Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	C. D. Nesaraja	NDS 146, 387 (2017)	31-Aug-2017						

 $Q(\beta^{-}) = -2262 \ 14$; S(n)=6801.4 10; S(p)=6012.1 14; Q(\alpha)=5901.60 5 2017Wa10

Identification:

1950Re55: Produced by neutron irradiation on ²⁴¹Am. Curium was chemically separated and its isotopic composition determined with a 60° focusing mass spectrograph.

Systematic studies/Compilation/Evaluation:

2017He08: Review of properties of spontaneous fission.

2017Pr04: Systematics of B(E2) revisited using elemental data fit parameters.

2016Pr01: Compilation, evaluation for B(E2), $T_{1/2}$ and deformation parameter.

Theoretical studies, calculations:

2017Vi02, 2017Ad03: Calculated cluster decay half-life.

- 2016Sa53, 2015Ba24, 2014De43, 2014Is03, 2013Ra05, 2013Se17, 2013Is13, 2012Is08, 2011Qi06, 2009De32, 2009Ni06, 2007Pe30, 2010Sa09, 2008Xu06, 2005Sh42, 2005Re16, 2005Xu01, 2004Ro01, 1990Bh02, 1989St20, 1978Po09, 1976Ra02, 1976Re09,
- 1972We09: Calculated spontaneous fission half-lives.
- 2017Zh03, 2017Ph01, 2016Sa16, 2016Su09, 2006De05, 2005Sh42, Calculated α decay half-life.
- 2016Sa20, 2014De43: Calculated energy levels, J, π , deformation parameters, B(E2).

2013De12, 1995Mo29, 1984Eg01, 1983Bo15, 1982Du16, 1982Eg01, 1978Po01, 1977Mi11, 1976Iv04: Calculated deformation parameters.

1998Bu18: Calculated B(E2 down; 2⁺ to 0⁺), B(E3 up; 0⁺ to 3⁻) and B(E4 up; 0⁺ to 4⁺) for ²⁴⁴Cm as a ³²Si+ ²¹²Pb cluster system. The calculated B(E2 down; 2⁺ to 0⁺), B(E3 up; 0⁺ to 3⁻) agree with experiments. However, calculated B(E4 up; 0⁺ to 4⁺) does not agree with the measured value. The authors strongly recommend confirmation of the B(E4) experimental results.

2013De12: Calculated deformation parameters, and predicted α transitions $J^{\pi} = 2^+, 4^+, 6^+$ states.

- 2013Li30: Calculated two-quasiparticle high K-state with $v5/2^+$ [622] $\otimes v7/2^-$ [624] configuration. Predicted the octupole deformed high K-isomeric state at 0.976 MeV.
- 2010Wa31: Calculated relative intensities of α decay to the rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula.
- 2010Wa23: Calculated branching ratios of α -decay to the ground-state rotational bands as well as the high-lying excited states within the framework of the generalized liquid drop model (GLDM) and an improved Royer's formula.

2002Pr01: Calculated excitation energies of quadrupole-vibrational states, calculated $B(E2)(0^+$ gs to $2^+)$.

2002Re31: Calculated g.s properties based on the deformed relativistic (RMF) mean-field theory.

- 1990Co26: Systematic behavior of the first 3⁻ octupole-vibrational state was studied, and fragmentation and its dependence on β_2 were analyzed.
- 1989Pi03: The pairing interaction strength for protons and neutrons was deduced from empirical odd-even mass differences.

1984Eg01: Analysis of yrast states, and alignment.

1982Li01, 1978Po01: Calculated electric quadrupole and hexadecapole moments.

- 1976Iv04: Low-lying two-quasi particle neutron states and single phonon states were studied and excitation energies were calculated using a semi-microscopic method.
- 1983Bo15: Calculated equilibrium deformations and static electric moment.

1993Sa05, 1988Ri07: Calculated B(E2)(0⁺ gs to 2⁺).

1988Bh04: Calculated B(E2)(2^+ to 0^+ gs).

1978Po01: Calculated moment of inertia and collective gyromagnetic ratio of the ground state.

1982Eg01, 1980Du07: Calculated moment of inertia.

1991Pi05: Studied nuclear stretching.

1974Ma17, 1975Vo06, 1981Be59: Calculated density of states.

1974No17: Calculated gamma width of highly excited nuclei.

1979Po23: Half-life for alpha decay was calculated by considering this decay mode as a form of fission.

1997Mo25: Calculated the α half-life based on the finite-range droplet model and folded-Yukawa single-particle potential.

Adopted Levels, Gammas (continued)

1977VaYN: Review of properties of spontaneously fissioning isomers.

2014Ji14, 2014Lu01, 2014Ro09, 2009Mo18, 2012Ja08, 2011Zh36, 1993OH03 1995Ra07, 1992Bh03, 1990Bh02, 1981Re06, 1980Ku14, 1977Pr10, 1976Re09, 1974Ju02, 1973Br04, 1973Al08, 1972Ma11, 1972Mo27, 1971Pa33, 1971Br39 : Calculated fission barriers heights.

1980Bj02: Review, evaluation and recommended parameters for fission barriers.

1972Go19: Influence of axially asymmetric deformation on fission barriers.

2000Du06: Influence of triaxial shape on the ground-state binding energy and on the fission barriers.

1978Po01: Calculated quadrupole and hexadecapole deformations, electric moments, and gyromagnetic ratio for the fission isomeric state.

1976Ma42: Calculated giant octupole resonances and γ strength.

1977Ky01: Studied semi-microscopic description for giant quadrupole resonances and calculated E2 strengths for various deformed nuclei.

Experiments involving fission:

1999Pa55, 1983Ca02, 1973Go46, 1973Da34, 1972Fl13: Measured fission yields.

1989Sa03: Fragment-fragment coincidence data following ²³²Th(8.4-MeV ¹²C,X) reaction were interpreted as being from decay of the excited compound nucleus ²⁴⁴Cm.

1989Au01: Coincidence spectra of α particles and fission fragments measured following ²³²Th(85-MeV ¹²C,X) reaction;

1990Li26: Angular distribution of fission fragments following ²³²Th(78-MeV ¹²C,X) reaction were measured; saddle point effective moment of inertia was deduced.

1993Oh03: Proton-induced fission data, ²⁴³Am(p,F); deduced fission parameters; competition of fission to neutron emission. 1995Da18: Angular distributions of fission products in ²³⁷Np(α ,F).

1986Ca14, 1972Al07, 1974Al26: Measured prompt neutrons as a function of fragment kinetic energy 1983Sc07: Coincidences between prompt neutron and fission fragments.

²⁴⁴Cm Levels

Cross Reference (XREF) Flags

				A 248 Cf α decayDCoulomb excitationB 244 Am β^- decay (10.1 h)E 244 Bk ε decayC 244 Am β^- decay (26 min)E
E(level) ^{&}	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0 [†] 42.957 [†] 9	0+ 2+	18.11 y <i>3</i> 97 ps <i>5</i>	ABCDE	%α=100; %SF=1.37×10 ⁻⁴ 2 %SF is deduced from the adopted total and partial half-lives. The measured α/SF activity ratios are α/SF=743×10 ³ 1 (1965Me02), 742.0×10 ³ 35 (1972Ha80); 697.7×10 ³ 14 (1993Pa29). T _{1/2} : Weighted average of 17.9 y 5 (1954Fr19; α activity relative to ²⁴² Cm (this half-life will not change when the adopted T ²⁴² _{1/2} Cm= 162.88 d 8 from email reply by M. Martin on 12 July 2017 is used), 18.099 y 32 (1968Be26; $2\pi \alpha$ counting; uncertainty was revised by 1989Ho24), 18.13 y 4 (1972Ke29; calorimetry), 18.24 y 25 (1982Po14; specific activity; revised by 1984Ho24). Other T _{1/2} measurements that were not included in the weighted average due to their large contribution to the chi-square: 19.2 y 6 (1954St33; activity relative to ²⁴² Cm), 17.59 y 6 (1961Ca01; specific activity). T _{1/2} (SF)=1.32×10 ⁷ y 2 as recommended by 2000Ho27 is the weighted average of 1.4×10 ⁷ y 2 (1952Gh27; revised by 2000Ho27), 1.46×10 ⁷ y 6 (1963Ma56; gas scintillator), 1.346×10 ⁷ y 6 (1965Me02; from α/SF counts), 1.33×10 ⁷ y 3 (1967Ar09; LiI scintillator), 1.250×10 ⁷ y 7 (1970Ba11), low geometry fission counter), 1.343×10 ⁷ y 6 (1972Ha80; from α/SF counts), 1.263×10 ⁷ y 25 (1993Pa29; from α/SF counts). B(E2) [↑] =14.58 <i>19</i> (1973Be44)

Adopted Levels, Gammas (continued)

²⁴⁴Cm Levels (continued)

E(level) ^{&}	\mathbf{J}^{π}	T _{1/2}	XREF	Comments				
				$T_{1/2}$: Measured by 1962Ch19 in the 10.1-h ²⁴⁴ Am beta decay using the delayed coincidence technique between γ rays and conversion electron lines. $T_{1/2}$ = 126.1 ps <i>17</i> is calculated by the evaluator from B(E2)=14.58 <i>19</i> measured in Coulomb excitation. J^{π} : 42.965 γ to gs is E2.				
142.340 [†] 10	4+		AB DE	B(E4)↑=0.0 +25-00 (1973Be44)				
296.204 [†] 10	6+		В					
501.779 [†] 11	8+		В					
933.8? 3	(3,4)		E	J^{π} : 891.0y to 2 ⁺ at 42.965 level, 217.3y with stronger intensity from (4) at				
963.6? <i>3</i>	(2,3)		E	J^{π} : 920.8 γ to 2 ⁺ at 42.957 level, 187.4 γ with weaker intensity from (4) at 1150.98 level.				
970 [#] 4	$(2^+, 3^-)^{@}$		D					
984.914 <i>15</i>	0+		С	J^{π} : 984.919 γ to 0 ⁺ gs is E0.				
1020.756? 22	(2+)		С	This level is tentatively assigned. An alternate placement of the 977.796-keV transition would be to de excite a 977.8-keV 0 ⁺ level to the ground state (1984Ho02).				
#				J^{*} : 9/7.796 γ to 2 ⁺ state is E0(+M1+E2). 1984H002 proposed this level to be 2 ⁺ member of a K=0 band based on 984.9-keV level.				
1038 [#] 6	$(2^+,3^-)^{\textcircled{6}}$	24 mg 2	D	0% TT_100				
1040.181 11	0	54 ms 2	Б	E(level): Probable Nilsson assignment is 6^+ , (ν 5/2[622]+ ν 7/2[624]). In this case, the beta branch from 10.1-hour ²⁴⁴ Am would involve a transformation of the ν 5/2 ⁺ [622] state to the π 5/2 ⁻ [523] state, as also suggested by 1962Va08.				
				J^{π} : 897.848 γ to 4 ⁺ level is E2, 538.400 γ decay to 8 ⁺ level is (E2) J=6 was also confirmed by the angular correlation measurement in the 10.1-h ²⁴⁴ Am β decay by 1963Ha29.				
				$T_{1/2}$: Measured by 1963Ha29 in 10.1-h ²⁴⁴ Am beta decay by delayed coincidence between β particles and conversion electrons. $T_{1/2}(SF)>140$ y (1964Va04). The authors attributed their observed SF activities to the ²⁴⁴ Cm ground state SF decay.				
1084.199? [‡] <i>12</i>	$(1,2^+)$		С	J^{π} : 1084.181 γ to 0 ⁺ g.s.				
1105.909? [‡] 20	(1,2)		С	J^{π} : Gamma transitions to 0^+ and 2^+ states.				
				See ²⁴⁴ Am β - decay (26-min) data set for comments on the multipolarities of these transitions.				
1150.98? 24	(4)		E	J^{π} : Expected largest direct feeding by ε -decay from ²⁴⁴ Bk with $J^{\pi} = (4^{-})$.				
1187 [#] 4	$(2^+, 3^-)^{\textcircled{0}}$		D					
1220.16? 10	(3.4)		E	J^{π} : From 1153.4 γ to the 4 ⁺ 143 level.				
1327.7? <i>3</i> 1654.3? <i>5</i>	(0,1)		E					
1/85.37? 21 0+x		>500 ps	E	%SE<100				
UTA		× 500 IIS		Additional information 1.				
				$T_{1/2}$: $T_{1/2}(SF) > 500$ ns (1969MeZX).				
				Only SF decay observed (1969MeZX).				
				From fit to the experimental excitation function for ²⁴² Pu(α ,2n) reaction, 1971Br39 calculated E(level)=3.7 MeV 3 with T _{1/2} SF>100 ns. In a later				

1971Br39 calculated E(level)=3.7 MeV 3 with $T_{1/2}SF>100$ ns. In a later evaluation, 1973Br38 calculated the level energy as 3.0 MeV 4 which is believed to be an excited state at the shape isomeric deformation. No

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁴⁴Cm Levels (continued)

E(level) ^{&}	T _{1/2}	XREF	Comments
(0+y)	≤5 ps		 recommended level energy was given in the review work by 1980Bj02. No resonance structure was observed by 1973Ba55 nor 1974Ba28 for ²⁴⁴Cm in the ²⁴³Am(³He,dF) reaction. Estimate for the fission barrier was made from theoretical model fit to their measured fission probabilities as a function of excitation energy. 1976GA11 deduced fission barrier heights and widths for neutron/fission from their ²⁴³Am(³He,dF) data. Additional information 2. T_{1/2}: No short lived fission activity was observed by 1976Sl01 following the ²⁴²Pu(α,2n) reaction; an upper limit for half-life was set from their lower limit on the ratio of isomer to prompt fission. From the correlation between isomers' half-lives and the fission barriers, the authors predicted 1 – 50 ps half-lives for the second fission isomer in the even-even curium isotopes. For a systematics of fission isomer half-lives see 1975Me28.

[†] Band(A): K=0 Ground-state band. J^{π} assignments for levels with J>2 are based on E2 transitions within the band, and energy fit ⁴ See Coulomb excitation for extracted B(E2),B(E3) values.
⁶ From Coulomb excitation.
⁶ From least-squares fit to Eγ data by the evaluator.

						Adopted Level	s, Gammas	(continued)	
						,	γ (²⁴⁴ Cm)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
42.957	2+	42.965 10	100	0.0	0+	E2		1050	$\alpha(L)=760 \ 11; \ \alpha(M)=214 \ 3$ $\alpha(N)=59.5 \ 9; \ \alpha(O)=14.38 \ 21; \ \alpha(P)=2.35 \ 4; \ \alpha(Q)=0.00578 \ 9$ $P(F)=20(W_{H}) = -410 \ 22$
142.340	4+	99.383 4	100	42.957	2+	E2		19.3	$\begin{array}{l} \alpha(L) = 13.93 \ 20; \ \alpha(M) = 3.94 \ 6 \\ \alpha(N) = 1.095 \ 16; \ \alpha(O) = 0.265 \ 4; \ \alpha(P) = 0.0441 \ 7; \\ \alpha(O) = 0.00180 \ 3 \end{array}$
296.204	6+	153.863 2	100	142.340	4+	E2		2.81	$\alpha(\text{C})=0.006180^{-5}$ $\alpha(\text{K})=0.1741^{-25}; \alpha(\text{L})=1.90^{-3}; \alpha(\text{M})=0.536^{-8}$ $\alpha(\text{N})=0.1492^{-21}; \alpha(\text{O})=0.0362^{-5}; \alpha(\text{P})=0.00610^{-9};$ $\alpha(\text{O})=3^{-2} 20^{-1} 10^{-5}^{-5} 6^{-5}$
501.779	8+	205.575 4	100	296.204	6+	(E2)		0.887	$\alpha(Q)=5.92 \times 10^{-6} \ 0$ $\alpha(K)=0.1409 \ 20; \ \alpha(L)=0.541 \ 8; \ \alpha(M)=0.1514 \ 22$ $\alpha(N)=0.0421 \ 6; \ \alpha(O)=0.01025 \ 15; \ \alpha(P)=0.001746 \ 25; \ \alpha(O)=1.644 \times 10^{-5} \ 23$
933.8?	(3,4)	891.0 4	100	42.957	2+				
963.6?	(2,3)	(≈30)		933.8?	(3,4)				E_{γ} : Assumed by 2014So17 based on the coincidence between 187.4 γ and the 891.0 γ .
984.914	0^{+}	920.8 5 941.949 <i>18</i> 984 919 20		42.957 42.957	2^+ 2^+ 0^+	FO			
1020.756?	(2+)	977.796 20		42.957	2+	E0(+M1+E2)		0.036 22	α (K)=0.028 <i>18</i> ; α (L)=0.0060 <i>32</i> ; α (M)=0.00148 <i>75</i> α (N)=4.1×10 ⁻⁴ <i>21</i> ; α (O)=1.03×10 ⁻⁴ <i>53</i> ; α (P)=2.0×10 ⁻⁵ <i>11</i> : α (O)=1.34×10 ⁻⁶ <i>84</i>
1040.181	6+	538.400 16	1.0 2	501.779	8+	(E2)		0.0495	$\alpha(K) = 0.0292 \ 4; \ \alpha(L) = 0.01492 \ 21; \ \alpha(M) = 0.00396 \ 6$ $\alpha(N) = 0.001096 \ 16; \ \alpha(O) = 0.000271 \ 4; \ \alpha(P) = 4.93 \times 10^{-5} \ 7;$ $\alpha(Q) = 1.637 \times 10^{-6} \ 23$
		743.971 5	100 27	296.204	6+	M1+E2	-0.92 8	0.077 5	B(E2)(W.u.)=2.7×10 ⁻¹¹ 8 α (K)=0.059 4; α (L)=0.0130 7; α (M)=0.00321 15 α (N)=0.00088 4; α (O)=0.000223 11; α (P)=4.34×10 ⁻⁵ 21; α (Q)=2.86×10 ⁻⁶ 17
		897.848 7	42 12	142.340	4+	E2		0.01697	B(M1)(W.u.)=5.6×10 ⁻¹³ 20; B(E2)(W.u.)=2.4×10 ⁻¹⁰ 9 α (K)=0.01215 17; α (L)=0.00358 5; α (M)=0.000912 13 α (N)=0.000251 4; α (O)=6.29×10 ⁻⁵ 9; α (P)=1.186×10 ⁻⁵ 17; α (Q)=5.93×10 ⁻⁷ 9 P(E)2)(Wu)=0.E 11.4
1084.199?	(1,2 ⁺)	1041.278 22 1084.181 <i>14</i>	53 <i>18</i> 100 32	42.957	$2^+_{0^+}$				D(E2)(w.u.)-7.E=11.4
1105.909?	(1,2)	1062.953 <i>18</i> 1105.43 <i>19</i>	100 <i>31</i> 15 <i>8</i>	42.957	2^+ 0 ⁺				
1150.98?	(4)	187.4 <i>3</i> 217.3 <i>3</i> 1107.6 <i>5</i>	16.5 5 100 2.4 <i>1</i>	963.6? 933.8? 42.957	(2,3) (3,4) 2 ⁺				
1220.16?		1177.2 <i>I</i>	100	42.957	2^{+}				

²⁴⁴₉₆Cm₁₄₈-5

L

d)
d

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$E_f = J_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}
1295.59?	(3,4)	144.6 2 1153.4 6	100 3	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	1654.3? 1785.37?		690.7 <i>3</i> 489.8 <i>4</i>	100 100 <i>4</i>	963.6? 1295.59?	(2,3) (3,4)
1327.7?		1252.5 7 176.7 2	27 <i>1</i> 100	$\begin{array}{ccc} 42.957 & 2^+ \\ 1150.98? & (4) \end{array}$			565.2 2	12.9 21	1220.16?	(-))

[†] From ²⁴⁴Am beta decays, measured by 1984Ho02. [‡] From conversion electron and $(\gamma)(\gamma)(\theta)$ data measured in ²⁴⁴Am beta decay.

[#] Relative photon intensity normalized to 100 at the strongest photon deexciting each level. For levels with multiple gamma transitions, the I γ 's were taken from the decay datasets: γ 's from 1040 level (²⁴⁴Am β - decay (10.1 h)), γ 's from 1084 and 1106 levels (²⁴⁴Am β - decay (26 m)), γ 's from 1151, 1296 and 1786 levels (244 Bk ε decay). ^(a) Additional information 3.

From ENSDF

²⁴⁴₉₆Cm₁₄₈

Adopted Levels, Gammas

