	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin, C. D. Nesaraja	NDS 186, 261 (2022)	31-Dec-2021

Parent: ²⁴²Np: E=0.0; $J^{\pi}=(1^+)$; $T_{1/2}=2.2 \text{ min } 2$; $Q(\beta^-)=2.70\times 10^3 \ 20$; % β^- decay=100.0 ²⁴²Np-Q(β^-): From 2021Wa16.

²⁴²Pu Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 44.545 9 147.35 9 780 46 4	0^+ 2^+ 4^+ 1^-	3.73×10 ⁵ y 2 160 ps <i>3</i>	1154.6 2 1181.6 <i>I</i> 1401.1? <i>I</i> 1428 0 3	$(2^+,3^-)$ (2^+) $(0,1^+)$ (2^-)	1903.6 2 1949.8 2 1969.9 2 2246 1 4	$(1,2^+)$ $(1,2^+)$ $(1,2^+)$
832.3 2 992.6? 2 1039.2? 3	3^{-} (2 ⁺) (1,2 ⁺)		1428.0 <i>J</i> 1517.6 <i>I</i> 1871.5 <i>3</i> 1874.0 <i>I</i>	(2^{-}) (1^{-})	2331.3 1	(1,2) (2^+)

[†] From a least-squares fit to the $E\gamma$ data.

[‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(3.7 \times 10^2 \ 20)$	2331.3	1.5 5	4.9 11	av E β =104 65
$(4.5 \times 10^2 \ 20)$	2246.1	0.10 4	6.4 9	av E β =131 67
$(7.3 \times 10^2 \ 20)$	1969.9	0.78 25	6.1 5	av E β =224 71
$(7.5 \times 10^2 \ 20)$	1949.8	1.0 3	6.1 5	av E β =231 72
$(8.0 \times 10^2 \ 20)$	1903.6	0.78 25	6.3 5	av E β =247 72
$(8.3 \times 10^2 \ 20)$	1874.0	1.4 5	6.1 5	av Eβ=257 <i>73</i>
$(8.3 \times 10^2 \ 20)$	1871.5	0.18 7	7.0 5	av Eβ=258 73
$(1.18 \times 10^3 \ 20)$	1517.6	2.2 7	6.4 4	av Eβ=388 76
$(1.27 \times 10^3 \ 20)$	1428.0	0.39 14	7.3 <i>3</i>	av Eβ=421 77
$(1.30 \times 10^{3\#} 20)$	1401.1?	0.9 3	7.0 3	av Eβ=432 77
$(1.52 \times 10^3 \ 20)$	1181.6	1.6 5	7.0 <i>3</i>	av Eβ=516 79
$(1.55 \times 10^3 \ 20)$	1154.6	0.49 16	8.3 ¹ <i>u</i> 4	av Eβ=501 74
$(1.66 \times 10^{3#} 20)$	1039.2?	0.07 4	8.5 4	av E β =572 79
$(1.71 \times 10^{3\#} 20)$	992.6?	0.09 4	8.4 <i>3</i>	av Eβ=590 80
$(1.87 \times 10^3 \ 20)$	832.3	0.66 22	8.6 ¹ <i>u</i> 3	av E β =620 98
$(1.92 \times 10^3 \ 20)$	780.46	4.7 15	6.85 <i>23</i>	av E β =674 81
$2.7 \times 10^3 2$	44.545	≤88	≥6.1	av Eβ=972 82
				I β^- : See comment on the g.s. β^- group.
$2.7 \times 10^3 2$	0.0	≤88	≥6.1	av E β =990 82
				I β^- : I($\beta^-=83.5$ has been measured for the g.s. + 44.5 level).

[†] The fraction of all ²⁴²Np β^- decay to the 0⁺ ground state and the 2⁺, 44.5-keV level was determined by 1979Ha26 as 83% 5 from comparison of the total absolute intensity of the 2700-keV β with analogous spectrum of ¹⁴⁴Pr. All other I β 's are from intensity balances.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{242}Pu)$

Iv normalization: From $\sum(\gamma + \text{ce to gs} + 44 \text{ level}) = 17.5$ given that $\sum(\beta^- \text{ to gs} + 44 \text{ level}) = 83\%.5$.

Ν

${\rm E_{\gamma}}^{\ddagger}$	I_{γ} #&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$lpha^\dagger$	$I_{(\gamma+ce)}^{\&}$	Comments
(44.545 9)		44.545	2+	0.0	0+	E2	748 10		$\alpha(L)=543 \ 8; \ \alpha(M)=151.5 \ 21$ $\alpha(N)=41.6 \ 6; \ \alpha(O)=9.78 \ 14; \ \alpha(P)=1.529 \ 21;$ $\alpha(Q)=0.00328 \ 5$ E _y ,Mult.: The transition was not observed in 2.2 min β^- decay. E _y and multipolarity are from Adopted Gammas
(102.8 1)	1.04 10	147.35	4+	44.545	2+	[E2]	13.88 20	15.5 <i>15</i>	ce(L)/(γ+ce)=0.677 7; ce(M)/(γ+ce)=0.1895 34 ce(N)/(γ+ce)=0.0521 10; ce(O)/(γ+ce)=0.01228 25; ce(P)/(γ+ce)=0.00196 4; ce(Q)/(γ+ce)=7.10×10 ⁻⁶ 14 α(L)=10.07 15; α(M)=2.82 4 α(N)=0.775 11; α(O)=0.1827 27; α(P)=0.0291 4; α(Q)=0.0001056 15 E _γ ,I _(γ+ce) : Transition not observed in 2.2-min ²⁴² Np β ⁻ decay. E _γ is from Adopted Gammas and I(γ+ce) is from an intensity balance at the 147 level. I _γ is from I(γ+ce) and α.
620.6 <i>1</i> 647.4 <i>3</i> ^x 681 4 <i>4</i>	18 2 5.5 5 2 9 10	1401.1? 1428.0	$(0,1^+)$ (2^-)	780.46 780.46	1- 1-				
685.0.1	7.1	832.3	3-	147 35	4^{+}				
735.93 7	100	780.46	1-	44.545	2+	[E1]	0.00696 10		α (K)=0.00564 8; α (L)=0.000999 14; α (M)=0.0002391 33 α (N)=6.47×10 ⁻⁵ 9; α (O)=1.597×10 ⁻⁵ 22; α (P)=2.98×10 ⁻⁶ 4; α (O)=1.811×10 ⁻⁷ 25
780.44 5	53 1	780.46	1-	0.0	0+	[E1]	0.00626 9		$\alpha(K) = 0.00508 \ 7; \ \alpha(L) = 0.000895 \ 13; \ \alpha(M) = 0.0002139 \ 30$ $\alpha(N) = 5.79 \times 10^{-5} \ 8; \ \alpha(O) = 1.430 \times 10^{-5} \ 20;$ $\alpha(P) = 2.67 \times 10^{-6} \ 4; \ \alpha(O) = 1.636 \times 10^{-7} \ 23$
(787.8)	7.9 <i>CA</i>	832.3	3-	44.545	2+				E_{γ} : Obscured by the 789.6 γ of ²⁴⁰ Np. E_{γ} is from the level energy difference. I $_{\gamma}$: From the Alaga rule. From (n, γ): E=secondary γ' s, from the level scheme of 1972MaYS, I γ (787.8 γ) is shown as being slightly larger that I γ (685.0 γ), consistent with the value given by the Alaga rule.
813.6 <i>l</i> 948.0 2	24 2 1.7 5	2331.3 992.6?	(2 ⁺) (2 ⁺)	1517.6 44.545	(1 ⁻) 2 ⁺	[M1,E2]	0.033 20		α (K)=0.026 <i>16</i> ; α (L)=0.0054 <i>28</i> ; α (M)=0.0013 <i>7</i> α (N)=3.6×10 ⁻⁴ <i>18</i> ; α (O)=9.E-5 <i>4</i> ; α (P)=1.7×10 ⁻⁵ <i>9</i> ; α (O)=1.0×10 ⁻⁶ 6
1007.3 2	3.0 5	1154.6	$(2^+, 3^-)$	147.35	4+				u(y)=1.0×10 0
1034.2 2	5.5 10	1181.6	(2 ⁺)	147.35	4+				
$1039.2^{a} 3$ $1039.2^{a} 3$	<2.7 ^a <2.7 ^a	1039.2? 1871.5	(1,2+)	0.0 832.3	0^+ 3^-				I _{γ} : I γ <2.2 5 was measured for the doubly placed 1039 γ . I _{γ} : I γ <2.2 5 was measured for the doubly placed 1039 γ .

 $^{242}_{94}Pu_{148}\text{-}2$

242 Np β^- decay (2.2 min) 1979Ha26 (continued)

$\gamma(^{242}Pu)$ (continued)

E_{γ}^{\ddagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments	
1093.5 /	23.2	1874.0		780.46	1-		
1110.0 2	71	1154.6	$(2^+,3^-)$	44.545	2+		
1123.1 2	51	1903.6	(_ ,-)	780.46	1-		
1137.1 <i>1</i>	25 1	1181.6	(2^{+})	44.545	2^{+}	I_{γ} : 1979Ha26 point out that I γ relative to the other intensities deexciting the 1181.6 level is much	
						higher than expected based on the Alaga rule. They suggest that the 1137.1 γ might be a doublet with a second and stronger component as yet unplaced.	
^x 1172.0 3	2.9 6						
1181.6 2	3.0 5	1181.6	(2^{+})	0.0	0^{+}		
^x 1239.9 1	4.9 5						
1383.6 4	2.5 10	1428.0	(2^{-})	44.545	2^{+}		
1473.1 <i>1</i>	45 1	1517.6	(1^{-})	44.545	2^{+}		
1517.6 <i>1</i>	24 1	1517.6	(1^{-})	0.0	0^{+}		
1550.9 <i>1</i>	71	2331.3	(2^{+})	780.46	1-		
^x 1813.7 2	3.5 5						
1826.9 <i>3</i>	2.3 5	1871.5		44.545	2^{+}		
1859.2 <i>3</i>	11.0 5	1903.6		44.545	2+		
1874.5 <i>3</i>	51	1874.0		0.0	0^{+}		
1905.1 2	5.5 5	1949.8	$(1,2^{+})$	44.545	2^{+}		
1925.4 2	4.5 5	1969.9	$(1,2^+)$	44.545	2+		
1949.9 2	14.8 5	1949.8	$(1,2^{+})$	0.0	0^+		
1969.9 2	10.5 5	1969.9	$(1,2^+)$	0.0	0^{+}		
^x 1984.5 5	1.0 2						
^x 1992.1 3	4.0 2						
^x 2042.4 7	0.8 2						
^x 2061.1 10	0.6 2						
^x 2076.8 5	1.3 3						
2201.6 5	1.2 3	2246.1	$(1,2^{+})$	44.545	2^{+}		
2246.0 5	0.9 3	2246.1	$(1,2^{+})$	0.0	0^{+}		
^x 2357.9 5	1.0 5						
^x 2370.5 5	1.0 5						
[†] Addition [‡] From 19 [#] Relative	 [†] Additional information 1. [‡] From 1979Ha26. [#] Relative photon intensity from 1979Ha26. 						
^w From A	dopted Gai	nmas. Mult	ipolarities	in square l	orack	ets are from level scheme; they have not been determined experimentally.	
$^{\circ}$ For absolute intensity per 100 decays, multiply by 0.049 15.							

^{*a*} For absolute intensity per 100 decays, multipl ^{*a*} Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

ω

242 Np β^- decay (2.2 min) 1979Ha26

Decay Scheme

4