²⁴³₉₉Es₁₄₄

$^{247}\mathbf{Md}~\alpha$ decay (0.25 s) 2010An08

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013				

Parent: ²⁴⁷Md: E=0.0+x; $J^{\pi}=(1/2^{-})$; $T_{1/2}=0.25$ s 4; $Q(\alpha)=8764$ 10; % α decay=79 5

²⁴⁷Md-% α : from 2010An08. ²⁴⁷Md-T_{1/2}: from evaporation residue (ER)- α (t) in 2010An08. Other: 0.27 s 7 from ER-SF(t) in 2010An08.

 247 Md activity produced in the 209 Bi(40 Ar,2n) reaction with E(40 Ar)=187 MeV. Evaporation residues (ER) separated with the velocity filter SHIP and implanted into a position sensitive Si strip detector. Measured E α , I α , ce, ER- α , ER- $\alpha\gamma$, $\alpha\gamma$ coincidences, ER-a(t), ER-SF(t), Ey, Iy using an array of position sensitive Si detectors and an HPGe detector. Subset of results given in 2006An13.

²⁴³Es Levels

E(level)	J^{π}	Comments
0.0+y	$(3/2^{-})$	J^{π} : proposed configuration = 3/2[521].
0.0+z	$(1/2^{-})$	J^{π} : proposed configuration = 1/2[521], HF=2.5 from (1/2 ⁻) parent.
		E(level): z-y<150 keV as non-observation of coincidences between K x-rays and the 8783α suggests that energy
		difference between $(1/2)$ and $(3/2)$ states is lower than K shell binding energy of 146.5 keV.

α radiations

Εα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments
8660 20		17 5		$E\alpha$: tentative assignment based on measured T _{1/2} ≈0.28 s, in agreement with ²⁴⁷ Md isomeric state T _{1/2}
8783 20	0.0+z	83 5	2.5 5	State 1/2.

 † r₀(²⁴³Es)=1.487 20 is used to calculate the hindrance factor. This r₀ is the same value used for the 1.2-second ²⁴⁷Md α decay. [±] For absolute intensity per 100 decays, multiply by 0.79 5.