244 Am β^- decay (10.1 h) 1984Ho02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 146, 387 (2017)	31-Aug-2017

Parent: ²⁴⁴Am: E=0.0; J^{π} =(6⁻); $T_{1/2}$ =10.1 h *I*; Q(β^{-})=1427.3 *10*; % β^{-} decay=100.0

1984Ho02: ²⁴⁴Am was produced by neutron irradiation on ²⁴³Am High Flux Reactor of the Institut Laue-Langevin at Grenoble. γ ray energies and intensities were measured with two curved-crystal spectrometers. Conversion electron data were measured with the beta spectrometer.

1963Ha29: ²⁴⁴Am was produced by neutron irradiation on ²⁴³Am at the DR3 reactor at Riso National Laboratory in Denmark. The irradiation was followed by radiochemical separation to extract the ²⁴⁴Am. Delayed coincidence technique between β particles and conversion electron was used to determine the half-life for decay of the 1042 keV isomeric state using a plastic scintillator. Angular correlations were performed using a NaI(Tl) detector for the 746-154 γ cascade at 90°, 135°, and 180°.

1967Sc34: ²⁴⁴Am was produced by neutron irradiation on ²⁴³Am. Gammas from the decay were measured with a Ge detector. Intensities relative to the 744 γ were measured for the 99.3 γ , 153.7 γ and the 205 γ .

1962Va08: ²⁴⁴Am was produced by neutron irradiation on enriched ²⁴³Am at the Argonne Reactor CP-5. The decay of the chemically purified ²⁴⁴Am was measured by γ singles and $\gamma\gamma$ and X-ray coincidence methods using the Tl activated NaI detector. $\gamma\beta$ coincidence were observed using scintillation counting techniques The conversion electron data were measured with a propane flow-type proportional counter with two different types of end windows.

1962Ch19: ²⁴⁴Am was produced by neutron irradiation on ²⁴³Am at the DR2 reactor at Riso National Laboratory in Denmark. γ rays and electrons were measured using the Naton scintillator. Half life of the 42.9 keV level was determined by the delayed coincidence technique between γ rays and conversion electron lines.

The decay scheme is given as constructed by 1962Va08, and confirmed by 1984Ho02.

²⁴⁴Cm Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	0^{+}	18.11 y <i>3</i>	T _{1/2} : From Adopted Levels.
42.957 9	2+	97 ps 5	$T_{1/2}$: From delayed coincidence technique between γ rays and conversion electron lines by 1962Ch19.
142.340 10	4+		
296.204 10	6+		
501.779 <i>11</i>	8^{+}		
1040.181 11	6+	34 ms 2	$T_{1/2}$: From decay curve measurements in delayed coincidence between β particles and conversion electrons (1963Ha29).

[†] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log <i>ft</i>	Comments
(387.1 10)	1040.181	100	5.628 6	av $E\beta$ =109.60 32 E(decay): 387 measured by 1962Va08.

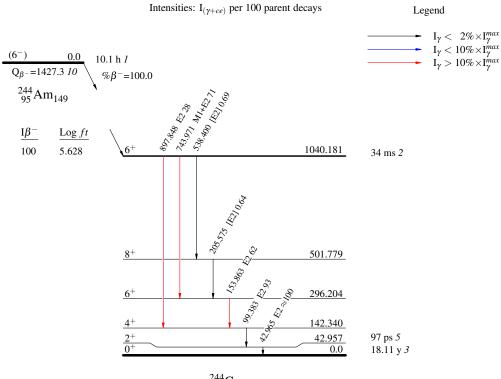
[†] Absolute intensity per 100 decays.

²⁴⁴Am β^- decay (10.1 h) 1984Ho02 (continued)

γ (²⁴⁴Cm)

I γ normalization: From intensity balance at the 1040-keV level: I β (to 1040 level)= Σ I(γ +ce) for γ 's from 1040 level=100%. The parent decays only to the 1040 level (1984Ho02, 1963Ha29, 1962Va08).

E_{γ}^{\ddagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$lpha^\dagger$	Comments
42.965 10	≈0.0048	42.957	2+	0.0	0+	E2	1050	
99.383 4	0.23 4	142.340	4+	42.957	2+	E2	19.3	$\begin{aligned} &\alpha(L) = 13.93 \ 20; \ \alpha(M) = 3.94 \ 6 \\ &\alpha(N) = 1.095 \ 16; \ \alpha(O) = 0.265 \ 4; \ \alpha(P) = 0.0441 \ 7; \\ &\alpha(Q) = 0.000180 \ 3 \\ &\alpha(L1) \exp = 0.46 \ 11, \ \alpha(L2) \exp = 8.3 \ 19, \\ &\alpha(L3) \exp = 5.1 \ 11, \ \alpha(M2) \exp = 2.6 \ 6, \\ &\alpha(M3) \exp = 1.6 \ 4, \ \alpha(N2) \exp = 1.25 \ 27, \\ &\alpha(N3) \exp = 0.66 \ 15 \ (1984Ho02). \end{aligned}$ Ice L ₁₂ /Ice L ₃ =1.7, $\alpha(\text{total}) \exp = 20 \ (1962Va08). \end{aligned}$
153.863 2	0.82 16	296.204	6+	142.340	4+	E2	2.81	$\begin{aligned} \alpha(K) &= 0.1741 \ 25; \ \alpha(L) &= 1.90 \ 3; \ \alpha(M) &= 0.536 \ 8\\ \alpha(N) &= 0.1492 \ 21; \ \alpha(O) &= 0.0362 \ 5; \ \alpha(P) &= 0.00610 \\ 9; \ \alpha(Q) &= 3.92 \times 10^{-5} \ 6\\ \alpha(L1) &\exp &= 0.26 \ 6, \ \alpha(L2) &\exp &= 1.27 \ 28, \\ \alpha(L3) &\exp &= 0.69 \ 15, \ \alpha(M1) &\exp &= 0.08 \ 4, \\ \alpha(M2) &\exp &= 0.15 \ 3, \ \alpha(M3) &\exp &= 0.25 \ 5, \\ \alpha(N2) &\exp &= 0.15 \ 3, \ \alpha(N3) &\exp &= 0.20 \ 4\\ (1984H002). \\ \mathbf{K}/L &= 0.09, \ \alpha(K) &\exp &= 0.19, \ \alpha(L) \ \exp &= 2.1, \ \text{total} \\ &\operatorname{Ice} &= 50\% \ (1962 \mathrm{Va08}). \end{aligned}$
205.575 4	0.017 4	501.779	8+	296.204	6+	[E2]	0.887	$\alpha(K)=0.1409 \ 20; \ \alpha(L)=0.541 \ 8; \ \alpha(M)=0.1514 \ 22 \\ \alpha(N)=0.0421 \ 6; \ \alpha(O)=0.01025 \ 15; \\ \alpha(P)=0.001746 \ 25; \ \alpha(Q)=1.644\times10^{-5} \ 23 \\ Ice(L)=0.1\% \ (1962Va08).$
538.400 <i>16</i>	0.033 7	1040.181	6+	501.779	8+	[E2]	0.0495	$\begin{aligned} \alpha(K) = 0.0292 \ 4; \ \alpha(L) = 0.01492 \ 21; \\ \alpha(M) = 0.00396 \ 6 \\ \alpha(N) = 0.001096 \ 16; \ \alpha(O) = 0.000271 \ 4; \\ \alpha(P) = 4.93 \times 10^{-5} \ 7; \ \alpha(Q) = 1.637 \times 10^{-6} \ 23 \\ Ice(K) = 0.02\% \ (1962 Va08), \ Ice(K) = 0.019\% \\ (1963 Ha29). \end{aligned}$


Continued on next page (footnotes at end of table)

244 Am β^- decay (10.1 h) 1984Ho02 (continued)										
γ ⁽²⁴⁴ Cm) (continued)										
E_{γ}	Ιγ #&	E _i (level)	\mathbf{J}_i^{π}	$E_f \underline{J}_f^{\pi}$	Mult.@	δ	α^{\dagger}	Comments		
743.971 <i>5</i> 897.848 <i>7</i>	3.3 <i>9</i>	1040.181	6 ⁺	296.204 6 ⁺ 142.340 4 ⁺	M1+E2 E2	-0.92 5	0.077 3	$\begin{aligned} \alpha(\text{K}) = 0.0593 \ 24; \ \alpha(\text{L}) = 0.0130 \ 4; \\ \alpha(\text{M}) = 0.00321 \ 10 \\ \alpha(\text{N}) = 0.00088 \ 3; \ \alpha(\text{O}) = 0.000223 \ 7; \\ \alpha(\text{P}) = 4.34 \times 10^{-5} \ 14; \ \alpha(\text{Q}) = 2.86 \times 10^{-6} \ 11 \\ \text{A}_2 = -0.050 \ 12, \ \text{A}_4 = 0.059 \ 15 \ \text{for} \\ (744\gamma)(154\gamma)(\theta) \ \text{cascade} \ (1963\text{Ha29}). \\ \delta: \ \text{from} \ \gamma\gamma(\theta) \ \text{data of } 1963\text{Ha29} \ (\text{Author} \\ \text{had used the Rose phase convention}) \ . \\ \text{Others:} \ \delta \le 1.1 \ \text{from} \ \$\alpha(\text{K}) \text{exp} = 0.08 \ 2, \\ \alpha(\text{L}) \text{exp} = 0.012 \ 4, \ \alpha(\text{L}2) \text{exp} = 0.003 \ 1 \\ (1984\text{Ho02}). \ \delta = 0.9 \ +4-3 \ \text{from} \ \text{$\text{K}/\text{L}} = 4.5, \\ \alpha(\text{K}) \text{exp} = 0.06, \ \alpha(\text{L}) \text{exp} = 0.01 \ \text{with a } 10 \ \% \\ \text{uncertainty}, \ (1962\text{Va08}). \\ \text{total Ice} = 5.8\% \ (1962\text{Va08}), \text{Ice}(\text{K}) = 4.5\% \\ (1963\text{Ha29}). \\ \alpha(\text{K}) = 0.01215 \ 17; \ \alpha(\text{L}) = 0.00358 \ 5; \end{aligned}$		
			0	1.2.0.10			5.01077	$\begin{array}{l} \alpha(\text{M})=0.00215 \ 17, \ \alpha(\text{L})=0.00555 \ 5, \\ \alpha(\text{M})=0.000912 \ 13 \\ \alpha(\text{N})=0.000251 \ 4; \ \alpha(\text{O})=6.29\times10^{-5} \ 9; \\ \alpha(\text{P})=1.186\times10^{-5} \ 17; \ \alpha(\text{Q})=5.93\times10^{-7} \ 9 \\ \alpha(\text{K})\text{exp}=0.012 \ 4. \ \text{The electron intensity was} \\ \text{used as a calibration point for the measured} \\ \gamma \ \text{and electron intensities} \ (1984\text{Ho02}). \\ \text{K/L=3.3, } \ \alpha(\text{K})\text{exp}=0.01, \ \alpha(\text{L})\text{exp}=0.003, \\ \text{total Ice}=0.41\% \ (1962\text{Va08}), \ \text{Ice}(\text{K})=0.30\% \\ (1963\text{Ha29}). \end{array}$		

[†] Additional information 1.
[‡] From measurements of 1984Ho02. Earlier measurements: 1962Va08, 1967Sc34.
[#] Photon intensities measured by 1984Ho02 following ²⁴³Am(n,γ), and given as per 100 neutron captures. Other measured photon intensities: 1962Va08, 1967Sc34.
[@] From conversion electron measurements of 1984Ho02 and 1962Va08.
[&] For absolute intensity per 100 decays, multiply by 20 4.

²⁴⁴Am β^- decay (10.1 h) 1984Ho02

Decay Scheme

²⁴⁴₉₆Cm₁₄₈