12	0.04 2	1111.18		70.42	$(7/2^{-})$	%I ₇ =0.007 4
^x 1042.4 8	0.09 3					%1 ₇ =0.016 6
1051.3 8	0.03 1	1185.6		134.49	$(13/2^+)$	%1 ₇ =0.0053 19
^x 1079.1 10	0.03 1					%1 ₇ =0.0053 19
1083.9 5	0.20 4	1111.18		27.95	$(5/2^{-})$	%1 ₇ =0.035 9
^x 1093.7 7	0.08 3					%I ₇ =0.014 6
1097.9 7	0.10 3	1185.6		87.65	$(11/2^+)$	%I ₇ =0.018 6
1111.9 5	0.32 4	1111.18		0.0	$5/2^{+}$	%1 ₇ =0.056 <i>10</i>
1138.5 5	0.25 4	1185.6		47.075	$(9/2^+)$	%I ₇ =0.044 9
1166.3 5	0.30 4	1185.6		19.198	$7/2^{+}$	%Iy=0.053 <i>10</i>

[†] From 1968WaZZ except as noted.

[‡] From 1979Bo30.

 ∞

[#] From 1968WaZZ.

^(e) From ce(K) data listed in comments, except as noted. The evaluator deduced the ce(K) data from Ice(K) (derived from I γ and α (K)exp in 1968Da02) and I γ (1968WaZZ). The ce(K) data was re-normalized to the strongest 327.428-keV transition with α (K)(327)= 66 23 (BrIcc).

[&] From ce data (1968Da02) as listed in comments.

^{*a*} Additional information 1.

^b For absolute intensity per 100 decays, multiply by 0.176 24.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

245 Pu β^- decay 1968 Da02, 1968 WaZZ

Decay Scheme

 $^{245}_{95}\mathrm{Am}_{150}$

9

²⁴⁵Pu β^- decay 1968Da02,1968WaZZ

Decay Scheme (continued)

2.05 h 1

²⁴⁵₉₅Am₁₅₀

245 Pu β^- decay 1968Da02,1968WaZZ

Decay Scheme (continued)

245 Pu β^- decay 1968Da02,1968WaZZ

			Band(C) rotation	: 7/2[633] nal band
			(13/2+)	563.04
			11/2 ⁺	475.522
			<u>9/2</u> +	395.873
			7/2 ⁺	327.429
	Band(B rotatio): 5/2[523] mal band		
	(11/2 ⁻)	190.81		
	(9/2 ⁻)	124.66		
Band(A): 5/2[642] rotational band	(7/2-)	70.42		
(9/2+) 47.075	(5/)->	a- 6-		
7/2+ 19.198	(5/2)	27.95		
5/2+ 0.0				

²⁴⁵₉₅Am₁₅₀