247 Cf α decay 1984Ah02

History

Author Literature Cutoff Date C. D. Nesaraja, E. A. Mccutchan NDS 121, 695 (2014) 30-Sep-2013

Parent: 247 Cf: E=0.0; J^{π} =(7/2+); $T_{1/2}$ =3.11 h 3; $Q(\alpha)$ =6495 15; $\%\alpha$ decay=0.035 5

²⁴³Cm Levels

E(level)	$J^{\pi \dagger}$	Comments		
0.0	5/2+			
95 16	(7/2+)	E(level): nonobservation of K x-rays in coincidence with α' s suggests that the level populated by the 6296-keV α has an energy less than the K-binding energy of curium (128 keV). A level at 133 keV 4 observed in the (d,t) reaction was tentatively assigned as the 7/2+, 7/2[624] state. This state is expected to be fed by the unhindered 6296-keV α transition from the probable 7/2[624] ground state of α' Cf. The level energy here is from Q(α)(α'		
154 <i>16</i>	$(9/2^+)$			

[†] From Adopted Levels.

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF [‡]
6238 6	154	5 1	15 5
6296 5	95	95 <i>3</i>	1.6 3

²⁴⁷Cf-T_{1/2}: from γ (t) of 294 γ emitted in the ε decay of ²⁴⁷Cf (1984Ah02).

 $^{^{247}}$ Cf- $\%\alpha$ decay: from ratio of measured α 's to Cm X-rays = 4.7x10⁻⁴ 5, taking K x-ray intensity of 72.3 per 100 247 Cf ε decays

 $^{^{247}}$ Cf activity from 246 Cm(α ,3n), E α =40 MeV followed by chemical and electromagnetic separation. Measured E α , I α with Au-Si surface barrier detector and E γ , I γ with planar Ge(Li) detector. No $\alpha\gamma$ or α -K x ray coincidences were observed.

[†] From 1984Ah02. The alpha intensities are per 100 alpha decays. ‡ $r_0(^{243}\text{Cm})$ =1.4902 *17*, average of $r_0(^{242}\text{Cm})$ =1.4953 *9* and $r_0(^{244}\text{Cm})$ =1.4851 *24*, is used in the calculations.

[#] For absolute intensity per 100 decays, multiply by 0.00035 5.