247 Cm α decay 1971Fi01

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013		

Parent: ²⁴⁷Cm: E=0.0; $J^{\pi}=9/2^{-}$; $T_{1/2}=1.56\times10^{7}$ y 5; $Q(\alpha)=5354$ 3; $\%\alpha$ decay=100.0 ²⁴⁷Cm-ground state configuration 9/2[734].

1971Fi01: α decay from enriched ²⁴⁷Cm measured with Au-Si surface barrier detector. γ - singles measured with a 4 cm³ co-axial Ge(Li) detector. $\alpha\gamma$ coincidences measured by the Au-Si detector and γ 's with a NaI(Tl) detector and Ge(Li) detector setup.

 $\alpha\gamma$: coincidences reported by 1971Fi01 are summarized on decay scheme.

²⁴³Pu Levels

E(level) [†]	Jπ‡	Comments
0.0	$7/2^+$ 9/2 ⁺	
124.8 7	$\frac{11}{2^+}$	
287.46 <i>19</i> 333.21 <i>24</i>	5/2+ 7/2+	
402.6 3	9/2-	
455 5	11/2-	E(level): From E α and Q α (²⁴ /Cm).

[†] From Adopted Levels, except as noted.

[‡] From Adopted Levels.

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\ddagger@}$	HF [#]		
4820 4	455	4.7 3	11.2 10		
4870 4	402.6	71.0 10	1.69 8		
4943 <i>4</i>	333.21	1.6 2	228 30		
4985 4	287.46	2.0 2	372 40		
5147 4	124.8	1.2 2	7.2×10 ³ 13		
5212 4	58.13	5.7 5	4.04×10 ³ 39		
5267 4	0.0	13.8 7	$3.83 \times 10^3 25$		

[†] From 1971Fi01. The original energies have been increased by 2 keV, as recommended by 1991Ry01, because of a change in calibration energy.

[±] From 1971Fi01. [#] $r_0(^{243}Pu)=1.4959$ 9, average of $r_0(^{242}Pu)=1.4954$ 10 and $r_0(^{244}Pu)=1.4963$ 8, is used in calculations.

[@] Absolute intensity per 100 decays.

$\gamma(^{243}\text{Pu})$

Relative intensities of 402.4, 346.0, 278.0 γ 's do not agree with those observed for analogous transitions in ²⁴⁵Cm. As pointed out by 1971Fi01, they are not in good agreement with the Alaga rule.

x-rays(Pu):	1971Fi0	1	
$E\gamma$	$I\gamma$		
99.6 3	1.30 15	$K\alpha_2$	x ray
103.8 3	2.1 2	$K\alpha_1$	x ray
117.0 3	0.80 13	$K\beta_1'$	x ray
120.5 4	≈ 0.3	$K\beta_2'$	x ray

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α &	Comments
(58.1 [@]) (125 [@]) (229.3 [@] 2)	0.036 10	58.13 124.8 287.46	9/2 ⁺ 11/2 ⁺ 5/2 ⁺	0.0 0.0 58.13	7/2 ⁺ 7/2 ⁺ 9/2 ⁺	[E2]	0.518	$\alpha(K)=0.1223 \ 18; \ \alpha(L)=0.288 \ 5; \ \alpha(M)=0.0797 \ 12 \ \alpha(N)=0.0219 \ 4; \ \alpha(O)=0.00519 \ 8; \ \alpha(P)=0.000856 \ 13; \ \alpha(Q)=8.66\times10^{-6} \ 13 \ I_{\gamma}: \ \text{obtained from } I(287\gamma)/I(229\gamma) \ \text{observed}$
(275.1 [@] 2) 278.0 8	3.4 7	333.21 402.6	7/2 ⁺ 9/2 ⁻	58.13 124.8	9/2 ⁺ 11/2 ⁺	[E1]	0.0488 8	$\alpha(K)=0.0385 \ 6; \ \alpha(L)=0.00777 \ 12; \\ \alpha(M)=0.00188 \ 3 \\ \alpha(N)=0.000509 \ 8; \ \alpha(O)=0.0001242 \ 20; \\ \alpha(D)=2 \ 23 \times 10^{-5} \ 4; \ \alpha(O)=1 \ 143 \times 10^{-6} \ 18$
287.5 7	2.0 3	287.46	5/2+	0.0	7/2+	M1	1.343 21	$\begin{aligned} \alpha(\mathbf{F}) = 2.25 \times 10^{-4} 4; \ \alpha(\mathbf{Q}) = 1.143 \times 10^{-1} 18 \\ \alpha(\mathbf{K}) = 1.062 \ 17; \ \alpha(\mathbf{L}) = 0.211 \ 4; \ \alpha(\mathbf{M}) = 0.0513 \\ 8 \\ \alpha(\mathbf{N}) = 0.01394 \ 22; \ \alpha(\mathbf{O}) = 0.00347 \ 6; \\ \alpha(\mathbf{P}) = 0.000660 \ 11; \ \alpha(\mathbf{Q}) = 4.30 \times 10^{-5} \ 7 \\ \text{Mult.:} \ \alpha(\mathbf{K}) \exp = 1.1 \ 3 \ \text{from K x-ray/I} \gamma \\ \text{observed in coincidence with } \alpha' \text{s feeding the 287- and 330-keV levels (1971Fi01).} \\ \mathbf{E}\gamma = 287.4 \ 2 \ \text{was measured in } ^{242}\text{Pu}(\mathbf{n}, \gamma). \end{aligned}$
(333.0 ^{<i>@</i>} 10) 346.0 8	≈1.3	333.21 402.6	7/2+ 9/2 ⁻	0.0 58.13	7/2+ 9/2+	[E1]	0.0305	$\alpha(K)=0.0242 \ 4; \ \alpha(L)=0.00471 \ 7; \ \alpha(M)=0.001141 \ 17 \ \alpha(N)=0.000308 \ 5; \ \alpha(O)=7.54\times10^{-5} \ 12; \ \alpha(P)=1.370\times10^{-5} \ 21; \ \alpha(O)=7.35\times10^{-7} \ 11$
402.4 5	72 6	402.6	9/2-	0.0	7/2+	Ε1	0.0222	$\begin{aligned} \alpha(K) = 0.0178 \ 3; \ \alpha(L) = 0.00338 \ 5; \\ \alpha(M) = 0.000817 \ 12 \\ \alpha(N) = 0.000817 \ 12 \\ \alpha(N) = 0.000221 \ 4; \ \alpha(O) = 5.42 \times 10^{-5} \ 8; \\ \alpha(P) = 9.89 \times 10^{-6} \ 14; \ \alpha(Q) = 5.47 \times 10^{-7} \ 8 \\ \text{E}\gamma = 402.6 \ 3 \ \text{was measured in} \ ^{242}\text{Pu}(n,\gamma). \\ \text{Mult.:} \ \alpha(K) \exp \le 0.032 \ 12 \ \text{from total K x} \\ \text{ray and K x ray expected from } 287\gamma. \\ \text{Experimental K-shell fluorescence yield of} \\ 0.972 \ 4 \ (1979\text{AhO1}) \ \text{was used in} \\ \text{calculations by evaluator.} \end{aligned}$

[†] From 1971Fi01, unless noted otherwise.
[‡] From 1971Fi01. Iγ's per 100 α decays.
[#] Multipolarities in square brackets are from level scheme.
[@] Expected γ, not observed in ²⁴⁷Cm α decay. Eγ's are from Adopted Gammas.
[&] Additional information 1.
^a Absolute intensity per 100 decays.

²⁴⁷Cm α decay 1971Fi01

²⁴³₉₄Pu₁₄₉