²⁴²Pu(n, γ):secondary γ 's 1976Ca25

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013

1976Ca25: 288 mg ²⁴²Pu target bombarded with 2.66 eV neutrons from Brookhaven high flux beam reactor. Singles and coincidence gammas were detected with Ge(Li) detectors (15-40 cm³ volume). Typical FWHM= 2.2 keV at 1.33 MeV γ . Pileup reduced with a 1.5 mm Pb absorber.

²⁴³Pu Levels

E(level) [†]	$J^{\pi \ddagger}$						
0.0	$7/2^{+}$	446.8 3	$(5/2^+)$	845.5 <i>4</i>	$(5/2^+)$	1301.7 5	1/2,3/2
58.13 22	9/2+	625.7 <i>3</i>	$(1/2^+)$	873.7? 10	$(1/2^{-})$	1367.9 6	1/2,3/2
124.8 7	$11/2^{+}$	653.8 4	$(3/2^+)$	905.7 4	$(1/2^{-})$	1387.4 4	$3/2^{+}$
287.46 20	$5/2^{+}$	677.1 6	$(5/2^+)$	948.0 <i>3</i>	$(3/2^{-})$	1420.5 6	$(3/2^+)$
333.22 24	$7/2^{+}$	704.0 <i>3</i>	$(3/2^{-})$	981.0 4	$(5/2^+)$	1434.6 4	$1/2^+, 3/2$
383.64 25	$(1/2^+)$	790.7 <i>3</i>	$(3/2^{-})$	1130.2 3	$(1/2^+, 3/2)$	1516.6 10	$(3/2^{-})$
392.1 <i>3</i>	$(3/2^+)$	809.6 4	$1/2^+, 3/2$	1176.5 <i>3</i>	$3/2^+, 5/2^+$		
402.6 3	9/2-	813.76 17	3/2+	1213 2	$(5/2^{-})$		

[†] From least squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

$\gamma(^{243}\text{Pu})$

Iγ normalization: Intensities normalized to Iγ(381γ) from ²⁴³Pu decay =0.58 6 per 100 β- decays. Iγ(β,P,K) Broad peak; Iγ is for total peak.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Comments
(58.1)		58.13	9/2+	0.0	7/2+	E_{γ} : γ was not observed in (n,γ); Eγ is from adopted level energies.
(96.2 2)		383.64	$(1/2^+)$	287.46	$5/2^{+}$	E_{γ} : from (d,p γ). This gamma was not seen in (n, γ).
(125)		124.8	$11/2^{+}$	0.0	$7/2^{+}$	E_{γ} : γ was not observed in (n,γ) ; $E\gamma$ is from $(^{208}Pb, ^{209}Pb \gamma)$.
159.2 13	52	813.76	$3/2^{+}$	653.8	$(3/2^+)$	
^x 185.7 7	14 4					
219.9 [°] 3	62	873.7?	$(1/2^{-})$	653.8	$(3/2^+)$	
229.3 2	92	287.46	$5/2^{+}$	58.13	9/2+	
233.9 6	2.2 7	625.7	$(1/2^+)$	392.1	$(3/2^+)$	
242.0 2	44 8	625.7	$(1/2^+)$	383.64	$(1/2^+)$	
261.7 3	62	653.8	$(3/2^+)$	392.1	$(3/2^+)$	
275.1 2	11 2	333.22	$7/2^{+}$	58.13	9/2+	
(278.0 8)	0.76 19	402.6	9/2-	124.8	11/2+	E_{γ} : from ²⁴⁷ Cm α decay; this γ was not seen in (n,γ). I _γ : from I(278γ)/I(402γ)=3.4 7/72 6, as measured in ²⁴⁷ Cm α decay.
284.4 ^c 3	10 4	677.1	$(5/2^+)$	392.1	$(3/2^+)$	
287.4 <i>3</i>	496 67	287.46	$5/2^{+}$	0.0	$7/2^{+}$	
333.0 10	7 [@] 3	333.22	$7/2^{+}$	0.0	7/2+	
343.9 ^{bc} 2	13.2 18	677.1	$(5/2^+)$	333.22	7/2+	
343.9 <mark>b</mark> 2	13.2 18	790.7	$(3/2^{-})$	446.8	$(5/2^+)$	
344.5 5	≈0.3	402.6	9/2-	58.13	9/2+	E_{γ} : γ was obscured by 343.9γ; energy is from level scheme. I _γ : from I(402γ)/I(345γ)=72 6/≈1.3, as measured in ²⁴⁷ Cm α decay.

Continued on next page (footnotes at end of table)

			²⁴² Pu(n	,γ) :seco n	dary γ's	1976Ca25 (continued)
				<u> </u>	(²⁴³ Pu) (co	ontinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	
385.7 <i>3</i>	3.0 5	1176.5	$3/2^+, 5/2^+$	790.7	$(3/2^{-})$	
^x 400.8 3	16.1 18					
402.6 <i>3</i>	16.1 18	402.6	9/2-	0.0	7/2+	
407.1 3	9.5 11	790.7	$(3/2^{-})$	383.64	$(1/2^+)$	
416.5 2	61 /	/04.0	(3/2)	287.46	5/21	
426.00 6	2.2 7	809.6	$1/2^+, 3/2$	383.64	$(1/2^{+})$	
426.006	2.2 7	1130.2	$(1/2^+, 3/2)$	704.0	$(3/2^{-})$	
439.43	2.74	1387.4	3/2+	948.0	$(3/2^{-})$	
444.0 5	7.2 0 5 8 6	813 76	3/2+	333.22	7/2+	
501.2 3	10.8 12	948.0	$(3/2^{-})$	446.8	$(5/2^+)$	
513.6 3	22.8 27	905.7	$(1/2^{-})$	392.1	$(3/2^+)$	
^x 516.2 3	6.4 7					
522.1 ^b 3	7.7 9	809.6	$1/2^+, 3/2$	287.46	$5/2^{+}$	
522.1 ^b 3	7.7 9	905.7	$(1/2^{-})$	383.64	$(1/2^+)$	
526.2 <i>3</i>	18.5 20	813.76	3/2+	287.46	5/2+	
533.9 4	3.5 [#] 7	981.0	$(5/2^+)$	446.8	$(5/2^+)$	
^x 546.9 4	3.2 16					
551.7 ^{&c} 5	1.5 4	1176.5	3/2+,5/2+	625.7	$(1/2^+)$	
555.7 5	9.3 [@] 31	948.0	$(3/2^{-})$	392.1	$(3/2^+)$	
558.0 <i>3</i>	8.5 9	845.5	$(5/2^+)$	287.46	5/2+	
x560.3 5	2.0 7	0.40.0	(2)(2-)	202 (1	(1/2+)	
564.7 4 ×566 2 4	18.3 20	948.0	(3/2)	383.64	$(1/2^{+})$	
x573 3 6	217					
589.1 3	4.4 5	981.0	$(5/2^+)$	392.1	$(3/2^+)$	
$x_{600.5}$ & c 4	1.6.6		(-1)			
^x 606.9 6	1.0 5					
^x 609.8 3	5.8 7					
^x 619.3 7	0.8 4					
625.2 ^{&c} 2	5.5 6	1434.6	$1/2^+, 3/2$	809.6	$1/2^+, 3/2$	
x633.8 5	2.7 4					
^637.8 3	2.8 4	1424.6	1/2+ 2/2	700 7	$(2/2^{-})$	
044.24	2.1 5	091.0	1/2, 3/2	190.1	(3/2)	
048.8° 0	1.9 5	981.0	(3/2)	555.22	1/2	
648.8°° 8 ×656.3.2	1.9.5	1301.7	1/2,3/2	653.8	$(3/2^{+})$	
x662.2.5	5.10					
663.9.6	0.3 / 4 5 7	1367.9	1/2 3/2	704.0	$(3/2^{-})$	
^x 668.5 6	0.9 5	1507.9	1/2,5/2	/01.0	(3/2)	
676.0 <i>3</i>	5.1 5	1301.7	1/2,3/2	625.7	$(1/2^+)$	
^x 679.2 ^{&c} 6	2.5 10					
683.4 ^b 4	3.1 4	1130.2	$(1/2^+, 3/2)$	446.8	$(5/2^+)$	
683.4 ^b 4	3.1 4	1387.4	3/2+	704.0	$(3/2^{-})$	
693.5.7	1.4 [#] 5	981.0	$(5/2^+)$	287.46	5/2+	
$7147\frac{\&C}{2}$	147	1367.9	(3/2)	653.8	$(3/2^+)$	
$716.9^{\circ}.5$	1.9 4	1420.5	$(3/2^+)$	704.0	$(3/2^{-})$	
730.1 7	1.2 4	1176.5	$3/2^+, 5/2^+$	446.8	$(5/2^+)$	
738.2 <i>3</i>	4.6 5	1130.2	$(1/2^+, 3/2)$	392.1	$(3/2^+)$	
746.4 3	5.8 6	1130.2	$(1/2^+, 3/2)$	383.64	$(1/2^+)$	
~752.7 4	1.6 5	1424 6	1/2+ 2/2	(77 1	(5/0+)	
131.34	2.4 4	1434.0	$1/2^{+}, 3/2$	0//.1	$(3/2^+)$	
/81.1 2	1.4 9	1434.6	1/2 ' ,3/2	653.8	$(3/2^{+})$	

Continued on next page (footnotes at end of table)

²⁴²Pu(n, γ):secondary γ 's 1976Ca25 (continued)

$\gamma(^{243}$ Pu) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
787.5 8 ^x 791.3 3 ^x 805.9 12	2.9 <i>14</i> 5.8 <i>15</i> 2.9 9	845.5	(5/2 ⁺)	58.13	9/2+	
813.8 2	17.7 18	813.76	3/2+	0.0	7/2+	
838.7 ^c 5 *841.3 8	1.5 10 2.1 10 1.7 4	1516.6	(3/2 ⁻)	677.1	(5/2+)	Partially resolved from the 841.3-keV γ .
844.3 ^{bc} 8	2.2.4	845.5	$(5/2^+)$	0.0	$7/2^{+}$	
844.3 ^{bc} 8 ^x 847.7 3 ^x 850.3 3 ^x 862.0 8 ^x 867.3 3	2.2 4 5.7 6 5.1 5 4.0 10 5.0 5	1176.5	3/2+,5/2+	333.22	7/2+	
$^{x}871.4^{\&c}5$	2.7 11					
879.8 ^{&} <i>c</i> 10 ^x 887.3 6	1.5 7 9.0 22	1213	(5/2 ⁻)	333.22	7/2+	Partially resolved from 889.1 γ .
889.1 6 ^x 894.6 10 ^x 902.8 4 ^x 913.3 3	22.3 <i>30</i> 2.4 8 8.4 9 6.2 6	1176.5	3/2+,5/2+	287.46	5/2+	Partially resolved from the 887.3-keV γ .
918.0 10	2.2 8	1301.7	1/2,3/2	383.64	$(1/2^+)$	
925.3 ^c 10	2.0 10	1213	$(5/2^{-})$	287.46	5/2+	Partially resolved from the 930.9-keV γ .
x930.9 12 976.0 12 x999.5 12 x1009 1 x1015.6 4 x1022 6 4	3.2 10 3.8 19 2.0 6 2.5 10 4.0 5 5 7 11	1367.9	1/2,3/2	392.1	(3/2+)	
$1022.0 \stackrel{\circ}{\checkmark} 1028.4 \stackrel{\&c}{\&c} 10$	1.2 18	1420.5	$(3/2^+)$	392.1	$(3/2^+)$	Partially resolved from the 1030.9-keV γ .
^x 1030.9 ^{&c} 8	3.2 13					
1042.1 5 ^x 1045.0 13 ^x 1050.1 5	4.0 6 4.0 18 2.3 5	1434.6	1/2+,3/2	392.1	(3/2 ⁺)	
1053.8 <i>10</i> <i>x</i> 1055.9 <i>10</i> <i>x</i> 1070.3 <i>4</i>	2.9 <i>11</i> 4.1 <i>13</i> 2.2 <i>4</i>	1387.4	3/2+	333.22	7/2+	Partially resolved from the 1055.9-keV γ .
$1087.1^{\&c} 8$ ^x 1091.4 6 ^x 1162.8^{\&c} 6	3.1 <i>16</i> 5.1 <i>13</i> 1.9 7	1420.5	(3/2+)	333.22	7/2+	
^{1169.9} 8 1176.5 5 ^x 1180.4 ^{&c} 8 ^x 1191.2 3 ^x 1197.6 6 ^x 1202.0 3	3.1 12 11.6 24 1.3 7 8.3 10 3.5 14 5.9 7	1176.5	3/2+,5/2+	0.0	7/2+	

[†] Measurements of 1976Ca25.
[‡] From 1976Ca25, given as per 1000 neutron captures. Relative intensities were normalized by the evaluator such that Iγ(381γ) from ²⁴³Pu β⁻ decay= 0.58 6 per 100 ²⁴³Pu decays.
[#] Intensity may contain a small amount of contaminant (1976Ca25).
[@] Up to 25% of the intensity may be due to contaminant (1976Ca25).

²⁴²**Pu**(**n**, γ):secondary γ 's 1976Ca25 (continued)

$\gamma(^{243}\text{Pu})$ (continued)

& Questionable γ for which contaminant origin cannot be completely ruled out (1976Ca25).

^{*a*} For intensity per 100 neutron captures, multiply by 0.083 9.

^b Multiply placed.

^c Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

²⁴³₉₄Pu₁₄₉