²⁴⁴Pu(pol t,α) **1979Fl02**

	Histor	'y	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013

1979F102: E(pol t)=17 MeV. Measurements at θ =15°, 20°, 30°, 40°, 50°, 60°. Enriched Pu oxide target with 102 μ g/cm². Energy resolution≈15 keV. Energy calibration using known levels in ²⁰⁵Tl.

 $Q(t,\alpha)=12405 \ 10$ was measured by 1979Fl02.

Mass excess=-59923 keV 10 was deduced by 1981FlZW.

²⁴³Np Levels

E(level) [†]	$J^{\pi \ddagger}$	S #	Comments
0.0			J=L-1/2 (1979F102).
			J^{π} : possibly 5/2 ⁻ or 9/2 ⁻ member of the 5/2[523] band (1979Fl02). Fit for $J^{\pi}=3/2^+$ is best, but due to the poor statistics associated with the weak nature of the state, other J=L-1/2 possibilities were considered; the 5/2[523] orbital is favored by systematics.
76	1/2+,3/2-	0.34,0.10	J^{π} : possibly 1/2 ⁺ bandhead of the 1/2[400] orbital, or 3/2 ⁻ member of the 1/2[530] band; another candidate for the 1/2 ⁺ , 1/2[400] state is the 295-keV level (1979Fl02).
105	$3/2^{-}, 1/2^{+}$	0.07,0.22	
175	7/2-,9/2+	0.04,0.04	J^{π} : Could be the 7/2 ⁻ member of the 1/2[530] band.
251	$5/2^{+}$	0.08	
295	$3/2^{-}, 1/2^{+}$	0.11,0.38	J^{π} : See 76-keV level.
330	3/2+	0.03	
380			
400	$(7/2^{-})$	0.007	
422	$(3/2^{-})$	0.004	
532	$(1/2^+)$	0.08	
580	$(9/2^+)$	0.009	
675	$(11/2^{-})$	0.08	
710			J^{π} : L+1/2.
772			J^{π} : L-1/2.
808			
853			J^{π} : L-1/2.
1044			J^{π} : L+1/2.
1128			
1173			
1268			
1391			
1430			

[†] Level energies are relative to the highest energy α group in the ²⁴⁴Pu(t, α) reaction; this peak was assumed by 1979Fl02 to correspond to the ground state of ²⁴³Np.

[‡] Deduced by 1979Fl02 from angular distribution of analyzing power. Strong configurations from Nilsson Model conform with experimental observations.

[#] S= $d\sigma/d\Omega(exp)/N\sigma_{(DWBA)}$; N=23 was used (1979Fl02). See 1979Fl02 for cross sections measured at θ =50°.