²⁴⁷Es α decay (4.55 min) 1989Ha27

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 121, 695 (2014)	30-Sep-2013				

Parent: ²⁴⁷Es: E=0.0+x; $J^{\pi} = (7/2^+)$; $T_{1/2} = 4.55 \text{ min } 26$; $Q(\alpha) = 7462 \ 20$; $\% \alpha \text{ decay} \approx 7.0$ ²⁴⁷Es-T_{1/2}: from α (t) in 1989Ha27. Others: 5.0 min 3 (1967Mi06), 4.7 min 3 (1973Es01).

 247 Es- $\%\alpha$ decay: estimated by 1967Mi06 from observed α yield and calculated total cross section for 238 U(14 N,5n).

1989Ha27: ²⁴⁷Es activity produced in the ²⁴⁹Cf(p,3n) reaction with E(p)=18 to 33 MeV and the ²³⁸U(¹⁵N,4n) reaction with

E(¹⁵N)=82 to 103 MeV. Reaction products transferred via He jet and collected onto a moving tape or a rotating wheel. Measured $E\alpha$, $I\alpha$, $\alpha(t)$ using Si(Au) surface barrier detectors. FHWM=27 to 30 MeV for the 7.275 MeV α -group of ^{211m}Po.

Others: 1973Es01, 1967Mi06.

²⁴³Bk Levels

E(level) [†]	Jπ‡	Comments
≈18 67 20 131 20	$(7/2^+)$ $(9/2^+)$ $(11/2^+)$	E(level): $\Delta E=20$ keV.

[†] Calculated from Q(α)=7462 from 2012Wa38 and the measured E α 's.

[‡] Hindrance factors for α decay from (7/2⁺) ²⁴⁷Es and the level spacings imply that these levels are probably members of a rotational band. From the unhindered character of the α transition (HF \approx 2.4) to the \approx 18 keV level, the bandhead member should be the same state as that of the parent. Systematics of Nilsson states (see, for example, 1972El21) suggest either the 3/2[521] or the 7/2[633] orbital for 247 Es g.s. If the α decay was to the 3/2[521] orbital, the band parameter would be 9.4 which would not fit the local trend. By assuming a rotational band built on the 7/2[633] state, the rotational band parameter of 5.7 is consistent with band parameters for 7/2[633] bands in the region.

α radiations

$E\alpha^{\dagger}$	E(level)	Ια ^{‡&}	HF ^{#@}	Comments
7213 5	131	2.0 7	≈37	
7275 3	67	12 2	≈11	
7323 1	≈18	86 4	≈2.4	$E\alpha$: other: 7320 30 from 1967Mi06 and 1973Es01.

[†] From 1989Ha27. The ²¹²Po α peak at 8784 MeV was used for energy calibration (E α =8784.86 12 is recommended by 1991Rv01).

^{\ddagger} Alpha intensities per 100 α decays, from 1989Ha27.

[#] $r_0(^{243}Bk)=1.493$ 7, average of $r_0(^{242}Cm)=1.4953$ 9 and $r_0(^{244}Cf)=1.490$ 13 is used in the calculations. [@] Because of the approximate value of $\%\alpha$ decay, the hindrance factors should be taken as approximate.

[&] For absolute intensity per 100 decays, multiply by $\approx 7 \times 10^{-2}$.