²⁴⁷Fm α decay (31 s) 2006He27

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013

Parent: ²⁴⁷Fm: E=0.0; $J^{\pi} = (7/2^+)$; $T_{1/2} = 31$ s *1*; $Q(\alpha) = 8258$ *10*; $\% \alpha$ decay=64.0

 247 Fm-T_{1/2}: from recoil- α (t) in 2006He27. Others: 29 s *1* (2004He28), 37 s +2*1*-*10* (1989He03) both earlier results by same first author as in 2006He27, 35 s *4* (1967Fl15).

²⁴⁷Fm-%α decay: from 2006He27. Other: ≥50% (1967Fl15).

2006He27: ²⁴⁷Fm activity from α decay chain of ²⁵⁵Rf produced in ²⁰⁷Pb(⁵⁰Ti,2n), E(⁵⁰Ti)=4.85 MeV/nucleon and α decay of ²⁵¹No produced in ²⁰⁶Pb(⁴⁸Ca,3n), E(⁴⁸Ca)=4.8 MeV/nucleon. Isotopes separated with the velocity filter SHIP and implanted into a position-sensitive 16-strip PIPS detector. Measured E α , I α , recoil- α coincidences, recoil- α (t), conversion electrons with the PIPS detector and E γ , I γ , $\gamma\gamma$ and $\alpha\gamma\gamma$ coincidences using a HPGe Clover detector. Early results presented in 2005KuZZ, 2004He28. Others: 1989He03, 1967Nu01, 1967Fl15.

243Cf Levels

E(level)	J^{π}	Comments
0.0 [†]	$(1/2^+)$	
≈7 [†]	$(3/2^+)$	E(level): from systematics of $3/2^+$ to $1/2^+$ spacings in the $1/2^+$ [631] band, E=7 keV 2 is extrapolated by 2006He27.
≈67 [†]	$(5/2^+)$	
≈149 [‡]	$(5/2^+)$	J^{π} : from systematics of the energy difference between the 7/2 ⁺ member and the 5/2 ⁺ bandhead of the 5/2 ⁺ [622] Nisson level.
≈193 [‡]	$(7/2^+)$	E(level): from 315-keV level – 122γ . Shown as ≈ 197 in Fig. 5 of 2006He27.
≈315 [#]	$(7/2^+)$	J^{π} : unhindered α decay from ²⁴⁷ Fm ground state with $J^{\pi} = (7/2^+)$ and configuration 7/2 ⁺ [624]; the same J^{π} and configuration are suggested.

[†] Proposed band based on 1/2⁺[631] Nilsson level.

^{\ddagger} Proposed band based on 5/2⁺[622] Nilsson level.

[#] Proposed bandhead of 7/2⁺[624] Nilsson level.

α radiations

1989He03 and 1967F115 both observe complex α structures. 1967F115 report $E\alpha$ =7870 50 with I α ≈70 and $E\alpha$ =7930 50 with I α ≈30, while 1989He03 report sum peaks of α groups with conversion electrons at E=8010 15 and 8060 15 with equal relative intensities. 2006He27 also observe a very broad distribution in α energies, however, through $\alpha\gamma$ and α -K x-ray coincidences, they establish that there is only a single α peak, which is significantly broadened due to summing with a number of different conversion electron energies.

Εα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments
7824 18	≈315	100	≈0.60	E α : Δ E=18 keV from 10 keV statistical and 15 keV systematic uncertainties combined in
				quadrature. Other: 7840 keV 20 (2004He28).

[†] $r_0(^{243}Cf)=1.49$ 2, extrapolated from r_0 systematics given in 1998Ak04.

[‡] For absolute intensity per 100 decays, multiply by 0.64.

					247 Fm α	decay (3	31 s) 2006He27 (continued)
	γ ⁽²⁴³ Cf)						
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
82.2 2	≈149	$(5/2^+)$	≈67	(5/2+)			
121.8 2	≈315	$(7/2^{+})$	≈193	$(7/2^+)$			
141.8 2	≈149	(5/2+)	≈7	(3/2 ⁺)	(M1)	14.00	$\begin{array}{l} \alpha(\mathrm{K}){=}10.88 \ 16; \ \alpha(\mathrm{L}){=}2.33 \ 4; \ \alpha(\mathrm{M}){=}0.573 \ 9 \\ \alpha(\mathrm{N}){=}0.1589 \ 24; \ \alpha(\mathrm{O}){=}0.0412 \ 6; \ \alpha(\mathrm{P}){=}0.00797 \ 12; \ \alpha(\mathrm{Q}){=}0.000469 \\ 7 \end{array}$
							α (K)exp=11 5 (2004He28).
166.6 2	≈315	(7/2+)	≈149	(5/2+)	(M1)	8.89	Mult.: from α (K)exp. α (K)=6.93 <i>10</i> ; α (L)=1.471 <i>22</i> ; α (M)=0.362 <i>6</i> α (N)=0.1002 <i>15</i> ; α (O)=0.0260 <i>4</i> ; α (P)=0.00502 <i>8</i> ; α (Q)=0.000295 <i>5</i> α (K)exp=6.7 <i>25</i> (2004He28). Mult.: from α (K)exp.

[†] From 2006He27, observed in coincidence with α decays. [‡] Additional information 1.

²⁴⁷Fm α decay (31 s) 2006He27

Decay Scheme

	UN	
(7/2+)	12:8 12:8 12:8	≈315
$\frac{(7/2^+)}{(5/2^+)}$	141 141 18 18 18 18 18 19 19 19	≈193 ~149
(5/2+)		~149
(3/2+)		≈7_
(1/2+)		0.0

 $^{243}_{98}{\rm Cf}_{145}$

(7/2 ⁺)	<u>0.0</u> 31 s <i>l</i>
$Q_{\alpha} = 8258 \ 10$ $^{247}_{100} Fm_{147}$	%α=64.0

<u>Εα</u>	<u>Iα</u>	<u>HF</u>	
7824	64.0	≈ 0.60	