Adopted Levels

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013

 $Q(\beta^{-})=-2300 SY; S(n)=7115 SY; S(p)=3403 4; Q(\alpha)=6874 4$ 2012Wa38

 $\Delta Q(\beta^{-})=114; \Delta S(n)=200 \ (2012Wa38).$

S(2n)=13485 syst 200; S(2p)=8823 4 (2012Wa38).

First identification: 1950Th52 in α particle bombardment of Americium, chemical separation.

Theoretical calculations:

2013Zd01: $T_{1/2}$ for α decay calculated with a phenomenological model based on Gamow theory with WKB approximation for Coulomb barrier penetration.

2012Ni16: α decay T_{1/2} and fine structure calculated with Multichannel cluster model.

2012Po01: calculated α decay T_{1/2} with a universal decay law using α -like R matrix theory.

2012Sa05,2011Sa40: calculated $T_{1/2}$ and α decay fine structure using Coulomb and proximity potential model.

2012Zh01: β_2 , β_4 , moment of inertia, and alignments calculated with a particle conserving method based on the cranked shell model.

2011Zh36: partial α decay T_{1/2} to members of favored band calculated with a microscopic quantum tunneling theory.

2010Ni02: $T_{1/2}$ and branching ratios calculated using generalized density dependent cluster model.

2008Do12: calculated binding energies with additional terms beyond standard Bethe Weizsacker formula.

2004Pa40: deformation parameters, pairing gap, and single particle energy levels calculated with a macroscopic-microscopic model.

2002Lo05: calculated binding energies, $Q(\alpha)$, pairing gap, ground state deformation and single-particle levels with a relativistic mean field approach.

1985Lo17,1978Po09: calculated spontaneous-fission half-life of ground state.

1984Ku05: systematic study of fission-barrier parameters.

1980Ka41: hindrance factors for alpha's from ²⁴³Bk were calculated with R-matrix method.

²⁴³Bk Levels

Cross Reference (XREF) Flags

A ²⁴⁷Es α decay (4.55 min)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	(3/2 ⁻)	4.6 h 2		$%ε+%β^+≈99.85$ (1953Hu60,1956Ch77); %α≈0.15 T _{1/2} : from 1950Th52. Others: 4.5 h <i>I</i> (1953Hu60), 4.5 h <i>3</i> (1956Ch77); note that both are unpublished reports.
				J ^{<i>n</i>} : analogy with ²⁻³ Bk suggests 3/2 ,3/2[521] assignment; see also footnote on J ^{<i>n</i>} of $(7/2^+)$, ≈18-keV level.
				Partial hair-life for spontaneous-fission decay calculated by 1985Lo17 and 1978Po09: log[$T_{1/2}$ (SF in years)] \approx 3.6 and \approx 5.0 from plots in 1985Lo17 and 1978Po09, respectively, yield spontaneous fission branchings \approx 1.3×10 ⁻⁵ % and \approx 5.1×10 ⁻⁷ %.
≈18 [‡]	$(7/2^+)^{\dagger}$		A	E(level): $\Delta E=20$ keV with level energy derived from Q α and E α . This allows the possibility of the (7/2 ⁺) state being the ground state, although systematics suggest the ground state is (3/2 ⁻).
67 [‡] 20	$(9/2^+)^{\dagger}$		Α	
131 [‡] 20	$(11/2^+)^{\dagger}$		Α	
≈2200		5 ns		%SF ≤ 100 T _{1/2} : from 1972Ga42. Assignment: ²⁴¹ Am(α ,2n) systematics (1972Ga42). Spontaneously fissioning shape isomer, only SF decay has been observed.

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

²⁴³Bk Levels (continued)

E(level)) J^{π}	T _{1/2}	XREF	Comments	
	_			E(level): 1972Vv07 deduced level energy from 241 Am(α .2n) excitation function and reaction	

G(level): 1972Vy07 deduced level energy from ²⁴¹Am(α ,2n) excitation function and reaction threshold; suggested E=2.2 MeV 2 as the best level energy.

[†] Hindrance factors for α decay from (7/2⁺) ²⁴⁷Es and the level spacings imply that these levels are probably members of a rotational band. From the unhindered character of the α transition (HF≈2.4) to the ≈18 keV level, the bandhead member should be the same state as that of the parent. Systematics of Nilsson states (see, for example, 1972E121) suggest either the 3/2[521] or the 7/2[633] orbital for ²⁴⁷Es g.s. If the α decay was to the 3/2[521] orbital, the band parameter would be 9.4 which would not fit the local trend. By assuming a rotational band built on the 7/2[633] state, the rotational band parameter of 5.7 is consistent with band parameters for 7/2[633] bands in the region.

[‡] Band(A): 7/2[633] band. α =5.7 for β =0.0.

Adopted Levels

Band(A): 7/2[633] band

(11/2⁺) 131

<u>(9/2+)</u> 67

<u>(7/2⁺)</u> ≈18

 $^{243}_{97}\mathrm{Bk}_{146}$