Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. D. Nesaraja	NDS 146, 387 (2017)	31-Aug-2017		

 $Q(\beta^{-})=3.4\times10^{3} SY; S(n)=4.75\times10^{3} SY; S(p)=6.45\times10^{3} SY; Q(\alpha)=3.870\times10^{3} SY$ 2017Wa10

 $\Delta Q(\beta^{-})=300, \Delta S(n)=300, \Delta S(p)=420, \Delta Q(\alpha)=360$ (syst, 2017Wa10).

S(2n)=10360 syst 360 (2017Wa10).

Identification: 1987Mo29: ²⁴⁴Np produced from ²⁴⁴Pu(¹³⁶Xe,X) reaction with E(¹³⁶Xe)=835 MeV followed by chemical separation at the UNILAC accelerator at GSI, Darmstadt. Cross section for the production of ²⁴⁴Np is 1.4 mb.

Theoretical calculations:

2015GoZV: Energy levels <190 keV calculated using the 3-step Two Quasiparticle-Rotor-Model (TQRM).

2009Mo18: Calculated fission barrier heights.

1995Mo29: Calculated deformation parameters.

²⁴⁴Np Levels

E(level)	J^{π}	T _{1/2}	Comments	
E(level) 0.0	<u>J</u> π (7 ⁻)	T _{1/2} 2.29 min 16	Comments $\%\beta^-=100$ Only β - decay has been observed. $T_{1/2}$: Measured by 1987Mo29 from gamma intensities as a function of time delay between detectors. J^{π} : The 151st. neutron is probably in the 9/2[734] state. An extrapolation from the ^{235,237,239,241} Np isotopes suggests that the 93rd. proton is in the 5/2[642] state. However, 2015GoZV on the basis of a three-step Two-Quasiparticle-Rotor-Model (TQRM), suggest that the 5/2[523] Nilsson orbital drops below the 5/2[642] orbital at N=150. In addition, the authors in 2015GoZV have also confirmed the possible proton 5/2[523] configuration for ²⁴³ Np (2014Ne14).	
			These configurations, $9/2^{-}[734]\uparrow\otimes 5/2^{+}[642]\uparrow$ or $9/2^{-}[734]\uparrow\otimes 5/2^{-}[523]\downarrow$ from the Gallagher-Moszkowski coupling rules, give $J^{\pi}=7^{-}$ or $J^{\pi}=2^{+}$ for the g.s., respectively. Additionally, the observed beta decay (1987Mo29) to states in the daughter (²⁴⁴ Pu) with high spins suggests that the 2.29 min activity corresponds to a 7 ⁻ state. However, if the 2 ⁺ g.s. state is correct, then the observed β decay to high spin states suggests that the 7 ⁻ is instead an isomer with 2.29 min half-life. The authors in 1987Mo29 have also indicated that the existence of a short-lived isomer in their ²⁴⁴ Np β^{-} decay studies cannot be ruled out.	