242 Am ε decay (16.01 h)

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin, C. D. Nesaraja	NDS 186, 261 (2022)	31-Dec-2021

Parent: ²⁴²Am: E=0.0; $J^{\pi}=1^-$; $T_{1/2}=16.01$ h 2; $Q(\varepsilon)=751.1$ 7; % ε decay=17.0 3 ²⁴²Am- $Q(\varepsilon)$: From 2021Wa16.

²⁴²Pu Levels

E(level)	J^{π}	T _{1/2}
0.0	0^+	3.73×10 ⁵ y 2
44.542 <i>25</i>	2^+	160 ps 3

 ε radiations

E(decay)	E(level)	$I\varepsilon^{\dagger\ddagger}$	Log ft	Comments	
(706.6 7)	44.542	11.2 <i>23</i>	8.0 <i>1</i>	ε K=0.7255; ε L=0.20114 5; ε M+=0.07340 3	
(751.1 7)	0.0	5.8 <i>23</i>	8.4 <i>2</i>	ε K=0.7297; ε L=0.19819 5; ε M+=0.07211 2	

[†] I(ε to the 44 level=I(γ +ce 44 γ). I(ε to the gs=(17.0 3- I(γ +ce 44 γ).

[‡] Absolute intensity per 100 decays.

 $\gamma(^{242}\text{Pu})$

See 1955Ho67 for L x ray subshell energies and relative intensities. I[L x ray(Pu)]/I[L x ray(Cm)]=0.415 (cryst) 1955Ho67. I[L x ray(Pu)]/I[L x ray(Cm)]=0.587 (cryst) 1950Ok52.

The calculated K x ray and L x ray intensities from the decay scheme are I(K x ray)=11.9% 2 and I(L x ray)=5.2% 8.

Pu x-rays:

E(x-ray) 1980VyZZ	I(x-ray) 1980VyZZ ×	(%) 1955Ho67 #	
17.35	11 2	5.1	L x ray
99.552			K α_2 x ray
103.761			$K\alpha_1$ x ray
117.3			K eta_1' x ray
120.5			$K\beta_2'$ x ray
	11.7 17	(11.7)	Total K x ray

×Intensities were given relative to $I\gamma(44.54\gamma)=0.015$ 3. # Normalized by the evaluators to I(K x-ray)=11.7; I(L x ray)/I(K x ray)=37/85 was given by 1955Ho67

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\dagger}	Comments
44.542 25	0.015 3	44.542	2+	0.0 0+	E2	748 11	α (L)=543 8; α (M)=151.5 22 α (N)=41.6 6; α (O)=9.78 14; α (P)=1.530 22; α (Q)=0.00328 5 E _{γ} : From 1980VyZZ. Others: 44.52 10 (1955Ba31), 44.50 6 (1956Al41), 44.55 (1960As05). The uncertainty in the

$^{242}\mathrm{Am}\,\varepsilon$ decay (16.01 h) (continued)

 $\gamma(^{242}\text{Pu})$ (continued)

 E_{γ} E_i (level)

Comments

- value of 1955Ba31 comes from 1956Ho54.
- I_γ: photons per 100 ²⁴² Am ε decays from 1980VyZZ. Other: 0.014 from work of 1955Ba31. These authors measured the total conversion electrons of the 44.5γ relative to the β intensity from ²⁴² Am β⁻ decay to be 154/1200, with no quoted uncertainty. This ratio, along with $\%\beta^-$ =83.0 gives Ice(44.5γ)=10.7 per 100 ²⁴² Am decays and thus I_γ=0.014, in excellent agreement with the value from 1980VyZZ. The authors of 1955Ho67 measured I[ce(L1)+ce(L2) 44.545γ from Am ε decay]:I(ce 42.13γ) from Am β⁻ decay)=360:1380. Mult.: From L2/L3=1.4 (1955Ho67). See also 1955Ba31.

[†] Additional information 1.

[‡] Absolute intensity per 100 decays.

²⁴²Am ε decay (16.01 h)

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

²⁴²₉₄Pu₁₄₈