²⁴⁹Bk α decay 2013Ah03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	C. D. Nesaraja	NDS 189,1 (2023)	14-Feb-2023				

Parent: ²⁴⁹Bk: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=327.2$ d 3; Q(α)=5521.0 14; % α decay=1.37×10⁻³ 10

 249 Bk-T_{1/2}: Measured by 2014Ch47 from growth of daughter activity 249 Cf and γ -ray intensities from subsequent decay of 249 Cf. The most recent adopted T_{1/2} for 249 Bk prior to 2014Ch47 is 330 d 4 (2011Ab07).

²⁴⁹Bk-J^{π}: From ²⁴⁹Bk Adopted Levels in the ENSDF database.

²⁴⁹Bk-Q(*α*): From 2021Wa16.

²⁴⁹Bk-%α decay: From 1969Mi08. Based on the argument of 2013Ah03 who preferred %α=0.00137 *10* over 0.00145 8, both of which are from two separate methods in 1969Mi08. The former value does not depend on detector solid angle and the initial analysis of the number of ²⁴⁹Bk atoms. The most recent adopted %α for ²⁴⁹Bk for ²⁴⁹Bk prior to 2014Ch47 is $1.45 \times 10^{-3} 8.4$ (2011Ab07).

2013Ah03: 10– μ g of purified ²⁴⁹Bk was obtained from ORNL in which, 1– μ g ²⁴⁹Bk source was used for measuring the γ -ray singles and 0.3– μ g of ²⁴⁹Bk for the $\gamma\alpha$ -coin measurement. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\alpha$ -coin. Low energy photon spectrometer (LEPS) was used to measure γ rays and a Passivated Implanted Planar Silicon detector (PIPS) to detect the α particles. A Ge detector was also used for the $\gamma\gamma$ -coin measurement. The E α and I α were measured at ANL with the Argonne double-focusing magnetic α spectrometer. Deduced levels, J, π , α hindrance factors using radius parameter= 9.323 fm.

1994Po30: α spectra were measured with a Si(Au) detector with 35 keV energy resolution for the 5486 keV α -line in ²⁴¹Am. Measured M and L x-rays.

1993Po20: ²⁴⁹Bk produced at the high flux reactor and subsequently purified and extracted. The γ -rays were measured with a Ge(Li) detector with FWHM= 2.0 keV and 3.0 keV for the 122 keV ⁵⁷Co and 661.6 keV ¹³⁷Cs lines, respectively. Measured E γ and I γ .

1975Ba27, 1971Bb10, 1969Ba57: α decay from ²⁴⁹Bk was studied using a double focus magnetic α spectrograph. The energies were determined for the intense α groups. The energy of the main α group in both 1971Bb10 and 1969Ba57 were different due to the correction made to the energy standard ²⁴²Cm α_0 group. 1975Ba27 determined E α and I α for ten α groups and identified three rotational bands with the configurations: 5/2⁻[523], 5/2⁺[624], and 7/2⁺[633].

1966Ah02: ²⁴⁹Bk produced from neutron irradiation of Cm at LBNL. The α decay particles from the isolated and purified ²⁴⁹Bk were analyzed with a double-focusing magnetic spectrograph. The γ singles were measured with Ge(Li) detectors. Weak alpha groups were observed in coincidence with γ -rays. E α values in 1966Ah02 have been revised by 2013Ah03 by 1.0 keV using new energies of ²³⁸Pu and ²⁴⁰Pu as an internal calibration.

1956Ch77: ²⁴⁹Bk produced from neutron irradiation of Pu. Measured $\gamma\alpha$ -coin, from decay of ²⁴⁵Bk. Deduced E γ , I γ , E α and I α , I(K x-ray) and I(L x-ray).

²⁴⁵Am Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0#	5/2+	2.05 h <i>1</i>	T _{1/2} : From Adopted Level.
19.3 [#] 25	7/2+		
28.27 [@] 13	$(5/2^{-})$		E(level): From Adopted Level.
47.8 [#] 25	$(9/2^+)$		
71.1 [@] 25	$(7/2^{-})$		
88.4 [#] 25	$(11/2^+)$		
124.0 [@] 25	(9/2-)		
134.2 [#] 25	$(13/2^+)$		
154.5 ^{&} 25	$(3/2^{-})$		
187.0 ^{&} 25	$(5/2^{-})$		
231.7 ^{&} 25	$(7/2^{-})$		

Continued on next page (footnotes at end of table)

249 Bk α decay 2013Ah03 (continued)

²⁴⁵Am Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
292.7 ^{&} 25	(9/2 ⁻)
328.3 ^a 25	$7/2^{+}$
397.4 ^a 25	$9/2^{+}$
475.6 ^{<i>a</i>} 25	$11/2^{+}$

[†] Level energies are calculated from $Q\alpha(^{249}Bk)=5521.0$ 14, (2021Wa16) and measured E α 's.

[‡] From Adopted Levels.

Band(A): $\pi 5/2[642]$ band.

[@] Band(B): *π*5/2[523] band.

[&] Band(C): $\pi 3/2[521]$ band.

^{*a*} Band(D): $\pi 7/2[633]$ band.

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF [‡]	Comments
4965 4	475.6	≈0.01	≈59	
5042 2	397.4	0.12 1	16.7 19	
5110 2	328.3	2.70 5	2.13 17	
5145 2	292.7	0.018 5	5.5×10^2 16	
5205 2	231.7	0.048 7	504 8 <i>3</i>	
5249 2	187.0	0.09 1	516 70	
5281 2	154.5	0.09 1	8.2×10 ² 11	
5301 2	134.2	0.046 7	2.15×10 ³ 37	
5311 2	124.0	0.03 1	3.8×10 ³ 13	
5346 2	88.4	2.60 5	73 6	
5363 2	71.1	0.077 8	3.14×10 ³ 41	
5386 2	47.8	17.9 2	18.7 15	
(5405)	28.27			$E\alpha$: Not observed as it was masked by the strong $E(\alpha)=5414$ keV.
5414 2	19.3	69.7 <i>3</i>	7.1 6	I α : Large intensity to the 7/2 member of the ground-state band is due to the strong Coriolis mixing between the 5/2 ⁺ [624] and 7/2 ⁺ [633] orbitals (2015Ah03,1966Ah02).
5433 2	0.0	6.57 10	98 8	

[†] From 2013Ah03. [‡] The nuclear radius parameter $r_0(^{245}Am)=1.48943$ 52 is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides.

[#] For absolute intensity per 100 decays, multiply by 1.37×10^{-5} 10.

γ (²⁴⁵ Am))

Measured	l x-ray intensi	ities (2013Ah03)
Energy	Intensity	x-ray
102 04 4	0 35 3	Am K o
102.04 4	0.55 /	$R_{\alpha 2}$
106.48 4	0.53 4	Am $K_{\alpha 1}$
119.26 4		Am $K_{\beta 3}$
119.26+120.31	0.22 2	Am $K_{\beta 3}$ +Am K_{b1}
120.31 4		Am $K_{\beta 1}$
123.8 3	0.08 1	Am $K_{\beta 2}$
See 1990Po14 fo	or Intensities	of M and L x-ray emissions

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α #	Comments
28.0 1	≈0.10	28.27	(5/2 ⁻)	0.0	5/2+	(E1)		3.75 6	$ \begin{array}{l} \alpha(\text{L})=2.78 \ 5; \ \alpha(\text{M})=0.729 \ 12 \\ \alpha(\text{N})=0.1950 \ 33; \ \alpha(\text{O})=0.0443 \ 7; \\ \alpha(\text{P})=0.00588 \ 10; \ \alpha(\text{Q})=0.0001379 \\ 21 \end{array} $
280.36 4	0.10 1	328.3	7/2+	47.8 ((9/2+)	(M1+E2)	0.7 +7-6	1.1 4	$\begin{array}{l} \alpha(\mathrm{K}) = 0.9 \; 4; \; \alpha(\mathrm{L}) = 0.21 \; 4; \\ \alpha(\mathrm{M}) = 0.054 \; 8 \\ \alpha(\mathrm{N}) = 0.0147 \; 20; \; \alpha(\mathrm{O}) = 0.0037 \; 5; \\ \alpha(\mathrm{P}) = 0.00068 \; 13; \; \alpha(\mathrm{Q}) = 3.6 \times 10^{-5} \\ 15 \end{array}$
308.26 4	0.24 2	328.3	7/2+	19.3	7/2+	M1(+E2)	0.6 9	0.9 4	$\begin{array}{l} \alpha(\mathrm{K}) = 0.7 \; 4; \; \alpha(\mathrm{L}) = 0.17 \; 4; \\ \alpha(\mathrm{M}) = 0.041 \; 9 \\ \alpha(\mathrm{N}) = 0.0113 \; 24; \; \alpha(\mathrm{O}) = 0.0028 \; 6; \\ \alpha(\mathrm{P}) = 5.3 \times 10^{-4} \; 14; \; \alpha(\mathrm{Q}) = 3.0 \times 10^{-5} \\ 15 \\ \mathrm{Mult.: \; M1 \; in \; 2013 Ah03.} \end{array}$
327.45 4	1.06 6	328.3	7/2+	0.0 :	5/2+	M1(+E2)	0.5 7	0.85 <i>33</i>	$\begin{aligned} &\alpha(\text{K}) {=} 0.66 \ 29; \ \alpha(\text{L}) {=} 0.145 \ 34; \\ &\alpha(\text{M}) {=} 0.036 \ 7 \\ &\alpha(\text{N}) {=} 0.0098 \ 20; \ \alpha(\text{O}) {=} 0.0025 \ 5; \\ &\alpha(\text{P}) {=} 0.00046 \ 11; \ \alpha(\text{Q}) {=} 2.7 {\times} 10^{-5} \\ &11 \\ &I_{\gamma}: \text{ Weighted average of } 1.05 \ 9 \text{ and} \\ &1.06 \ 7 \text{ determined by two separate} \\ &\text{methods } (2013 \text{ Ah03}). \text{ Former value} \\ &\text{from measured absolute intensity} \\ &(\text{per } 100 \text{ decays of } 2^{49} \text{Bk}) {=} 0.00144 \\ & 8 \text{ and the latter value deduced from} \\ &\text{intensity balance at level } 327 \text{-keV}. \\ &\text{Mult.: M1 in } 2013 \text{Ah03}. \end{aligned}$

[†] From 2015Ah03.
[‡] From Adopted Gammas. Multipolarities from 2013Ah03, based on Iγ- and I(x-ray) data are given in comments.
[#] Additional information 1.
[@] For absolute intensity per 100 decays, multiply by 1.37×10⁻⁵ 10.

²⁴⁹Bk α decay 2013Ah03

$\underbrace{ \mbox{Decay Scheme} }_{\mbox{Intensities: } I_{(\gamma+ce)} \mbox{ per 100 parent decays } }$

Leg	Legend						
-	L., <	$2\% \times I'$					

 $\begin{array}{c|c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

ax ax			$\frac{7/2^+}{Q_{\alpha}=5521.0\ 14}$ $\frac{249}{97}Bk_{152}$	0.0 327.2 d 3 %α=1.37E-3
<u>11/2+</u>		5 ²⁷ 475.6	<u>Εα</u> 4965	$\frac{\mathrm{I}\alpha}{1.37\times10^{-7}} \approx 59$
<u>9/2+</u>	2 M 22 M		5042	1.64×10^{-6} 16.7
<u>7/2</u> +	% %	328.3	5110	0.0000370 2.13
(9/2 ⁻)			5145	$2.5 imes 10^{-7}$ 550
$\begin{array}{c} (7/2^{-}) \\ (5/2^{-}) \\ \hline (3/2^{-}) \\ \hline (13/2^{+}) \\ \hline (9/2^{-}) \\ \hline (11/2^{+}) \\ \hline (7/2^{-}) \\ \hline (9/2^{+}) \\ \hline (5/2^{-}) \\ \hline (5/2^{-}) \\ \hline 7/2^{+} \\ \hline (5/2^{+}) \\ \hline (5/2^{+}) \\ \hline \end{array}$		231.7 187.0 154.5 3 134.2 3 134.2 124.0 8 88.4 71.1 47.8 28.27 19.3 0.0	5205 5249 5281 5301 5311 5346 5363 5386 5405 5414	$\begin{array}{c} 6.6 \times 10^{-7} \; 504 \\ 1.23 \times 10^{-6} 516 \\ 1.23 \times 10^{-6} 820 \\ 6.3 \times 10^{-7} \; 2150 \\ 4.1 \times 10^{-7} \; 3800 \\ 0.0000356 \; 73 \\ 1.06 \times 10^{-6} 3140 \\ 0.000245 \; \; 18.7 \\ 0 \\ 0.00096 \; \; 7.1 \\ 0 \; 0.0096 \; \; 7.1 \\ 0 \; 0.00096 \; 0.00096 \; \; 7.1 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.000096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \; 0.00096 \\ 0 \; 0.000096 \; 0.0$

 $^{245}_{95}\mathrm{Am}_{150}$

249 Bk α decay 2013Ah03

Band(D): *π*7/2[633] band 11/2+ 475.6 9/2+ 397.4 7/2+ 328.3 Band(C): *π*3/2[521] band (9/2-) 292.7 $(7/2^{-})$ 231.7 $(5/2^{-})$ 187.0 (3/2-) 154.5 Band(A): *π*5/2[642] band Band(B): $\pi 5/2[523]$ band 134.2 (9/2-) 124.0 88.4 (7/2⁻) 71.1 47.8 (5/2-) 28.27 19.3 0.0

²⁴⁵₉₅Am₁₅₀

 $(13/2^+)$

 $(11/2^+)$

(9/2+)

7/2+

5/2+