#### Adopted Levels, Gammas

| History         |                                 |                     |                        |  |  |  |
|-----------------|---------------------------------|---------------------|------------------------|--|--|--|
| Туре            | Author                          | Citation            | Literature Cutoff Date |  |  |  |
| Full Evaluation | C. D. Nesaraja, E. A. Mccutchan | NDS 121, 695 (2014) | 30-Sep-2013            |  |  |  |

 $Q(\beta^{-}) = -7.5 \ 17; \ S(n) = 6364.9 \ 14; \ S(p) = 4831.2 \ 16; \ Q(\alpha) = 5438.8 \ 10$  2012Wa38  $S(2n) = 11902.5 \ 14; \ S(2p) = 1.166 \times 10^{4} \ 7 \ (2012Wa38).$ 

Theoretical and Systematic studies:

2013Ta07: Partial  $T_{1/2}$  for cluster decay of <sup>243</sup>Am using semi-empirical model.

2012Ni16:  $\alpha$  decay T<sub>1/2</sub> for transitions from ground state to favored rotational bands using Multicluster Channel Model.

2012Ro34:  $T_{1/2}$  and fission barriers with a generalized liquid drop model.

2012Pr13: Maxwellian-averaged cross sections and their uncertainties.

- 2012Sa05: Partial  $T_{1/2}$ ,  $\alpha$ -branching ratio to individual residual states using CPPMDN (Coulomb and proximity potential model for deformed nuclei).
- 2012Ta10: Partial  $T_{1/2}$ , Q-values, branching ratios using a semi-empirical with the one-parameter model dependence on cluster radius.
- 2011He12: Compilation of  $T_{1/2}$ ,  $J^{\pi}$ , and energy for long lived isomers for Z≥82.
- 2011Zh36: Systematic analysis and calculated partial half life of  $\alpha$  decay to members of favored band. Accurate expressions are proposed for the evaluation of partial half-lives of these transitions based on microscopic quantum tunneling theory.
- 2010Ni02: Systematic analysis calculations of  $T_{1/2}$  and relative intensities of  $\alpha$  decay within the generalized density-dependent cluster model.
- 2009Mo18: Q $\varepsilon$ -values and fission barriers in the daughter nuclides using the macroscopic-microscopic finite-range liquid-drop model.

2007Oh07,2007Ro08,2004Ro01,1985Lo17: Spontaneous fission T<sub>1/2</sub>.

2003De17: Alpha-decay anisotropy.

2001YaZU,1992Gr16,1990Bh02,1987Gu03,1984Ku05,1984Oh09,1981Re06,

1980Ku14,1980Bj02,1976Ga11,1974Ba73,1974Ga41,1973Br04,1972We09: Fission-barrier parameters.

- 2000CaZU: Cross-sections for  $^{242}Am(n,\gamma)$  and  $^{242}Am(n,F)$  for E(n)<20 MeV.
- 1985Po12: Studied decay by heavy-ion emission and partial half-life for this mode.
- 1994Pi12,1984Ni04: Ternary fission with light particle emission.
- 1988Io05: Probability of pion decay relative to spontaneous fission.
- 1982Be59: Level densities.
- 1980Ka41: Hindrance factors for unhindered alpha transitions.
- 1980Bo10: Studied effects of nuclear deformation on the electron states and conversion coefficients.
- 1977Ra15: Q values.
- 1974Ba18, 1973Ra06, 1972El21: μ values.
- 1976Ch22, 1971Ko31: Single-particle level energies.
- 1971Vo13: Penetration matrix element for the 84-keV E1 transition.
- 1970Bo27: The M1 transition probabilities in the ground-state band.

Other Experimental studies:

- 2008PaZR: <sup>242</sup>Am(n,f): Preliminary measurement on a 47  $\mu$ g target using the Los Alamos Science Center, DANCE detector array (Detector for Advanced Neutron Capture Experiments). Fission tagging detector reduces gamma rays associated with the (n,f). (n, $\gamma$ ) data are barely visible over the background after subtracting gamma rays associated with fission.
- 2008BrZW: Cross section obtained for thermal capture and fission cross sections using the post-irradiation mass spectrometry analysis for  $^{242m}Am(n,\gamma)$  and the fission chamber measurements for  $^{242m}Am(n,f)$ . Measurements were performed at the High Flux Reactor of Laue Langevin Institut in Grenoble, France.
- 2003An18: The cross-sections for  $^{242}$ Am(n, $\gamma$ ), E=5-100 keV were analyzed.
- 2001Fi15,1999Bo08: The cross-section for  $^{242}$ Am(thermal n, $\gamma$ ) was measured. See also 1972Ih01 for measured effective cross-sections.

1997Li27,1996Li22: The hyperfine and nuclear quadrupole interactions were studied by optical spectral hole-burning technique.

1993Oh03: The excitation function and mass yields for proton induced fission with E(p)=10 *16*16 MeV incident energy were measured, and asymmetric fission-barrier height was deduced.

1986Al04: <sup>243</sup>Am( $\gamma$ ,F); E( $\gamma$ )=11.5 MeV: induced fission yields were measured; neutron and fission widths were deduced. 1981Wa05: Delayed neutron yields in  $^{242}$ Am(n,fission) were measured. 1981Be15: Neutron-induced fission cross sections relative to  $^{235}$ U were measured with E(n)=0.2 3030 MeV neutrons.

1978A133: <sup>243</sup>Am( $\gamma$ ,F); E( $\gamma$ )=100-1000 MeV: cross sections were measured and fissionability deduced.

 $\alpha$ : Additional information 1.

## <sup>243</sup>Am Levels

#### Cross Reference (XREF) Flags

|                        |                    |                         | A<br>B<br>C | $ \begin{array}{ccc} {}^{247}\text{Bk } \alpha \ \text{decay} & \text{D} & {}^{242}\text{Pu}({}^{3}\text{He,d}), (\alpha, t) \\ {}^{243}\text{Pu } \beta^{-} \ \text{decay} & \text{E} & {}^{243}\text{Cm } \varepsilon \ \text{decay} \\ \text{Coulomb excitation} & \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|--------------------|-------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(level) <sup>†</sup>  | $J^{\pi \ddagger}$ | T <sub>1/2</sub>        | XREF        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0#                   | 5/2-               | 7364 y 22               | ABCDE       | %α=100; %SF=3.7×10 <sup>-9</sup> 9<br>Q=+2.86 3; μ=+1.503 14<br>J <sup>π</sup> : spin measured from study of hyperfine structure of atomic spectral lines<br>(1954Co19); parity is from Nilsson orbital assignment which is from agreement<br>of measured μ with the calculated value.<br>$\mu$ ( <sup>243</sup> Am)=+1.503 14 was obtained by 1990Iz01 from<br>$\mu$ ( <sup>241</sup> Am)/ $\mu$ ( <sup>243</sup> Am)=1.052 7 and $\mu$ ( <sup>241</sup> Am)=+1.58 1 (1990Iz01); hyperfine<br>structure and isotope shift measurements by LASER spectroscopy. Compiled by<br>2011StZZ. Others: +1.61 4 (1966Ar04, 1956Ma31).<br>Q( <sup>243</sup> Am)=+2.86 3 from Q( <sup>241</sup> Am)/Q( <sup>243</sup> Am)=1.10 2 and Q( <sup>241</sup> Am)=+3.14 5,<br>measured by 1990Iz01. Compiled by 2011StZZ. Others: +4.2 13 (1956Ma31).<br>T <sub>1/2</sub> : T <sub>1/2</sub> =7357 y 23 was determined from relative activity method using a<br>value of T <sub>1/2</sub> ( <sup>241</sup> Am)=432.2 y 7 by 2007Ag02. Using the adopted<br>T <sub>1/2</sub> ( <sup>243</sup> Am)=7364 y 22. Others: 7370 y 40 (1968Br22), 7380 y 17<br>(1974Po17), 7360 y 42 (1980Ag05, 1986Ag01). Earlier measurements:<br>1953Di27, 1954As05, 1957Bu49, 1958Wa69, 1959Ba22, 1960Be10.<br>T <sub>1/2</sub> (SF)=2.0×10 <sup>14</sup> y 5 (1966Gv01). Other measurement: 3.3×10 <sup>13</sup> y 3<br>(1966Al23). Measurement of 1966Gv01 was recommended by 1989Ho24.<br>For a compilation and T <sub>1/2</sub> (SF) systematics, see 1997Ro12.<br>%α/%SF=2.66×10 <sup>10</sup> 50 was measured by 2002Sa53. This ratio yields<br>%SF=3.8×10 <sup>-9</sup> 7 which agrees well with the adopted branching of<br>%SF=3.7×10 <sup>-9</sup> 9, obtained from T <sub>1/2</sub> (total)=7364 y 22 and<br>T <sub>1/2</sub> (SF)=2.0×10 <sup>14</sup> y 5. |
| 42.20 <sup>#</sup> 22  | 7/2-               | $\approx 40 \text{ ps}$ | ABC         | $J^{\pi}$ : 42.2 $\gamma$ is M1+E2; energy fit to the band.<br>T <sub>1/2</sub> : from B(E2)=6.89 <i>10</i> in Coulomb Excitation and $\delta \approx 0.28$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 84.00 <sup>@</sup> 16  | 5/2+               | 2.34 ns 7               | AB D        | Q=4.1 12; $\mu$ =+2.9 2<br>$\mu$ value by Mossbauer spectroscopy (1986Sa10). Compiled by 2011StZZ.<br>Q value by Mossbauer spectroscopy (1989Ra17). Compiled by 2011StZZ.<br>J <sup><math>\pi</math></sup> : 84.0 $\gamma$ to 5/2 <sup>-</sup> is E1.<br>T <sub>1/2</sub> : From delayed $\beta^{-}$ -84 keV $\gamma$ coincidence measurement (1969Fr01) in<br><sup>243</sup> Pu $\beta$ -decay.<br>The resonance of the 84.0 $\gamma$ was observed, and from the measured isomeric shift,<br>$\Delta < r^{2} > / < r^{2} > = -9 \times 10^{-4} 3$ was calculated by 1969Ka17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 96.4 <sup>#</sup> 4    | 9/2-               |                         | ΒD          | J <sup><math>\pi</math></sup> : level is Coulomb excited; $\gamma$ 's to 5/2 <sup>-</sup> , 7/2 <sup>-</sup> states; energy fit to the band; ( <sup>3</sup> He,d), ( $\alpha$ ,t) reaction data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 109.22 <sup>@</sup> 17 | 7/2+               |                         | AB          | J <sup><math>\pi</math></sup> : $\gamma$ 's to 5/2 <sup>-</sup> , 7/2 <sup>-</sup> states; Alaga rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 143.39 <sup>@</sup> 24 | $(9/2^+)$          |                         | AB D        | J <sup><math>\pi</math></sup> : $\gamma$ 's to 7/2± states; ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 162.3 <sup>#</sup> 10  | $11/2^{-}$         |                         | С           | $J^{\pi}$ : Level is Coulomb excited; energy fit to the band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Continued on next page (footnotes at end of table)

#### <sup>243</sup>Am Levels (continued)

| E(level) <sup>†</sup>         | $J^{\pi \ddagger}$  | T <sub>1/2</sub> | XREF     | Comments                                                                                                                                                                                                                                  |
|-------------------------------|---------------------|------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 189.4 <sup>@</sup> 6          | $(11/2^+)$          |                  | AB       | $J^{\pi}$ : band member.                                                                                                                                                                                                                  |
| 238 <sup>#</sup> 1            | $13/2^{-}$          |                  | С        | $J^{\pi}$ : level is Coulomb excited; energy fit to the band.                                                                                                                                                                             |
| 244 <sup>@</sup> 2            | $(13/2^+)$          |                  | D        | $J^{\pi}$ : ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data.                                                                                                                                                                        |
| 265 <sup>&amp;</sup> 10       | 3/2-                |                  | A D      | J <sup><math>\pi</math></sup> : (M1+E2) $\gamma$ to 5/2 <sup>-</sup> level; ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data; $\alpha$ hindrance factor=1.14 in 3/2 <sup>- 247</sup> Bk decay.                                       |
| 300 <sup>&amp;</sup> 2        | $(5/2^{-})$         |                  | A D      | $J^{\pi}$ : ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data.                                                                                                                                                                        |
| 345 <sup>&amp;</sup> 1        | $(7/2^{-})$         |                  | A D      | $J^{\pi}$ : ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data.                                                                                                                                                                        |
| 383 2                         |                     |                  | D        |                                                                                                                                                                                                                                           |
| 407.1 5                       |                     |                  | В        |                                                                                                                                                                                                                                           |
| 423 5                         |                     |                  | D<br>D   |                                                                                                                                                                                                                                           |
| $46564^{a}18$                 | $7/2^{+}$           |                  | B D      | $XREF \cdot D(?)$                                                                                                                                                                                                                         |
| 100101 10                     | .,_                 |                  |          | $J^{\pi}$ : 381.7 $\gamma$ to 5/2 <sup>+</sup> state is M1; 356.4 $\gamma$ to 7/2 <sup>+</sup> is (M1+E2); 322.2 $\gamma$ to (9/2 <sup>+</sup> ) level.                                                                                   |
| 466 <sup>&amp;</sup> 5        | $(11/2^{-})$        |                  | D        | $J^{\pi}$ : ( <sup>3</sup> He,d) reaction data.                                                                                                                                                                                           |
| 532.4 <sup>a</sup> 3<br>586.5 | $(9/2^+)$           |                  | B D<br>D | $J^{\pi}$ : $\gamma$ 's to 5/2 <sup>+</sup> , (11/2 <sup>+</sup> ) states; ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data.                                                                                                         |
| $704^{a}$ 2                   | $(13/2^+)$          |                  | D        | $J^{\pi}$ : ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data.                                                                                                                                                                        |
| 724 4                         |                     |                  | D        |                                                                                                                                                                                                                                           |
| 933 4                         |                     |                  | D        |                                                                                                                                                                                                                                           |
| 977 3                         | (9/2 <sup>-</sup> ) |                  | D        | $J^{\pi}$ : 9/2 <sup>-</sup> ,7/2[514] configuration is suggested by 1970El07 from ( <sup>3</sup> He,d) and ( $\alpha$ ,t) reaction data.                                                                                                 |
| 1053 3                        |                     |                  | D        |                                                                                                                                                                                                                                           |
| 1123 3                        |                     |                  | D        |                                                                                                                                                                                                                                           |
| 11/4 3                        |                     |                  | ע        |                                                                                                                                                                                                                                           |
| $23 \times 10^3 2$            |                     | 55 /18 5         | D        | %SE<100                                                                                                                                                                                                                                   |
| 2.5/(10 2                     |                     | 5.5 µ5 5         |          | E(level): recommended by 1980Bj02.                                                                                                                                                                                                        |
|                               |                     |                  |          | Second minimum of the fission barrier was calculated: E=1.80 MeV (1972We09),                                                                                                                                                              |
|                               |                     |                  |          | 2.10 MeV 20 (1973Br04), 2.0 MeV (1987Gu03), 1.80 MeV (1990Bh02).                                                                                                                                                                          |
|                               |                     |                  |          | $T_{1/2}$ : weighted average of: 6.5 $\mu$ s 10 (1970Po01), 5.2 $\mu$ s 5 (1972Wo07), and 6                                                                                                                                               |
|                               |                     |                  |          | $\mu$ s 3 (19/3Na35). Other: 19/3Br04.                                                                                                                                                                                                    |
|                               |                     |                  |          | 267-keV $\gamma$ transition from the 3/2 <sup>-</sup> state in <sup>243</sup> Am to the ground state yielded negative results.                                                                                                            |
|                               |                     |                  |          | Assignment: <sup>243</sup> Am(d,pn) excit (1970Po01,1971Br39); <sup>244</sup> Pu(p,2n) excit (1972Wo07); <sup>242</sup> Pu(t,2n) excit (1972Br35).                                                                                        |
|                               |                     |                  |          | From comparison of their experimental and calculated excitation function for $^{243}\text{Am}(\gamma,\gamma')$ reaction, 1971Ga39 deduced that this shape isomer was populated predominantly from levels lying above the fission barrier. |
|                               |                     |                  |          | Cross-sections for populating the isomer via $^{243}$ Am(n,n') reaction were measured by 1971Ga35.                                                                                                                                        |
|                               |                     |                  |          | See 1980Bj02 for an extensive review of spontaneously fissioning isomers. See also 1977VaYN. Experimental searches for $\alpha$ and $\gamma$ decays from spontaneously fissioning isomers were reviewed by 1992Ma34.                      |

<sup>†</sup> From least square fit of adopted  $\gamma$  energies and levels observed in Coulomb excitation and (<sup>3</sup>He,d), ( $\alpha$ ,t) reactions.

<sup>‡</sup> Assignments derived from (<sup>3</sup>He,d), ( $\alpha$ ,t) reactions are based on comparison of experimental and theoretical spectroscopic factors, and on ( $\alpha$ ,t)/(<sup>3</sup>He,d) cross-section ratios which were used to obtain information on the L values.

<sup>#</sup> Band(A): 5/2[523] band member.  $\alpha = 6.0$ .

<sup>@</sup> Band(B): 5/2[642] band member. Abnormal value of band parameter,  $\alpha = 3.9$ , suggests strong Coriolis coupling. See 1969Fr01 for

## <sup>243</sup>Am Levels (continued)

calculated level energies including Coriolis interactions among the 5/2[642], 7/2[633], and 9/2[624] orbits.

& Band(C): 3/2[521] band member.  $\alpha = 6.7$ .

<sup>*a*</sup> Band(D): 7/2[633] band member.  $\alpha$ =7.4. See 1969Fr01 for discussion on Coriolis coupling with the 5/2[622] and 9/2[624] bands.

## $\gamma$ <sup>(243</sup>Am)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$ J                 | $\int_{f}^{\pi}$ Mult. <sup>‡</sup> | δ     | α                      | Comments                                                                                                                                                                                                                                                    |
|------------------------|----------------------|------------------------|------------------------|-------------------------|-------------------------------------|-------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42.20                  | 7/2-                 | 42.2 5                 | 100                    | 0.0 5/2                 | 2 <sup>-</sup> M1+E2                | ≈0.28 | ≈149                   |                                                                                                                                                                                                                                                             |
| 84.00                  | 5/2+                 | 41.8 2                 | 3.3 3                  | 42.20 7/2               | 2 <sup>-</sup> [E1]                 |       | 1.33 <i>3</i>          | $\alpha(L)=0.991 \ I9; \ \alpha(M)=0.252 \ 5;  \alpha(N)=0.0675 \ I3  \alpha(O)=0.0157 \ 3; \ \alpha(P)=0.00231 \ 5  \alpha(Q)=6.32\times10^{-5} \ I1  B(E1)(Wu)=2.6\times10^{-5} \ 3$                                                                      |
|                        |                      | 84.0 2                 | 100                    | 0.0 5/2                 | 2 <sup>-</sup> E1                   |       | 0.214 4                | $\begin{array}{l} \alpha(L)=0.1605\ 25;\ \alpha(M)=0.0397\ 6;\\ \alpha(N)=0.01072\ 17\\ \alpha(O)=0.00257\ 4;\ \alpha(P)=0.000422\ 7\\ \alpha(Q)=1.494\times10^{-5}\ 23\\ P(E1)(Wu)=0\ 7\times10^{-5}\ 3 \end{array}$                                       |
| 96.4                   | 9/2-                 | 54 1                   | ≤100                   | 42.20 7/2               | 2 <sup>-</sup> [M1+E2]              |       | 1.8×10 <sup>2</sup> 15 | $\begin{array}{l} \alpha(L)=1.0(0,11)=9.7\times10^{-1} \ 3^{-1} \ \alpha(M)=4.E1 \ 3; \\ \alpha(N)=10 \ 9 \\ \alpha(O)=2.4 \ 20; \ \alpha(P)=0.4 \ 3; \\ \alpha(O)=0.0037 \ 22 \end{array}$                                                                 |
|                        |                      | 96.4 <i>4</i>          | 60 10                  | 0.0 5/2                 | 2 <sup>-</sup> (E2)                 |       | 20.4 5                 | $\begin{array}{l} \alpha(Q) = 0.003722\\ \alpha(L) = 14.8 \ 4; \ \alpha(M) = 4.15 \ 10;\\ \alpha(N) = 1.15 \ 3\\ \alpha(O) = 0.274 \ 7; \ \alpha(P) = 0.0438 \ 11;\\ \alpha(O) = 0.000152 \ 4 \end{array}$                                                  |
| 109.22                 | 7/2+                 | (25.2 3)               |                        | 84.00 5/2               | 2+                                  |       |                        | $E_{\gamma}$ : $\gamma$ not observed. $E\gamma$ is from<br>level scheme in <sup>243</sup> Pu $\beta^-$                                                                                                                                                      |
|                        |                      | 67 1                   | 100 50                 | 42.20 7/2               | 2 <sup>-</sup> [E1]                 |       | 0.386 17               | $\alpha(L)=0.290 \ 13; \ \alpha(M)=0.072 \ 3; \ \alpha(N)=0.0194 \ 9 \ \alpha(O)=0.00463 \ 20; \ \alpha(P)=0.00074 \ 3 \ \alpha(O)=2.41 \times 10^{-5} \ 9$                                                                                                 |
|                        |                      | 109.2 2                | 70 7                   | 0.0 5/2                 | 2 <sup>-</sup> [E1]                 |       | 0.1083                 | $\begin{array}{l} \alpha(\text{L}) = 0.0813 \ 12; \ \alpha(\text{M}) = 0.0200 \ 3; \\ \alpha(\text{N}) = 0.00541 \ 8 \\ \alpha(\text{O}) = 0.001310 \ 20; \\ \alpha(\text{P}) = 0.000221 \ 4 \\ \alpha(\text{O}) = 8.52 \times 10^{-6} \ 13 \end{array}$    |
| 143.39                 | (9/2+)               | ≈34<br>101.3           |                        | 109.22 7/2<br>42.20 7/2 | 2+<br>2 <sup>-</sup>                |       |                        | E <sub>γ</sub> : γ was obscured by Kα <sub>2</sub><br>x-ray in the <sup>243</sup> Pu β- decay.<br>Energy is from level scheme.<br>Authors (1969Ho10) report<br>excess value of the observed<br>IKα <sub>2</sub> x-ray/ IKα1- x-ray to be<br>101 x intensity |
| 265                    | 3/2-                 | 265 10                 | 100                    | 0.0 5/2                 | 2 <sup>-</sup> (M1+E2)              |       | 1.1 8                  | $\alpha(K)=0.8 7; \ \alpha(L)=0.23 7; \alpha(M)=0.060 15; \ \alpha(N)=0.016 4 \alpha(O)=0.0041 11; \ \alpha(P)=0.00074 23 \alpha(Q)=3.E-5 3 E_{\gamma},I_{\gamma}: From 247Bk \alpha decay.$                                                                |

# $\gamma$ <sup>(243</sup>Am) (continued)</sup>

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | ${\rm E_{\gamma}}^{\dagger}$                                 | $I_{\gamma}^{\dagger}$                                         | $E_f$                              | $\mathbf{J}_{f}^{\pi}$                  | Mult. <sup>‡</sup> | α     | Comments                                                                                                                                                                                                                        |
|------------------------|--------------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|-----------------------------------------|--------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 407.1<br>465.64        | 7/2+               | 407.2 <i>5</i><br>322.3 2                                    | 100<br>4.8 <i>4</i>                                            | 0.0<br>143.39                      | 5/2 <sup>-</sup><br>(9/2 <sup>+</sup> ) | [M1]               | 1.071 | $\alpha$ (K)=0.845 <i>12</i> ; $\alpha$ (L)=0.1699 <i>24</i> ; $\alpha$ (M)=0.0414<br>6; $\alpha$ (N)=0.01131 <i>16</i><br>$\alpha$ (O)=0.00285 <i>4</i> ; $\alpha$ (P)=0.000544 <i>8</i> ;                                     |
|                        |                    | 356.4 2                                                      | 23.2 12                                                        | 109.22                             | 7/2+                                    | M1                 | 0.812 | $\alpha(Q)=3.45\times10^{-5} 5$<br>$\alpha(K)=0.641 9; \alpha(L)=0.1286 19; \alpha(M)=0.0313$<br>$5; \alpha(N)=0.00856 12$<br>$\alpha(Q)=0.00215 3; \alpha(P)=0.000412 6;$<br>$\alpha(Q)=0.00215 3; \alpha(P)=0.000412 6;$      |
|                        |                    | 381.6 2                                                      | 100 4                                                          | 84.00                              | 5/2+                                    | M1                 | 0.674 | $\alpha(Q)=2.61\times10^{-5} 4$<br>$\alpha(K)=0.532 8; \ \alpha(L)=0.1066 \ 15; \ \alpha(M)=0.0259$<br>$4; \ \alpha(N)=0.00709 \ 10$<br>$\alpha(O)=0.00178 \ 3; \ \alpha(P)=0.000341 \ 5;$<br>$\alpha(O)=2.16\times10^{-5} \ 3$ |
|                        |                    | 423.2 <sup>#@</sup> 2                                        | <0.04                                                          | 42.20                              | $7/2^{-}$                               |                    |       | a(Q)-2.10/10 5                                                                                                                                                                                                                  |
| 532.4                  | (9/2+)             | 405.75<br>343.05<br>388.93<br>423.2 <sup>#</sup> 3<br>448.75 | $\leq 0.04$<br>$\approx 11$<br>37 7<br>100 11<br>$\approx 1.8$ | 189.4<br>143.39<br>109.22<br>84.00 | 5/2 (11/2+) (9/2+) $7/2+ 5/2+$          |                    |       |                                                                                                                                                                                                                                 |

<sup>†</sup> From <sup>243</sup>Pu β<sup>-</sup> decay, unless otherwise noted.
<sup>‡</sup> From <sup>243</sup>Pu β<sup>-</sup> and <sup>247</sup>Bk α decays.
<sup>#</sup> Multiply placed.
<sup>@</sup> Placement of transition in the level scheme is uncertain.



 $^{243}_{95} \mathrm{Am}_{148}$ 

#### Adopted Levels, Gammas

| Band(D): 7/2[ | 633] band |
|---------------|-----------|
| memo          | er        |
| (13/2+)       | 704       |

|         | <b>(9/2</b> <sup>+</sup> ) | 532.4 |
|---------|----------------------------|-------|
|         |                            | •     |
| 1] band |                            |       |

| Band(C): 3/2[521]<br>member | band |      |        |
|-----------------------------|------|------|--------|
| (11/2 <sup>-</sup> )        | 466  | 7/2+ | 465.64 |

(7/2-) 345

|                                  |     |                                  |     | (5/2-) | 300 |  |
|----------------------------------|-----|----------------------------------|-----|--------|-----|--|
| Band(A): 5/2[523] band<br>member |     | Band(B): 5/2[642] band<br>member |     | 3/2-   | 265 |  |
| 13/2-                            | 238 | (13/2 <sup>+</sup> )             | 244 |        | ·   |  |



 $^{243}_{95} \mathrm{Am}_{148}$