History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013			

 $Q(\beta^-)=580\ 3;\ S(n)=5034\ 3;\ S(p)=6.95\times10^3\ 20;\ Q(\alpha)=4757\ 3$ 2012Wa38 $S(2n)=11344\ 3;\ S(2p)=13019\ syst\ 298\ (2012Wa38).$

Theoretical and Systematic studies:

2012Ni16: T_{1/2} for α decay for transitions from ground state to favored rotational bands using Multicluster Channel Model.

2012Ro34: $T_{1/2}$ and fission barriers with a generalized liquid drop model.

2012Sa31: T_{1/2} from cluster decay using Coulomb and proximity potential model.

2011Ad15,2010Ad17: One-quasiparticle levels using the microscopic-macroscopic modified TCSM, QPM and the self-consistent SHFB approaches.

2011Ha06: Systematic analysis of experimental work in N=149 isotones.

2011He12: Compilation of $T_{1/2}$, J^{π} , and energy for long-lived isomers for Z≥82.

2011Zh36: Systematics and calculated partial half-life of α decay to members of favored band. Accurate expressions are proposed for the evaluation of partial half-lives of these transitions based on microscopic quantum tunneling theory.

2010Ni02: Systematics and calculations of $T_{1/2}$ and relative intensities of α decay within the generalized density-dependent cluster model.

2006Sh19: Possible alternative parity bands using the cluster model features of reflection asymmetric states.

2005Re16: Spontaneous fission half-lives.

2002Si26: Summary of fission isomers.

1971Ko31: Nonrotational-state energies using the Woods-Saxon potential.

1997Mo25: $T_{1/2}$ for ground-state alpha decay, pairing gaps and separation energies for neutrons and protons.

1995Mo29: Ground-state deformation.

1983Ga20,1995Mo29: Ground-state mass.

1972We09,1990Bh02: Spontaneously fissioning shape isomer.

1982Ku09: Statistical properties of levels were studied. Calculated level spacings in the first and second deformed potential well.

Other experimental studies:

2006Ma01: Thermal neutron cross section of 242 Pu(n, γ).

2005LeZS: Reaction cross section of 242 Pu(n, γ).

1987Gr13: ²⁴⁹Cf(¹³⁶Xe,x): Production cross-sections.

1970Ot02: ²⁴²Pu(n,F) E(n)=500,620,730,990,1230 keV: fission-fragment angular distribution was measured by ; data were analyzed with single-particle and with statistical model of the intermediate transition nucleus.

1970Br32: ²⁴²Pu(d,pF), ²⁴²Pu(t,dF): Measured fission-fragment angular correlations and deduced and fission probabilities.

²⁴³Pu Levels

Cross Reference (XREF) Flags

Α	247 Cm α decay	Е	242 Pu(d,p γ) E=16 MeV
В	243 Np β^- decay	F	²⁴² Pu(n, γ):primary γ 's
С	244 Pu(208 Pb, 209 Pb γ)	G	²⁴² Pu(n, γ):secondary γ' s
D	²⁴² Pu(d,p), ²⁴⁴ Pu(d,t)		

²⁴³Pu Levels (continued)

E(level) ^{†‡}	$J^{\pi #}$	T _{1/2}	XREF	Comments
0.0	7/2+	4.956 h <i>3</i>	ABCDEFG	$\%\beta^{-}=100$
	.,_			T _{1/2} : weighted average of 4.955 h <i>3</i> (1968Di09) and 4.958 h <i>5</i> (1969Ho10). Other measurements: 1951Su55, 1951Th20, 1953En08, 1977Dr07. J ^π : log <i>ft</i> ≈6.1 to 5/2 ⁻ . 402γ from 9/2 ⁻ is E1. Intrinsic Q was estimated by 1985Ge08 as 11.6 5 from relative isotope shift, deduced from their measured isotope shifts for neighboring even Pu isotopes.
58.13 ^{&} 22	9/2+		A CD G	J^{π} : (d,t) reaction data; energy fit to the band.
124.8 <mark>&</mark> 7	$11/2^{+}$		A CD	J^{π} : (d,t) reaction data; energy fit to the band.
207.1 ^{&} 11	$13/2^{+}$		CD	J^{π} : (d,t) reaction data; 149.0 γ to the 9/2 ⁺ 7/2[624] band; energy fit to the band.
287.46 ^a 19	5/2+		AB DE G	J^{π} : 287.4 γ to 7/2 ⁺ state is M1; 96.2 γ from (1/2 ⁺) state; energy fit to the band.
298.8 ^{&} 12	15/2+ @		С	
333.21 ^{<i>a</i>} 24	7/2+		A D G	J ^{π} : feeds 7/2 ⁺ , 9/2 ⁺ levels, fed from 3/2 ⁺ state; α hindrance factor in ^{24/} Cm decay. (d,t) reaction data is in agreement with the assignment.
383.64 ^b 25	$(1/2^+)$	0.33 µs 3	DEFG	J^{π} : fed by primary γ in (n,γ) ; (d,p) and (d,t) reaction data. T _{1/2} : from d, $\gamma(t)$ in ²⁴² Pu $(d,p\gamma)$ reaction (1975Ya03).
≈388 ^{<i>a</i>}	$(9/2^+)$		D	
392.1 ^b 3	$(3/2^+)$		FG	J^{π} : fed by primary γ in (n,γ) ; (d,p) and (d,t) reaction data.
402.6 [°] 3	9/2-		A G	J ^{π} : fed by favored α (HF=1.7) from 9/2 ⁻²⁴⁷ Cm.
404.0 15	$17/2^{+}$		С	J^{π} : 196.9 γ to 13/2 ⁺ .
446.8 ^b 3	(5/2+)		FG	J^{π} : γ s from $1/2^+$, $3/2^+$ states; band parameters deduced from excitation energy fit the local trend.
450.1 ^b 15	$(7/2^+)$		D	
455° 5	11/2-		A	E(level): From E α and Q α in ²⁴⁷ Cm α decay. J ^{π} : energy fit to the band.
466.7 ^{<i>a</i>} 15	$(11/2^+)$		D	
518.9 [°] 16	19/2 ⁺		C	
536.6 ^d 15	$(13/2^{+})$		D	
564.5° 15	$(9/2^{+})$		D	
$393.5^{\circ}13$	(13/2)			π interview with a foregroup to $1/2^{+}$ [(21] hand. This level was a harmond in
626 ^e 2	(1/2)		DG	(d,p) and (d,t) reactions by the $9/2^+$, $7/2[613]$ state.
$620^{\circ} 2$	(9/2)		C C	
640.8^{-10}	$\frac{21}{2}$			π , for the primary of (n, r) , $r = 2/2^{+}$ levels (d, n) and (d, t) reaction data
653.8^{-4}	$(3/2^+)$		DFG	J ^T : led by primary γ in (n, γ); γ to $3/2$ level; (d,p) and (d,t) reaction data.
6/7.2 ^{cr} 5	(5/2.)		D FG	J^{-1} (d,p) and (d,t) reaction data; fed by primary γ in (n, γ); probably decays to $7/2^+$ and $(3/2^+)$ states.
704.0 ^J 3	(3/2 ⁻)		D FG	J^{π} : strong primary (n, γ) feeding and γ decay to the 5/2 ⁺ ,5/2[522] state suggest $J^{\pi}=1/2^+,3/2\pm$. Nonobservation of γ transition to any other state and weak population in (d,p) and (d,t) reactions imply that it might be a collective state built on the 5/2[622] state. 1976Ca25 propose that it is perhaps an octupole-vibrational state.
734.1 20			D	•
741.8 ^d 15	$(7/2^+)$		D	
783.8 <mark>&</mark> 19	23/2+		С	J^{π} : 264.9 γ to 19/2 ⁺ .
790.7 <mark>8</mark> 3	$(3/2^{-})$		D FG	J^{π} : (d,p) and (d,t) reaction data. (n, γ) data is consistent with the assignment.
809.5 3	1/2+,3/2		FG	J^{n} : fed by strong primary γ in (n,γ) .
813.76 ⁿ 17	3/2+		D FG	J^{π} : fed by primary γ in (n,γ) ; feeds $7/2^+$, $5/2^+$ states. Level is tentatively assigned to $3/2^+$, $3/2[622]$ state from data in (d,p) and (d,t) reactions.
834.4 ⁸ 15	$(7/2^{-})$		D	
845.5 ⁿ 4	$(5/2^+)$		DG	J^{π} : (d,p) and (d,t) reaction data. γ decays are consistent with the assignment.

²⁴³Pu Levels (continued)

E(level) ^{†‡}	J ^{π#}	T _{1/2}	XREF	Comments
873.7 <mark>8</mark> 10 884 3	(1/2 ⁻)		D G D	J^{π} : (d,p) reaction data.
895.6 ^h 15	$(7/2^+)$		D	
905.7 ⁱ 4	(1/2 ⁻)		D FG	J^{π} : fed by primary γ in (n,γ) ; decays to $(1/2^+)$, $(3/2^+)$ levels; (d,t) reaction data.
920.6 <mark>8</mark> 15	$(11/2^{-})$		D	
933.0 <mark>&</mark> 21	25/2+ @		С	
948.1 ^{<i>i</i>} 3	(3/2 ⁻)		D FG	J ^{π} : fed by primary γ in (n, γ); decays to (1/2 ⁺), (3/2 ⁺), (5/2 ⁺) levels; (d,t) reaction data.
954 ^h 2	$(9/2^+)$		D	J^{π} : (d,p) reaction data.
981.0 ^j 4	$(5/2^+)$		DG	J^{π} : (d,p) and (d,t) reaction data; γ decays are consistent with the assignment.
1044 2	$(11/2^+)$		D	J^{π} : 11/2 ⁺ , 9/2[615] assignment was tentatively suggested from (d,p), (d,t) data.
1080 ^j 2	$(9/2^+)$		D	
1091.3 ^{&} 21	27/2+ @		С	
1114 3			D	
1130.2 <i>3</i> 1145 <i>3</i>	$(1/2^+, 3/2)$		D FG D	J ^{π} : fed by primary γ in (n, γ); γ decays to (1/2 ⁺), (3/2±), (5/2 ⁺) levels.
1176.5 3	$3/2^+, 5/2^+$		D FG	J ^{π} : fed by primary γ in (n, γ); gammas to 7/2 ⁺ and 5/2 ⁺ states.
1197 3	(5/2-)		D	
1213 2	(5/2)		DG	$J^*: 5/2$, $5/2[503]$ assignment is tentatively proposed by 19/6Ca25.
1255 5			ע	
12+3 3 1261 1 $\frac{1}{2}$ 22	20/2+@		c c	
1201.1 25	29/2		n n	
1286.3			D	
1299 2			D	
1301.7 5	1/2,3/2		FG	J ^{π} : fed by strong primary γ in (n, γ); γ decays to (1/2 ⁺) level.
1324 2			D	
1354 2			D	
1359 3	1/0.2/0		D	T^{T} () () () () () () () () () (
1307.9 0	$\frac{1}{2}, \frac{3}{2}$			J [*] : fed by primary γ in(n, γ); γ decays to (3/2 ⁺), (3/2 ⁺) levels.
1403 3	5/2		DrG	J . Let by strong primary y in (n, y) , y decays to $7/2$ level.
1420.5 6	$(3/2^+)$		D FG	XREF: D(1419).
	(-1)			J ^{π} : fed by strong primary γ in (n, γ); probable γ decay to 7/2 ⁺ level.
1434.7 4	1/2+,3/2		FG	J ^{π} : fed by strong primary γ in (n, γ); gammas to 5/2 ⁺ , 3/2 ⁺ and 3/2 ⁻ levels. J ^{π} =3/2 ⁻ is suggested by 1976Ca25.
1438.8 <mark>&</mark> 24	31/2 ⁺ @		С	
1444 <i>3</i>			D	
1465 3			D	
1491.2 8	$1/2^{-}, 3/2^{-}$		DF	J^{π} : fed by strong primary γ in (n,γ) .
1516.6 8	(3/2)		FG	J [*] : fed by strong primary γ in (n,γ) ; possibly feeds $(5/2^+)$ level.
1627.6° 25	33/2+ @		C	
$1.7 \times 10^{3} 3$		46 ns <i>13</i>		%SF=100
				Additional information 1. No other decay observed. Delayed gammas from this isomer were searched
				for by 1974Br05 following 242 Pu(n,F γ) reaction. No gammas were found from the isomer.
				Assignment: ²⁴² Pu(d,p) (1969La14,1970Vi05).
				E(level): recommended by 1980Bj02.
				1972We09 deduced E(level)=1.8 MeV from ²⁴² Pu(n,F) cross sections

²⁴³Pu Levels (continued)

E(level) ^{†‡}	J ^{π#}	XREF	Comments
			measured by 1971Au06; E(level)=3.2 +0.6-0.2 MeV and E(level)=3.6 MeV were deduced by 1969Ja01 and by 1971Be12, respectively, from average level spacings observed in their ²⁴² Pu(n,F) data. Theoretical calculations: E(level)=2.08 MeV (1972We09), 2.45 MeV (1990Bh02). T _{1/2} : from unweighted average of measured values of: 33 ns (1970Po01: reevaluated measurement of 1969La14) and 58 ns <i>11</i> (1970Vi05).
1824 <mark>&</mark> 3	35/2 ⁺ @	С	
2030 ^{&} 3	37/2+@	С	
2243 ^{&} 3	39/2 ⁺ @	С	
2465 <mark>&</mark> 3	41/2+@	С	
2692 <mark>&</mark> 3	43/2 ⁺ @	С	
2929 <mark>&</mark>	45/2+ @	С	
3167 ^{&} 3	47/2 ^{+ @}	С	
3413 ^{&} 4	49/2 ^{+ @}	С	
3656 <mark>&</mark> 4	51/2+ @	С	
3901 ^{&} 4	53/2 ⁺ @	С	
4142 ^{&} 4	55/2 ⁺ @	С	
4384 ^{&} 4	57/2+ @	С	
4625? ^{&} 4	$(59/2^+)^{@}$	С	
(5034.2 26)	$1/2^{+}$	F	

[†] From least square fit of adopted γ energies and levels observed in (d,p), (d,t) reactions except as noted.

[‡] In addition to the 46-ns isomer, 1974Br05 suggests the existence of a longer-lived isomer. From systematics they predict $T_{1/2} \approx 10 \ \mu$ s. A spontaneously fissioning isomer with half-life in the 10- μ s range was searched for, but not observed, by 1976Br38 through ²⁴⁴Pu(n,2n) E(n)=14 MeV reaction.

[#] Assignments derived from (d,p), (d,t) reactions are based on ratios of cross sections measured at 90° and 150°; on ratios of (d,p) to (d,t) cross sections; on comparison of relative cross sections with those expected "signatures" for various band members; and on systematics of Nilsson orbital. J^{π} assignments from other reactions are indicated in the comments and in the # footnote. [@] From band member assignments in ²⁴⁴Pu(²⁰⁸Pb,²⁰⁹Pb γ).

^e From band member assignments in ²⁻¹Pu(²⁰⁰Pb,²⁰⁹Pl

- & Band(A): 7/2[624] band. α =6.2.
- ^{*a*} Band(B): 5/2[622] band. $\alpha = 6.6$.
- ^b Band(C): 1/2[631] band. $\alpha = 7.2$.
- ^c Band(D): 9/2[734] band.
- d Band(E): 1/2[620] band.
- ^e Band(F): 7/2[613] band.
- f Band(G): K=3/2 band.
- ^g Band(H): 1/2[761] band.
- ^h Band(I): 3/2[622] band.
- ^{*i*} Band(J): 1/2[501] band.
- ^j Band(K): 3/2[631] band.

						γ (²⁴³ Pt	1)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α [@]	Comments
58.13	9/2+	(58.1)		0.0	7/2+			E_{γ} : γ transition has not been observed. E_{γ}
124.8	11/2+	125	100	0.0	7/2+	[E2]	5.81	is from level energy difference. $\alpha(K)=0.1664\ 24;\ \alpha(L)=4.09\ 6;\ \alpha(M)=1.146\ 16$
207.1	13/2+	149.0	100	58.13	9/2+	[E2]	2.75	$\alpha(N)=0.315 \ 5; \ \alpha(O)=0.0743 \ 11; \\ \alpha(P)=0.01191 \ 17; \ \alpha(Q)=5.28\times10^{-5} \ 8 \\ \alpha(K)=0.197 \ 3; \ \alpha(L)=1.85 \ 3; \ \alpha(M)=0.518 \ 8 \\ \alpha(N)=0.1423 \ 20; \ \alpha(O)=0.0336 \ 5; \\ \alpha(D)=0.0336 \ 5; \\ \alpha(D)=0.036 \ $
287.46	5/2+	229.3 2	1.8 4	58.13	9/2+	[E2]	0.518	$\alpha(P)=0.00542 \ 8; \ \alpha(Q)=2.98\times10^{-3} \ 5 \\ \alpha(K)=0.1223 \ 18; \ \alpha(L)=0.288 \ 5; \\ \alpha(M)=0.0797 \ 12 \\ \alpha(N)=0.0219 \ 4; \ \alpha(O)=0.00519 \ 8;$
		287.4 3	100 14	0.0	7/2+	M1	1.344	$\alpha(P)=0.000856 \ 13; \ \alpha(Q)=8.66\times10^{-6} \ 13$ $\alpha(K)=1.063 \ 16; \ \alpha(L)=0.211 \ 3;$ $\alpha(M)=0.0513 \ 8$ $\alpha(N)=0.01396 \ 20; \ \alpha(O)=0.00347 \ 5;$ $\alpha(P)=0.000660 \ 10; \ \alpha(Q)=4.31\times10^{-5} \ 7$
298.8	$15/2^{+}$	174	100	124.8	$11/2^+$			
333.21	7/2+	275.1 2	100 19	58.13	9/2+	[M1]	1.517	$\alpha(K)=1.200 \ 17; \ \alpha(L)=0.239 \ 4;$ $\alpha(M)=0.0580 \ 9$ $\alpha(N)=0.01577 \ 23; \ \alpha(O)=0.00392 \ 6;$ $\alpha(D)=0.000746 \ 14; \ \alpha(O)=4.87\times10^{-5} \ 7$
		333.0 10	64 28	0.0	7/2+	[M1]	0.895 15	$\begin{array}{l} \alpha(\mathrm{K}) = 0.000740 \ 11, \ \alpha(\mathrm{Q}) = 4.87 \times 10^{-7} \\ \alpha(\mathrm{K}) = 0.708 \ 12; \ \alpha(\mathrm{L}) = 0.1403 \ 23; \\ \alpha(\mathrm{M}) = 0.0341 \ 6 \\ \alpha(\mathrm{N}) = 0.00927 \ 16; \ \alpha(\mathrm{O}) = 0.00231 \ 4; \end{array}$
383.64	(1/2 ⁺)	96.2 2	100	287.46	5/2+	[E2]	18.9 4	α (P)=0.000439 8; α (Q)=2.86×10 ⁻⁵ 5 α (L)=13.72 24; α (M)=3.84 7 α (N)=1.056 18; α (O)=0.249 5; α (P)=0.0396 7; α (Q)=0.0001353 22
402.6	9/2-	278.0 8	4.7 10	124.8	11/2+	[E1]	0.0488 8	B(E2)(W.u.)=0.116 <i>11</i> α (K)=0.0385 <i>6</i> ; α (L)=0.00777 <i>12</i> ; α (M)=0.00188 <i>3</i> α (N)=0.000509 <i>8</i> ; α (O)=0.0001242 <i>20</i> ;
		344.5 5	≈1.8	58.13	9/2+	[E1]	0.0307	$\alpha(P)=2.23\times10^{-5} 4; \ \alpha(Q)=1.143\times10^{-6} 18$ $\alpha(K)=0.0244 4; \ \alpha(L)=0.00476 7; \alpha(M)=0.001152 17$ $\alpha(N)=0.000311 5; \ \alpha(O)=7.62\times10^{-5} 11; $
		402.6 3	100 9	0.0	7/2+	E1	0.0222	$\alpha(P)=1.383\times10^{-5} 20; \ \alpha(Q)=7.41\times10^{-7} 11$ $\alpha(K)=0.01774 25; \ \alpha(L)=0.00338 5;$ $\alpha(M)=0.000816 12$ $\alpha(N)=0.000221 4; \ \alpha(O)=5.41\times10^{-5} 8;$
404.0	$17/2^{+}$	196.9	100	207 1	13/2+			α (P)=9.88×10 ⁻⁶ 14; α (Q)=5.46×10 ⁻⁷ 8
518.9	$19/2^+$	220.1	100	298.8	$15/2^+$			
625.7	$(1/2^+)$	233.9 6	5.0 16	392.1	$(3/2^+)$			
616 0	21/2+	242.0 2	100 19	383.64	$(1/2^+)$			
653.8	$(3/2^+)$	242.0	100	392.1	$(3/2^+)$			
677.2	$(5/2^+)$	284.4 ^{&} 3	100 40	392.1	$(3/2^+)$			
	~ / /	343.9 <mark>&</mark> 2	<130 [#]	333.21	7/2+			
704.0	(3/2-)	416.5 2	100	287.46	5/2+			
783.8	23/2+	264.9	100	518.9	19/2+			
/90.7	(3/2 ⁻)	343.9 2 407.1 <i>3</i>	<139 ^m 100 12	446.8 383.64	$(5/2^+)$ $(1/2^+)$			

Continued on next page (footnotes at end of table)

γ ⁽²⁴³Pu) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Comments
809.5	1/2+,3/2	426.0 6	≤29 [#]	383.64	$(1/2^+)$	
813.76	3/2+	522.1 <i>3</i> 159.2 <i>13</i> 480.6 <i>3</i> 526.2 <i>3</i>	$\leq 100^{\#}$ 27 11 31 4 100 11	287.46 653.8 333.21 287.46	5/2 ⁺ (3/2 ⁺) 7/2 ⁺ 5/2 ⁺	
845.5	(5/2+)	813.8 2 558.0 3 787.5 8 844.3 ^{&} 8	96 10 100 11 34 17 $\leq 26^{\#}$	0.0 287.46 58.13 0.0	7/2+ 5/2+ 9/2+ 7/2+	Large δ should be expected, since M1 transition is K
873 7	$(1/2^{-})$	210 g& 3	100	653.8	$(3/2^{+})$	forbidden.
905.7	$(1/2^{-})$ $(1/2^{-})$	513.6 3	100 12	392.1	$(3/2^+)$ $(3/2^+)$	
		522.1 3	≤34 [#]	383.64	$(1/2^+)$	
933.0	$25/2^+$	286.2	100	646.8	$21/2^+$	
948.1	(3/2)	501.2 5 555.7 5	59 7 51 <i>17</i>	446.8 392.1	$(3/2^+)$ $(3/2^+)$	
001.0	(5.0+)	564.7 4	100 11	383.64	$(1/2^+)$	
981.0	$(5/2^{+})$	533.9 <i>4</i> 589.1.3	80 <i>16</i> 100 <i>12</i>	446.8 392 1	$(5/2^+)$ $(3/2^+)$	
		648.8 ^{&} 8	<43 [#]	333.21	$(3/2^{+})$ $7/2^{+}$	
		693.5 7	32 12	287.46	5/2+	
1091.3	27/2+	307.5	100	783.8	$23/2^+$	
1130.2	$(1/2^+, 3/2)$	426.0 6	≤38 ‴	704.0	$(3/2^{-})$	
		683.4 <i>4</i> 738 2 3	≤53" 79.9	446.8 392 1	$(5/2^+)$ $(3/2^+)$	
		746.4 3	100 11	383.64	$(1/2^+)$	
1176.5	3/2+,5/2+	385.7 3	13.5 23	790.7	(3/2 ⁻)	
		551.7 × 5 730.1 7	6.7 <i>18</i> 5.4 <i>18</i>	625.7 446.8	$(1/2^+)$ $(5/2^+)$	
		844.3 ^{&} 8 889.1 6 1176 5 5	≤9.9 [#] 100 <i>14</i> 52 <i>11</i>	333.21 287.46 0.0	7/2 ⁺ 5/2 ⁺ 7/2 ⁺	
1213	$(5/2^{-})$	879.8 ^{&} 10	75 35	333.21	7/2+	
		925.3 <mark>&</mark> 10	100 50	287.46	5/2+	
1261.1	29/2+	328.1	100	933.0	$25/2^+$	
1301.7	1/2,3/2	648.8 ^{&} 8 676.0 <i>3</i> 918.0 <i>10</i>	≤37 [#] 100 <i>10</i> 43 <i>16</i>	653.8 625.7 383.64	$(3/2^+)$ $(1/2^+)$ $(1/2^+)$	
1367.9	1/2,3/2	663.9 6	100 16	704.0	$(3/2^{-})$	
1387.4	3/2+	714.7 [∞] 11 976.0 12 439.4 3	31 <i>16</i> 84 <i>42</i> 93 <i>14</i>	653.8 392.1 948.1	$(3/2^+)$ $(3/2^+)$ $(3/2^-)$	
		683.4 <i>4</i> 1053.8 <i>10</i>	≤107 [#] 100 <i>38</i>	704.0 333.21	(3/2 ⁻) 7/2 ⁺	
1420.5	$(3/2^+)$	716.9 ^{&} 5	61 13	704.0	$(3/2^{-})$	
		1028.4 ^{&} 10	≈39	392.1	$(3/2^+)$	
1424 5	1/0+ 2/2	1087.1° 8	100 52	333.21	7/2+	
1434.7	1/2 ⁺ ,3/2	625.2 ^{cc} 2 644.2 4 757.5 4 781.1 ^{&} 12	100 <i>11</i> 38 9 44 8 25 <i>1</i> 7	809.5 790.7 677.2 653.8	$1/2^+, 3/2$ $(3/2^-)$ $(5/2^+)$ $(3/2^+)$	

Continued on next page (footnotes at end of table)

$\gamma(^{243}Pu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
1434.7	$1/2^+.3/2$	1042.1 5	73 11	392.1	$(3/2^+)$	
1438.8	$31/2^{+}$	347.5	100	1091.3	$27/2^{+}$	
1516.6	$(3/2^{-})$	838.7 <mark>&</mark> 5	100	677.2	$(5/2^+)$	
1627.6	$33/2^+$	366.5	100	1261.1	$\frac{(0/2)}{29/2^+}$	
1824	$35/2^{+}$	384.9	100	1438.8	$31/2^{+}$	
2030	37/2+	402.4	100	1627.6	$33/2^{+}$	
2243	$39/2^{+}$	419.1	100	1824	$35/2^+$	
2465	$41/2^{+}$	434.9	100	2030	37/2+	
2692	$43/2^{+}$	449.2	100	2243	$39/2^{+}$	
2929	$45/2^{+}$	463.6	100	2465	$41/2^{+}$	
3167	$47/2^{+}$	475.0	100	2692	$43/2^{+}$	
3413	49/2+	484.5	100	2929	$45/2^{+}$	
3656	$51/2^{+}$	488.6	100	3167	47/2+	
3901	$53/2^{+}$	488.2	100	3413	49/2+	
4142	$55/2^{+}$	486.5	100	3656	$51/2^{+}$	
4384	$57/2^{+}$	482.5	100	3901	$53/2^{+}$	
4625?	$(59/2^+)$	482.9 <mark>&</mark>	100	4142	$55/2^{+}$	
(5034.2)	$1/2^{+}$	3517.4	92 14	1516.6	$(3/2^{-})$	
		3543.0	100	1491.2	$1/2^{-}, 3/2^{-}$	
		3599	≈93.3	1434.7	$1/2^+, 3/2$	Peak was broad (1976Ca25).
		3614	77 16	1420.5	$(3/2^+)$	
		3646.8	84 <i>13</i>	1387.4	3/2+	
		3666.4	25.8 40	1367.9	1/2,3/2	
		3733	23.8 60	1301.7	1/2,3/2	
		3857.5	5.2 18	1176.5	$3/2^+, 5/2^+$	
		3903.9	32.9 50	1130.2	$(1/2^+, 3/2)$	
		4085.5	60.1 <i>91</i>	948.1	$(3/2^{-})$	
		4128.6	48.0 <i>73</i>	905.7	$(1/2^{-})$	
		4220.6	76 12	813.76	3/2+	
		4225.0	39.7 79	809.5	$1/2^+, 3/2$	
		4243.0	35.3 54	790.7	$(3/2^{-})$	
		4330.0	86 <i>13</i>	704.0	$(3/2^{-})$	
		4356.9	12.7 20	677.2	$(5/2^+)$	
		4381.2	18.1 28	653.8	$(3/2^+)$	
		4587.4	16.5 26	446.8	$(5/2^+)$	
		4641.9	17.5 28	392.1	$(3/2^+)$	
		4650.9	6.2 12	383.64	$(1/2^+)$	

[†] From ²⁴²Pu(n, γ), ²⁴⁷Cm α decay, ²⁴²Pu(d, $p\gamma$) and ²⁴⁴Pu(²⁰⁸Pb,²⁰⁹Pb γ) data. [‡] From ²⁴⁷Cm α decay. Multipolarities in square brackets are from level scheme. [#] Branching of this doubly-placed gamma has not been determined experimentally.

^(a) Additional information 2.
 ^(b) Placement of transition in the level scheme is uncertain.

Legend

²⁴³₉₄Pu₁₄₉

 $^{243}_{94}\rm{Pu}_{149}$

Legend

- ►

9 $\frac{\frac{3/2^+}{1/2^+,3/2}}{(3/2^-)}$ 813.76 -6⁵ 809.5 790.7 1 416.5 100 | 23/2+ $| \frac{3g_{39}^{2}}{2g_{49}^{2}} + \frac{1}{2g_{49}^{2}} + \frac{1}{2g_{49}$ 783.8 8 $\left[\frac{2^{-1}}{2^{3}},\frac{$ (3/2-) 704.0 $\frac{(5/2^+)}{(3/2^+)}$ 677.2 * 653.8 $\frac{21/2^+}{(1/2^+)}$ 646.8 625.7 4 23*0, 10*0 19/2+ 518.9 007 6.361 1 Ş $(5/2^+)$ 446.8 17/2+ • 404.0 $\frac{3_{3,0}}{2_{2,1}} \left[\frac{3_{3,0}}{(M_1)} \right]_{0,1}^{-1}$ 8-8- $\frac{\frac{9/2^-}{(3/2^+)}}{(1/2^+)}$ 402.6 $\frac{1}{2} \left[\frac{3}{82_{3}} + \frac{1}{82_{3}} \right] \left[\frac{3}{82_{3}} + \frac{1}{82_{3}} + \frac{3}{82_{3}} + \frac{1}{82_{3}} \right] = \frac{1}{82_{3}} \left[\frac{1}{82_{3}} + \frac{1}{82_{3}} +$ * * ¥ <u>392.1</u> 383.64 0.33 μs 3 - 001 - 124 7/2+ 333.21 $\frac{15/2^+}{5/2^+}$ 298.8 | ¹⁴⁰¹⁽²31⁰) | ¹ 287.46 13/2+ 1 125 100 207.1 $11/2^+$ 124.8 *.* , *b* 9/2+ 58.13 7/2+ 0.0 4.956 h 3

²⁴³₉₄Pu₁₄₉

²⁴³₉₄Pu₁₄₉

	Band(E): 1/	/2[620] band			
	(7/2+)	741.8			
				Band(G): 1	K=3/2 band
				(3/2-)	704.0
	(5/2 ⁺)	677.2			
	(3/2+)	653.8			
			Band(F): 7/2[613] band		
	(1/2+)	625.7	(9/2+) 626		
Band(D): 9/2[734] band					
(15/2 ⁻) 595.3					

Band(C): 1/2[631] band

(9/2⁺) 564.5

 $\begin{array}{cccc} (7/2^+) & 450.1 \\ \hline (5/2^+) & 446.8 \end{array} & \begin{array}{cccc} 11/2^- & 455 \\ \hline \end{array}$

		9/2-	402.6
(3/2+)	392.1		•
(1/2+)	383.64		

Band(K):	3/2[631]	band
----------	----------	------

(9/2+) 1080

(5/2⁺) 981.0

		Band(I): 3/2	2[622] band			
		(9/2 ⁺)	954	Band(J): 1/2	[501] band	
				(3/2-)	948.1	
Band(H): 1/2[76	61] band					
(11/2 ⁻)	920.6					
				(1/2 ⁻)	905.7	
		(7/2+)	895.6			
(1/2-)	873.7					
		(5/2+)	845.5			
(7/2-)	834.4					
		3/2+	813.76			
(3/2-)	790.7					

²⁴³₉₄Pu₁₄₉