244 Am β^- decay (26 min) 1984Ho02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 146, 387 (2017)	31-Aug-2017

Parent: ²⁴⁴Am: E=89.5 *16*; $J^{\pi}=1^+$; $T_{1/2}=26$ min; $Q(\beta^-)=1427.3$ *10*; $\%\beta^-$ decay=99.9636 *13*

1984Ho02: ²⁴⁴Am was produced by neutron irradiation on ²⁴³Am High Flux Reactor of the Institut Laue-Langevin at Grenoble. γ ray energies and intensities were measured with two curved-crystal spectrometers. Conversion electron data were measured with the beta spectrometer.

1962Va08: ²⁴⁴Am was produced by neutron irradiation on enriched ²⁴³Am at the Argonne Reactor CP-5. The decay of the chemically purified ²⁴⁴Am was measured by γ singles and $\gamma\gamma$ and X-ray coincidence methods using the Tl activated NaI detector. $\gamma\beta$ coincidence were observed using scintillation counting techniques The conversion electron data were measured with a propane flow-type proportional counter with two different types of end windows.

²⁴⁴Cm Levels

E(level) [†]	$J^{\pi \dagger}$	Comments
0.0 42.957 9 984.914 15 1020.756? 22		E(level): This level is tentatively assigned. An alternate placement of the 977.796-keV transition could be
1084.199? <i>12</i> 1105.909? <i>20</i>	$(1,2^+)$ (1,2)	to de excite a 977.796 -keV 0° level to the ground state (1984H002).

[†] From Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(410.9 [#] <i>19</i>)	1105.909?	≈0.36	≈6.8	av E β =117.03 60
(432.6 [#] 19)	1084.199?	0.56 16	6.67 13	av E β =123.88 60
(496.0 [#] 19)	1020.756?	≈0.17	≈7.4	av E β =144.20 62
(531.9 19)	984.914	1.5 3	6.53 9	av E β =155.88 62
(1473.8 19)	42.957	≈25	≈6.8	av $E\beta = 495.9573$
(1516.8 19)	0.0	≈72	≈6.4	av $E\beta = 512.48~73$
				E(decay): 1498 keV 10 measured by 1962Va08.

[†] Beta intensity per 100 beta decays of 26-min ²⁴⁴Am, deduced from intensity balance at each level; the normalization factor to convert I_{γ} 's from per 100 neutron captures to per 100 beta decays is taken as 1.05 *15*. Therefore, any change in γ normalization factor will effectively change the β intensities listed here.

[‡] For absolute intensity per 100 decays, multiply by 0.999636 13.

[#] Existence of this branch is questionable.

$\gamma(^{244}\text{Cm})$

I γ normalization: Obtained by assuming that the yield for 26-min ²⁴⁴Am production in ²⁴³Am(n, γ) was 95% 14. See footnote for I γ .

			24	14 Am β^{-}	decay	y (26 min) 198	84Ho02 (contin	nued)	
$\gamma^{(244}$ Cm) (continued)									
E_{γ}^{\ddagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [@]	α^{\dagger}	$I_{(\gamma+ce)}^{\&}$	Comments
42.965 10	≈0.024	42.957	2+	0.0	0+	E2	1050	≈25	$ α(L)=760 11; α(M)=214 3 $ $ α(N)=59.5 9; α(O)=14.38 $ $ 21; α(P)=2.35 4; $ $ α(Q)=0.00578 9 $ $ I_γ: I_γ=0.029 listed in $ $ 1984H002 was calculated from the experimental electron intensities (which include beta decay activities from the 10-hour 244Am) and theoretical conversion coefficients, The evaluator has deduced the Iγ from intensity balance: I(42.965γ from the 10.1-hour decay)≈ 0.0048. Hence I(42.965γ from 26-min 244Am)≈ 0.024. $ Mult.: see 10.1-h ²⁴⁴ Am β decay for ce measurements of 1984H002.
941.949 <i>18</i>	0.33 11	984.914	0+	42.957	2+	[E2]	0.01547	0.34 11	$\alpha(K)=0.01120 \ 16;$ $\alpha(L)=0.00318 \ 5;$ $\alpha(M)=0.000807 \ 12$ $\alpha(N)=0.000222 \ 4;$ $\alpha(O)=5.57\times10^{-5} \ 8;$ $\alpha(P)=1.053\times10^{-5} \ 15;$ $\alpha(O)=5.41\times10^{-7} \ 8$
977.796 20		1020.756?	(2+)	42.957	2+	E0(+M1+E2)		≈0.16	Mult.: Only conversion electrons were observed by 1984Ho02. The 977.92 7 gamma observed by 1984Vo07 in ²⁴³ Am(n, γ), could belong to the beta decay of the 26-min isomer. In that case, I γ (977.9 γ)/I γ (1084.18 γ)= 0.23 10, measured in ²⁴³ Am(n, γ) (1984Vo07), gives I γ (977.9 γ)=0.08 4. Ice(K)=0.060 6, Ice(L1)=0.017 3. Ice(total) assumed by evaluator: I(total ce)≈Ice(K)+1.30Ice(L 1)=0.082; if I γ =0.08, then I(γ +ce)≈0.16 Intensities in units of electrons per 100 neutron captures in ²⁴³ Am(n, γ).
984.919 20		984.914	0+	0.0	0+	E0		1.07 9	Mult.: Only conversion electrons were observed by 1984Ho02. Ice(K)=0.84 <i>9</i> , Ice(L1)=0.17 <i>2</i> , Ice(M1)=0.047 <i>7</i> , Ice(N1)=0.012 <i>6</i> . Ice(total)

Continued on next page (footnotes at end of table)

²⁴⁴₉₆Cm₁₄₈-3

			²⁴⁴ A	244 Am β^- decay (26 min)			1984Ho02 (continued)		
	γ ⁽²⁴⁴ Cm) (continued)								
E_{γ}^{\ddagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$lpha^{\dagger}$	$I_{(\gamma+ce)}^{\&}$	Comments
1041 278 22	0.18.6	1094 1002	(1.2 ⁺)	42.057	2+			0.18.6	deduced by evaluator= 1.07 9 Intensities in units of electrons per 100 neutron captures in 243 Am(n, γ) (1984Ho02).
1062.953 18	0.26 8	1105.909?	(1,2)	42.957	2+			≈0.29 ×	Mult.: Experimental conversion coefficients do not rule out M2 and M3 multipolarities: $\alpha(K)\exp=0.09 3$, $\alpha(L1)\exp=0.02 1$. The M3 character can be ruled out based on the decay scheme. As the authors (1984Ho02) point out, the 1062- and 1105-keV gammas might be strongly hindered; conversion coefficients for anomalous E1 transitions could exceed the theoretical coefficients by a factor as large as 100. No multipolarity for the 1062.953 γ is adopted. $I_{(\gamma+ce)}$: Deduced by evaluator with $\alpha \approx 0.114$ assumed from experimental conve coefficients: $\alpha(K)+1.20\alpha(L1)$.
1084.181 <i>14</i>	0.34 11	1084.199?	(1,2 ⁺)	0.0	0+	(M1)	0.0440	0.35 11	$\alpha(K)=0.03485; \alpha(L)=0.0069010; \alpha(M)=0.00168024 \alpha(N)=0.00168024 \alpha(N)=0.0004617; \alpha(O)=0.000117417; \alpha(P)=2.31\times10^{-5}4; \alpha(Q)=1.653\times10^{-6}24$ Mult.: The experimental K-conversion coefficient suggests M1 or M1+E2. $\alpha(K)$ exp=0.031 (higher multipolarities are excluded because of beta feeding from the 1 ⁺ parent.) Since a γ transition to the 0 ⁺ g.s. cannot have M1, E2 admixture, E2 character can also be ruled out from $\alpha(K)$ exp if the authors' normalization for conversion electrops is precise
1105.43 <i>19</i>	0.04 2	1105.909?	(1,2)	0.0	0+			≈0.05	Mult.: $\alpha(K)\exp=0.14$ <i>11</i> suggests either M1, M2 or M3 multipolarity. By assuming that the decay scheme is correct, the M3 character can be ruled out. See the comment for the 1062.953 γ for the possibility of an anomalous E1 transition. $I_{(\gamma+ce)}$: Deduced by evaluator with $\alpha \approx 0.17$ assumed from experimental conver coefficients: $\alpha(K)+0.20\alpha(K)$.

[†] Additional information 1.
[‡] Measurements of 1984Ho02. Other measurements: 1962Va08.
[#] Photon intensity, measured by 1984Ho02; they are given as per 100 n captures in ²⁴³Am(n,γ). As pointed out by 1984Ho02, absolute intensities can be obtained from isomeric cross section ratio: σ(²⁴³Am(n,γ)²⁴⁴Am (26 min))/σ(²⁴³Am(n,γ)²⁴⁴Am

Continued on next page (footnotes at end of table)

244 Am β^- decay (26 min) 1984Ho02 (continued)

γ (²⁴⁴Cm) (continued)

(10.1 h))=18.6 *19*, reported by 1964Va04. The amount of 26-min isomeric state, therefore, was 95% *14* of the total ²⁴⁴Am production. Multiplying the photon intensities given here by a factor of 1.05 *15* (i.e. 1/0.95 *14*) will convert them to per 100 ²⁴⁴Am (26-min) decays.

[@] From conversion electron measurements in 1984Ho02. [&] For absolute intensity per 100 decays, multiply by 1.05 *15*.

$^{244}\mathrm{Am}\,\beta^-$ decay (26 min) 1984Ho02

Decay Scheme

