Adopted Levels, Gammas

		His	story			
	Туре	Author	Citation	Literature Cutoff Date		
	Full Evaluation	M. J. Martin, C. D. Nesaraja	NDS 186, 261 (2022)	31-Dec-2021		
$Q(\beta^{-})=664.3 4; S(n)=$ S(2n)=12185 14, S(2)	=5537.64 <i>10</i> ; S(p)= p)=11426 <i>17</i> (2021	44776.07 <i>19</i> ; Q(α)=5588.50 <i>25</i> Wa16).	2021Wa16			
For references on the	ory, refer to the NS	R file at the Web site given in	the abstract.			
For neutron resonance	es see 2014Fr03, 20	015No03 and references therein	l.			
		²⁴² Am	Levels			
		Cross Reference	e (XREF) Flags			
	A 2 B 2 C C D 2	⁴¹ Am(d,p) ⁴³ Am(d,t) Coulomb excitation ⁴¹ Am(n, γ) E=th:primary γ 's	E $241 \operatorname{Am}(n,\gamma)$ E=th:se F $241 \operatorname{Am}(n,\gamma)$:resonan G $241 \operatorname{Am}(n,\gamma)$:resonan H $242 \operatorname{Am}$ IT decay (14)	econdary γ 's aces 0-320 eV aces 0-149 eV 41 y)		
E(level) ^{<i>p</i>} $J^{\pi q}$	T _{1/2} XF	REF	Comment	ts		
0.0^{\dagger} 1 ⁻ 44.093 [†] 3 0 ⁻ 48.603 [#] 9 5 ⁻	16.01 h 2 AB I 141 y 2 ABC	DE H $\%\beta^-=83.0$ 3; $\%\varepsilon=17.0$ $\mu=+0.3854$ 17; Q=-2. μ : Atomic beam magn Q: Atomic beam magn $\%\beta^-,\%\varepsilon$: Weighted av $\%\varepsilon=18$ 1 (1969A120 $\%\beta^-+\%\varepsilon=100.$ Other 141-y isomer, 1960A $\%\alpha$: From 1969A120 ff J ^π : From 1961Ma27 (arrow arrow ar) 3; $%\alpha < 10 \times 10^{-5}$ 44 3 etic resonance (2019StZV hetic resonance (2021StZZ erage from $\%\beta^-/\epsilon=5.1$ 1 ()), and $\%\beta^-=82.7$ 3 (1972 ers: 1959Ba22 report $\%\epsilon=$ As05 report $\%\epsilon=16$ but dc or E α in the range 5000 t atomic-beam resonance). 7 retical one for the configu. Others: 16.02 h 2 (2005) ference 2), 16.07 h 4 (196) 1953Ke38 the authors stat ence level; however, in th on. In the work of 1969Al a weighted average of five is apparently a misprint sin ertainty of 0.14 h. 9.550 10; $\%$ SF<4.7×10 ⁻⁹ pectroscopy with Radioact letic resonance (2021StZZ) the adopted half-life and t is negligible for this calc half-life T _{1/2} (SF)>3.0×10 nded by 2000Ho27. d the magnetic moment ar ion, in disagreement with y 1979Ze05 from their res	2, 1966Ar04). 3, 1966Ar04). 4, 1959Ho02), 4.8 <i>I</i> (1969Ga17), 5Ga35) with the constraint that =16.4 <i>8</i> but associate it with the p not quote an uncertainty. o 5300. The experimental magnetic moment tration K=0,(π 5/2[523]- ν 5/2[622]). Ma90. Value is from author's thesis 59A120, 16.1 h <i>I</i> (1982Wi05). Note e in the abstract that the uncertainty e text the uncertainty is stated to be 20 the authors quote an uncertainty measurements given in their Table ince a weighted average of those ive Detection (2019StZV,1988Be30). 5,1988Be30). the partial <i>α</i> half-life. %IT is then ulation and no β^- has been observed. D ¹² y (1986Ze06). This partial is μ =-1.1 for the (π 5/2[523]+ ν the measured value. sults from two methods 139.7 <i>I</i> 8		

Continued on next page (footnotes at end of table)

E(level) ^p	Jπ q	XREF	Comments
			$T_{1/2}(\alpha)=3.10\times10^4$ y 8, a weighted average of 2.85×10^4 y 16 (1959Ba22) and 3.12×10^4 y 5 (1979Ze05). 1959Ba22 report $T_{1/2}=3.20\times10^4$ y 16. The evaluators have recalculated the author's value using the most recent values of the standards used by the author. $T_{1/2}(SF)=9.5\times10^{11}$ y 35 (1967Ca04), >3.0×10 ¹² y (1986Ze06), 2000Ho27 adopt the limit value.
52.714 [†] 7	3 ^{-w}	AB DE	J^{π} : E2 γ to 1 ⁻ .
75.820 [†] 3 99.285 9	2^{-w} 0 ⁺ ,1 ⁺ ,2 ⁺	AB DE E	J ^{π} : M1 γ to 1 ⁻ . J ^{π} : E1 γ to 1 ⁻ . An (M1+E2) γ from 1 ⁺ ,2 ⁺ rules out 0 ⁺ weakly.
100.1 7	6 ⁻ <i>r</i>	BC	
114	6 ^{-w}	ABC	
148	5^{-W}	AB	XREF: A(149)B(148).
149.707 [†] 7	4^{-W}	AB DE	XREF: A(149)B(148). J^{π} : M1 γ to 3 ⁻ .
168.387 9	1-,2-,3-	E	J^{π} : M1+E2 γ to 2 ⁻ .
172	7^{-r}	BC	
181.4 ^{<i>b</i>} 10	$(5^{+})^{r}$	C	
181.4+x ^b	$(7^{+})^{r}$	C	
190.6 [#] 5	7^{-W}	ABC	
197.5 7	V 2= 4=	D	
200.581 9 230.527 ^e 3	1^{+u}	DE	J^{n} : M1+E2 γ from 4 . γ to 2 . J^{π} : E1 γ 's to 0 ⁻ and 2 ⁻ members of the gs band. I γ (154 γ)/I γ (186 γ) and the non-observation of feeding to the 1 ⁻ member of the gs band agree with the Alaga rule for K=0 but not for K=1.
244.381 ^{<i>f</i>} 8	3-	AB DE	J ^{π} : M1+E2 γ to 4 ⁻ for the 244.381 level, and M1+E2 γ to 1 ⁻ for the 296.401 level, along with a connecting M1(+E2) γ , uniquely establish J^{π} =3 ⁻ and 2 ⁻ for the 244 and 296 levels, respectively.
247+x ^{<i>a</i>}	(8 ⁺) ^{<i>r</i>}	С	
254.3 [@]	8- <i>r</i>	С	
263 [†]	$(6^- \& 7^-)^W$	В	J ^{π} : In (d,t), 1976Gr19 treat this as a single level with $J^{\pi}=6^{-}$, while 1976KaZL consider it a doublet consisting of the 6 ⁻ and 7 ⁻ members of the band.
269.854 ^e 10	3^{+u}	DE	J^{π} : Fit to a $K^{\pi}=0^+$ band. See 1988Sa18 for details.
274.330 ⁸ 5	1-4	E	J^{π} : M1+E2 γ to 2 ⁻ . M1 γ to 1 ⁻ . Doubly placed M1 γ to 0 ⁻ .
2767	8^{-r}	C	
283.3 2	V	D	
289.028 ^J 13	4-	AB E	J^{π} : M1+E2 γ to 5 ⁻ . E2 γ to 2 ⁻ .
292.831 ^{<i>n</i>} 8	2^{-w}	AB DE	J^{π} : M1+E2 γ 's to 2 ⁻ and 3 ⁻ .
296.4018 8	2 V	E	J [*] : See argument for the 244.381 level.
311 832 10	1+ 2+	E E	I^{π} : E2 γ to 3 ⁺ M1+E2 γ to 1 ⁺
$323 4 + x^{b}$	$(9^+)^r$	<u> </u>	
323.41×10^{-3}	3-	ARDE	I^{π} · M1+F2 v/s to 2 ⁻ and 4 ⁻
330.740 ⁸ 8	3^{-u}	E	J^{π} : γ 's to 1 ⁻ and 3 ⁻ .
330.837 9	2-,3-	E	J^{π} : M1+E2 γ to 2 ⁻ . γ from 3 ⁺ .
341.593 ^e 14	$0^{+ u}$	E	J^{π} : γ 's to 1 ⁺ and 1 ⁻ . E2 γ from 2 ⁺ .
342 ^{<i>f</i>}	5^{-W}	AB	
342.805 10	2-,3-	E	J^{π} : E2 γ to 4 ⁻ . Doubly placed γ to 1 ⁺ ,2 ⁺ .
347 &	9- <i>r</i>	С	
355.715 ^j 10	2 ^{+<i>u</i>}	Е	J^{π} : E1+M2 γ 's to 3 ⁻ . I(27.8 γ)/I(62.9 γ) consistent with the Alaga rule for J=2, but not for J=3.

E(level) ^p	Jπ q	XREF	Comments
363.434 11	$2^+, 3^+$	DE	J^{π} : M1+E2 γ to 1 ⁺ ,2 ⁺ . M1+E2 γ from 3 ⁺ .
364.658 ^e 11	2+	Е	J^{π} : E2 γ to 0 ⁺ .
369.207 17	$1^{-}, 2^{-}$	DE	J^{π} : M1+E2 γ to 1 ⁻ .
372.490 <mark>8</mark> 9	4 ^{-<i>u</i>}	E	J^{π} : M1+E2 γ 's to 3 ⁻ .
373.3 [#] 7	9- <i>r</i>	С	
373.686 ^h 9	4^{-W}	AB E	J^{π} : M1+E2 γ to 3 ⁻ .
376.947 ^J 8	3 ^{+<i>u</i>}	DE	J^{π} : E1+M2 γ to 3 ⁻ .
388.112 ¹ 9	3+ <i>u</i>	E	J^{π} : E1 γ to 2 ⁻ .
397.147 10	2-,3-,4-	E	J^{π} : M1+E2 γ to 3 ⁻ .
400.521 ^k 9	1 ^{-<i>u</i>}	DE	J^{π} : M1+E2 γ to 2 ⁻ .
405.880 9	2 ⁻ ,3,4 ^{<i>u</i>}	E	J^{π} : γ to 3 ⁻ . Doubly placed γ 's to 3 ⁺ and 4 ⁻ .
405.933 ¹ 9	4 ^{+<i>u</i>}	E	
409 ^f	$(6^{-})^{W}$	В	
409+x ^a	$(10^{+})^{r}$	C	
417.746 ^e 15	$(4)^{+W}$	DE	J^{π} : M1+E2 γ to 3 ⁺ .
			The intense 5119.7-keV primary gamma in ²⁴¹ Am(thermal n, γ) reaction is assigned to feed this level, rather than the 418.12-keV level, since the 1 ⁺ , 2 ⁺ and 3 ⁺ members of the (π 5/2[642]- ν 5/2[622]) band are populated by strong primary gammas; whereas, the 3 ⁺ level of the (π 5/2[642]+ ν 1/2[631]) rotational band is not populated (the 418.12-keV level is the 4 ⁺ member).
418.084 ¹ 11	4 ^{+<i>u</i>}	E	J^{π} : γ' s to 3 ⁻ , 3 ⁺ , and 4 ⁻ .
419.085 ^k 9	2 ^{-<i>u</i>}	Е	J^{π} : M1 γ to 3 ⁻ .
420.651 13	$2^+, 3^+, 4^+$	E	J^{π} : M1+E2 γ to 3 ⁺ .
428.6 4	V	D	
434 ^h	(5 [−]) [₩]	AB	
442.385 ^j 8	5 ^{+<i>u</i>}	E	J^{π} : γ' s to 3 ⁺ , 4 ⁺ , and 4 ⁻ .
446.702 ^k 10	3- <i>u</i>	E	J^{π} : E1 γ to 2 ⁺ .
448.9 [@]	10 ⁻	С	
455.688 14	1-,2-,3-	E	J^{π} : M1+E2 γ from 2 ⁻ ,3 ⁻ . M1+E2 γ from 1 ⁻ ,2 ⁻ .
457.090 ¹ 11	5+ ^{<i>u</i>}	E	J^{π} : E1 γ to 4 ⁻ .
464.362 9	3-,4-	DE	J^{π} : M1+E2 γ to 4 ⁻ . E1+M2 γ to 3 ⁺ .
479 [‡]	10 ⁻	С	
483.640 ^k 11	4 ^{-<i>u</i>}	E	J^{π} : γ' s to 2 ⁻ and 5 ⁻ .
486 [†]	$(7^{-})^{W}$	В	
495.721 11	3+	E	J^{π} : E1+M2 γ to 4 ⁻ . γ to 2 ⁻ .
500 ⁿ	$(6^{-})^{W}$	В	
501.569 13	(3)-	E	J^{π} : M1+E2 γ to 2 ⁻ . (M1+E2) γ to 4 ⁻ .
502.04 <i>3</i>	1',2'	DE	J ^{\prime} : M1+E2 to 1 ^{\prime} . γ to 0 ^{\prime} .
505.4+x ⁰	$(11^+)'$	C _	
506.648 16	2^{+}	E	J ^{λ} : M1+E2 γ to 3 ⁺ . γ to 1.
506.964 13	$(3)^{+}$	E DE	J [*] : M1+E2 γ to 2 ⁺ . M1+E2 to (4) ⁺ .
533 815 12	2-	F	$J = M1 + E2 \gamma to 2 = \gamma to 3 = 4^{-1}$ $I^{\pi} = M1 + E2 \gamma to 1^{-1} = M1 + E2 \gamma to 3^{-1} 4^{-1}$
544.756 12	23-	Ē	J^{π} : M1 γ to 3 ⁻ .4 ⁻ . γ to 1 ⁻ .
559.790 13	2-	Ē	J^{π} : M1+E2 γ to 3 ⁻ . Doubly placed M1 γ to 1 ⁻ .
561 &	11- <i>r</i>	С	
568.215 9	4-	Е	J^{π} : E1 γ 's to 3 ⁺ and 5 ⁺ .
574.089 11	$(2,3,4)^{-}$	Е	J^{π} : M1+E2 γ to 2 ⁻ ,3 ⁻ ,4 ⁻ . M1 γ from (3) ⁻ .
581 ^h	$(7^{-})^{tw}$	В	
581? ^f	$(8^{-})^{t}$	В	
583.4 10	ν	D	

E(level) ^p	Jπ q	XREF	Comments
596.2 [#] 9 596.425 10	11- <i>r</i> 2 ⁻ ,3 ⁻ ,4 ⁻	C E	J^{π} : M1 γ to 3 ⁻ .
603+x? ^d 603.889 12	(3,4)+	C E	J^{π} : M1+E2 γ to (4) ⁺ . M1+E2 γ to 3 ⁺ .
608 $611+x^{a}$	$(12^+)^r$	B C	π M1, F2 (27 F1, M2 (1 ⁺)
621.527 <i>14</i> 626	² 1 ⁻ ,2 ⁻	DE DE R	J^{π} : M1+E2 γ to 3 . E1+M2 γ to 1 ⁺ . J^{π} : M1+E2 γ to 2 ⁻ . γ to 1 ⁺ .
628.523 <i>12</i> 630.291 <i>15</i>	3 ⁻ ,4 ⁻ ,5 ⁻ 2 ⁻ ,3 ⁻ ,4 ⁻	E DE	J^{π} : M1+E2 γ to 4 ⁻ . Doubly placed M1+E2 γ to 4 ⁻ . J^{π} : M1+E2 γ to 3 ⁻ .
640.2 <i>3</i> 644.3 <i>5</i>	v v	D D	
651.3 <i>5</i> 658	V	D B	
660.6 <i>4</i> 664.1 <i>5</i> 670.0 <i>7</i>	v v	D D D	
672.248 <i>10</i> 675.482 <i>12</i>	$(2,3,4)^-$ $(2,3,4)^+$	E E	J^{π} : M1 γ from (3) ⁻ . J^{π} : M1+E2 γ to (3) ⁺ .
677 ^h 681.894 <i>12</i>	(8 ⁻) ^w 3 ⁻	B DE	J ^{π} : M1 γ to 4 ⁻ . M1+E2 γ from 2 ⁻ .
682.7 [@] 689.3 5	12 ⁻ <i>r</i> v	C DE	
692+x? ^C 697	v	C B	
700.2 <i>5</i> 704.030 <i>14</i> 710.389 <i>11</i>	$1^{-}, 2^{-}, 3^{-}$ $1^{-}, 2^{-}, 3^{-}$	E E	J^{π} : M1+E2 γ to 1 ⁻ ,2 ⁻ . J^{π} : M1+E2 γ to 1 ⁻ ,2 ⁻ .
712.442 <i>13</i> 715.3 <i>3</i>	$2^{-},3^{-},4^{-}$	E D	J^{π} : M1+E2 γ to 3 ⁻ ,4 ⁻ ,5 ⁻ . E2 γ to 2 ⁻ .
721.3 <i>3</i> 722 [‡]	<i>v</i> 12 ⁻ <i>r</i>	D C	
724.4 <i>3</i> 727.4+x ^b	v (13 ⁺) ^r	D C	
731.225 <i>14</i> 734.8 5	$3^+, 4^+, 5^+$	E D	J^{π} : M1+E2 γ to 4 ⁺ .
759.4 <i>4</i> 766 9 3	v v v	D D D	
779.6 <i>3</i> 790	V	D D A	
794+x? ^d 795.7 4	v	C D	
796 ^h	(9 ⁻)	В	J ^{π} : 1976KaZL from their (d,t) data tentatively assign the 796 level as the 9 ⁻ member of the $K^{\pi}=2^{-}$ (π 5/2[523]- ν 1/2[631]) band.
802.4 <i>4</i> 814 ^{&}	v 13 ⁻ r	D C	
818.1 <i>3</i> 821	V	D AB	
823.2 <i>3</i>	V	D	

E(level) ^p	J ^π q	XREF	Comments
833		В	
846		В	
851.9 <i>3</i>	v	D	
852+x ^{<i>a</i>}	$(14^{+})^{r}$	С	
858.0 [#] 10	13 ⁻	C	
864.5 7	v	D	
873 006 ¹ 12	2^{-uw}	AR DE	I^{π} : M1+F2 or to 1 ⁻ M1+F2 or to 3 ⁻
883.8.4	v		\mathbf{J} . WIT+L2 \mathbf{y} to \mathbf{T} . WIT+L2 \mathbf{y} to \mathbf{J} .
896.6.3	v	D	
902.494^{m} 11	$(3)^{-uw}$	ARE	I^{π} · M1 γ to π =-
904+x	r	C	
906 199 ¹ 19	$(3)^{-u}$	DF	I^{π} . Doubly placed M1+F2 and F2 γ 's to π -
916	(\mathbf{J})	AR	J . Doubly placed with E_2 and E_2 y s to $\pi = -$.
919 5 4	v	D	
930.4.3	v	D	
934.6 4	v	D	
935		AB	
949.660 ¹ 14	$(4^{-})^{u}$	E	J^{π} : (E2) γ to (3 ⁻).
951	(.)	Α	
954 1@	14- <i>r</i>	C	
968.7.3	v	D	
974.9 ⁿ 5	$(3^{+})^{W}$	AB D	
978.3 <i>3</i>	v	D	
988.6+x ^b	$(15^{+})^{r}$	С	
994		AB	
1002‡	14- <i>r</i>	С	
1002.618^{l} 23	$(5^{-})^{u}$	F	I^{π} · M1 γ to 4 ⁻
10110	$(2^+)^{SW}$	AR	XREF A(1012)
1011? ⁿ	$(2^{+})^{SW}$	AB	XREF: A(1012).
$1024 + x^{d}$		C	
1029	S	R	
10490	$(3^+)^{W}$	B	
1066 ⁿ	$(5^+)^{W}$	AB	
1073	(-)	В	
1088		В	
1097 <mark>0</mark>	$(4^{+})^{W}$	В	
1103 <mark>&</mark>	15- <i>r</i>	С	
1119		AB	
1132+x ^{<i>a</i>}	$(16^{+})^{r}$	С	
1142		AB	
1151 ⁿ	$(6^+)^{W}$	В	
1151+x ^C		С	
1156.1 [#] 11	15 ⁻	С	
1161.97 <i>3</i>	1-,2-,3-,4-	E	J^{π} : M1 γ to 2 ⁻ ,3 ⁻ .
1162		В	
1170		AB	
1187		В	
1192		В	
1199		В	
1210		В В	
1227		B	
		-	

²⁴²Am Levels (continued)

E(level) ^p	J <i>π</i> q	T _{1/2}	XREF	Comments
1260.9 [@]	16- <i>r</i>		С	
1262			B	
1287 $1287 + x^{d}$	r		ь С	
1287.6+x? ^b 1300	(17 ⁺)		C B	
1316 [‡] 1325	16 ⁻ <i>r</i>		BC B	XREF: B(?).
1343			В	
1362 1380			B B	
1406			B	
1417	17- r		В	
$1426^{\circ\circ}$ $1434 + x^{\circ}$	17 '		c	
1443	$(10\pm)$		В	
1455+x?** 1455	$(18^{\circ})^{\circ}$		В	
1467			В	
1482 1482 8 [#] 12	17- r		в	
1482.8 12	17		В	
1519			В	
1562 $1587 \pm x^{2}d$			в	
$1599.0^{@}$	18- <i>r</i>		c	
1652 [‡]	18- <i>r</i>		C	
2200 80	$(2^+, 3^-)$	13.9 ms 2		%SF \approx 100; %IT=?; % α <0.005
				$\mu = -1.14 \ 8$ O=35.5 16
				Possible IT branch of this isomeric state was deduced from observation of a 2200 γ , tentatively assigned to the 13.9-ms isomeric state in ²⁴² Am. This branch is not considered as well established. Note that for I^{π} -2 ⁺ the
				2200 γ to the 1 ⁻ gs would have B(E1)(W.u.)=1.2×10 ⁻¹⁵ ×BR where BR is the branching ratio, and for J^{π} =3 ⁻ the 2200 γ would have
				B(E2)(W,u.)= $8.7 \times 10^{-12} \times BR$.
				(no α observed; 1965Le22, 1983WeZT); (I(α)/SF) \leq 0.015 (No 8500 α observed; 1973Be05); (I(α)/SF) \leq 0.00005 (1985AcZZ). Other
				measurement: 1963F108. See 1992Ma34 for a detailed review of all experiments done in search for α and γ decays from this isomeric state.
				T _{1/2} : The adopted value is a weighted average of the listed values excluding those of 1966Br23 and 1975Va21 which are outliers by Chauvenet's criteria. The measured half-lives and production methods are 13 ms 8: ²³⁸ U(80-110-MeV ¹⁶ O,x) (1962Po09). 12.6 ms <i>11</i> : ²³⁸ U(39.6-MeV α,p), 14 ms 2: ²⁴² Pu(19.8-MeV d,2n) 1963Fl08. 13.5 ms <i>12</i> : ²³⁸ U(92-119-MeV
				10 O,x), 238 U(117-MeV 20 Ne,x), 238 U(150-MeV 22 Ne,x) (1963Pe27).

14.0 ms 4: 242 Pu(7-12-MeV d,2n) (1965Fl04). 13.1 ms *10*: 243 Am(14-MeV n,2n) (1965Li05). 16.7 ms *15*: 242 Pu(12-MeV d,2n) (1966Br23). 14.0 ms 7: 243 Am(8-14.4-MeV n,2n) (1967Fl03). 14.0 ms 2: 242 Pu(12.5-MeV d,2n) (1968Er01). 10.2 ms 9: 241 Am(thermal n, γ) (1975Va21). 13.9 ms 5: 242 Pu(17-MeV ³H,3n) (1976We03). 16 ms 7:

Continued on next page (footnotes at end of table)

E(level) ^p	Jπ q	T _{1/2}	XREF	Comments
		1/2		 ²⁴³Am+²⁶Mg (1981VaZQ) Other T{1/2} measurements: 1973Be04,1981Ga25,1981Lu06. μ: Laser Resonance Spectroscopy with Radioactive Detection (2020StZV, 1996Ba52). Q: Optical Isotope-Shift measurement (1998Ba04). J^π: from the measurement of hyperfine structure splitting, 1996Ba52 deduced J=2 or 3. See also 1992Ba67, 1992Ba72. The probable proton and neutron orbitals suggest 2⁺ or 3⁻ which would be consistent with deexciting 2200y, if it decays to the 1⁻²⁴²Am g.s. Among the p and n state combinations suggested by 1996Ba52, if the 2200y decays to the ²⁴²Am g.s., the 2⁺ (π 5/2[523]-v 9/2[734]) and 3⁻ (π 5/2[523]-v 11/2[615]) could be possible configurations. For other proposed spin and configurations, see 1966Ma48, 1967Ga04, 1967Vi01, 1971Br39. Intrinsic quadrupole moment and β(2) deformation parameter of 14-ms ²⁴²Am isomer were deduced by 1998Ba04 from their optical isotope-shift measurements; β(2)=0.691, Q(20)=35.6 were obtained. These results were compared by 1998Ba04 with theoretical calculations. The authors pointed out that the small differences in β(2) and Q(20) for isomeric states of ²⁴⁰Am and ²⁴²Am, Δβ(2)=0.0076 14, ΔQ(20)=0.63 8, indicate the stability of nuclear deformation in the second potential minimum. Isotope shift (14-ms ²⁴²Am, relative to ²⁴¹Am)=2.83 9 (1998Ba04). Earlier measurements of optical isotope shift were reported in 1996Ba52, 1993Ba79, 1987Me22. E(level): from observed 2200y, if it decays to ²⁴²Am g.s. No ce's corresponding to 150-400y were identified (1976Be55). The level energy was also deduced from fits to excitation functions and threshold energies: E(level)=2.6 <i>3</i> MeV (1973Br04, reanalyzed by 1971Ba30); 3.3 2 MeV (1970Ga04); 2.9 <i>3</i> MeV (1971Br39): 2.3 2 MeV (1973Br04, reanalyzed available
				data).
				Anisotropy of SF fragments was measured by 1992Ba72 and 1985Vo17. Isomeric state fission probability was deduced by 1993Ku16 from fission fragment distribution.
 [†] Band(A [‡] Band(E [#] Band(C [@] Band(C ^a Band(C ^a Band(C ^b Band(C ^c Band(C ^d Band(C ^g Band(C ^g Band(C) ^g Band(L) ^j Band(L) ^j Band(L) ^k Band(L) ^l Band(L) 	A): K^{π} : B): K^{π} : C): K^{π} : C	$=0^{-} (\pi)$ $=5^{-} (\pi)$ $=5^{-} (\pi)$ $=6^{-} (\pi)$ $=(5^{+}) (\pi)$ $=(5^{+}) (\pi)$ $=0^{+} (\pi)$ $=1^{-} (\pi)$ $=1^{-} (\pi)$ $=2^{+} (\pi)$ $=1^{-} (\pi)$ $=2^{-} (\pi)$ $=2^{-} (\pi)$ $=3^{-} (\pi)$	5/2[523]-v 5/2[523]+1 5/2[523]+1 5/2[523]+1 5/2[523]+1 5/2[523]+1 7 5/2[642]-v 7 5/2[642]-v 5/2[523]+2 5/2[523]-v 7/2[523]-v 5/2[523]-v 5/2[523]-1 5/2[523]-1 5/2[523]+1	5/2[622]). $\alpha = 0.$ $\gamma 5/2[622]). \alpha = 1.$ $\gamma 7/2[624]). \alpha = 0.$ $\gamma 7/2[624]). \alpha = 1.$ $+\nu 5/2[622]). \alpha = 0$ (?). $+\nu 5/2[622]). \alpha = 1$ (?). \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot
 ⁿ Band(C ^o Band(P ^p Energie adjustm energies 	(): K^{π} ():	$=3^{+} (\pi)^{+}$ $=3^{+} (\pi)^{+}$ $=2^{+} (\pi)^{+} (\pi)^{+}$ $=2^{+} (\pi)^{+} (\pi)^{+}$ $=2^{+} (\pi)^{+} (\pi)^{+}$ $=2^{+} (\pi)^{+} (\pi)^{+} (\pi)^{+}$ $=2^{+} (\pi)^{+} (\pi)^{$	5/2[523]+5/2[523]-v more than data. The sources in	ν 1/2[501]). 1/2[501]). one decimal digit are from ²⁴¹ Am(n, γ) E=Th: Secondary γ 's based on the author's least-squares evaluators' least-squares adjustment is consistent with that of the authors. Other excitation adjusted by the XREF entries.

²⁴²Am Levels (continued)

^{*q*} The spin assignments are based on two general arguments, assignments to bands, and γ specific arguments. The source of the band arguments is noted. The γ specific arguments are those of the evaluators. For the non-band related assignments, most agree with those of 2007Sa03. Note, however, that in the (n,γ) level scheme of this author, which is based on the $E\gamma$ and mult data of 1988Sa18, a number of transitions are doubly placed, some with an assigned mult. Since the assignments are based on subshell conversion intensity ratios, mults for doubly placed transitions can be adopted for both placements. 2007Sa03 assume that transitions of unknown multipolarity, or those that experimentally could be M1 or E2, are not pure E2. That is, pairs of levels connected by such transitions differ by at most one unit of spin. This policy may account for some of the differences between their assignments and those adopted here.

- ^{*r*} Assigned by 2010Ha24 in Coulomb Excitation to band structures based on observation of cascade transitions in gated spectra, energy spacing, and inertial parameters. For the band built on the 141-y isomer, the authors extend the band established in (d,p), (d,t).
- ^{*s*} The peak at 1011 is assigned in (d,t) by 1976Gr19 as a doublet consisting of the 2^+ member of the $K^{\pi}=2^+$ band and the 4^+ member of the $K^{\pi}=3^+$ band. 1976KaZL assign just the 2^+ member of the $K^{\pi}=2^+$ band to this peak. They assign the 4^+ member of the $K^{\pi}=3^+$ band to the 1029 level.
- ^t 1976KaZL propose that the 581-keV level may be a doublet, and tentatively assign the possible second component as the 8⁻ member of the $K^{\pi}=3^{-}$ band.
- ^{*u*} Fit to a band as proposed by 1988Sa18 in (n,γ) based on energy spacings, rotational parameters, and decay patterns. Additional explicit arguments are given where available.
- ^{*v*} Fed by primary transition in (n,γ) from the 2⁻, 3⁻ capturing state. The probable spins thus lie in the range J=1 to J=4.
- ^{*w*} From (d,p) and/or (d,t) data based on a comparison of observed and theoretical cross section patterns and on rotational band parameters. Additional explicit arguments are given where available.

					Adopte	ed Levels, G	ammas (continu	ied)	
						$\gamma(^{24}$	² Am)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	E_f	\mathbf{J}_f^π	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
44.093	0-	44.092 3	100	0.0	1-	M1		68.5 10	α (L)=51.5 7; α (M)=12.58 18 α (N)=3.44 5; α (O)=0.866 12; α (P)=0.1658 23; α (O)=0.01062 15
48.603	5-	48.63 5	100	0.0	1-	E4		7.01×10 ⁵ 11	B(E4)(W.u.)= $6.00 \times 10^{-6} 14$ α (L)= $3.31 \times 10^{5} 5$; α (M)= $2.65 \times 10^{5} 4$ α (N)= $8.40 \times 10^{4} 13$; α (O)= $1.908 \times 10^{4} 30$; α (P)= $1891 30$; α (Q)= $2.86 4$
52.714	3-	52.770 36	100	0.0	1-	E2		358 5	Mult.: From subshell ratios in 11 decay. $\alpha(L)=259 \ 4; \ \alpha(M)=72.7 \ 10$ $\alpha(N)=20.11 \ 29; \ \alpha(O)=4.79 \ 7; \ \alpha(P)=0.754 \ 11;$ $\alpha(Q)=0.001783 \ 26$
75.820	2-	75.823 ^b 4	100 ^b	0.0	1-	M1		13.99 20	α (L)=10.51 <i>15</i> ; α (M)=2.57 <i>4</i> α (N)=0.702 <i>10</i> ; α (O)=0.1768 <i>25</i> ; α (P)=0.0338 <i>5</i> ; α (O)=0.002162 <i>30</i>
99.285	0+,1+,2+	99.269 15	100	0.0	1-	E1		0.1386 19	$\alpha(L)=0.1040 \ I5; \ \alpha(M)=0.0257 \ 4$ $\alpha(N)=0.00693 \ I0; \ \alpha(O)=0.001673 \ 23;$ $\alpha(P)=0.000280 \ 4; \ \alpha(O)=1.046\times10^{-5} \ I5$
149.707	4-	73.864 11	0.96 CA	75.820	2-	E2		71.5 10	$\alpha(L) = 51.8 7; \alpha(M) = 14.55 20$ $\alpha(N) = 4.02 6; \alpha(O) = 0.960 13; \alpha(P) = 0.1521 21;$ $\alpha(Q) = 0.000434 6$
		96.994 2	100 4	52.714	3-	M1		6.84 10	$\alpha(L) = 5.14 \ 7; \ \alpha(M) = 1.254 \ 18$ $\alpha(N) = 0.343 \ 5; \ \alpha(O) = 0.0864 \ 12; \ \alpha(P) = 0.01652$ $23; \ \alpha(O) = 0.001055 \ 15$
168.387	1-,2-,3-	69.101 8	30 11	99.285	0+,1+,2+	(E1)		0.356 5	$\alpha(L)=0.267 4; \alpha(M)=0.0664 9$ $\alpha(N)=0.01790 25; \alpha(O)=0.00427 6;$ $\alpha(P)=0.000682 10; \alpha(O)=2.257\times10^{-5} 32$
		92.568 26	100 32	75.820	2-	M1+E2		16 8	$\alpha(L)=12.6; \alpha(M)=3.2.18$ $\alpha(N)=0.9.5; \alpha(O)=0.22.12; \alpha(P)=0.036.17;$ $\alpha(O)=7.E-4.5$
181.4	(5+)	132.8 [#] 5	100	48.603	5-	(E1)		0.268 4	$\alpha(K) = 0.2029 \ 33; \ \alpha(L) = 0.0492 \ 8; \ \alpha(M) = 0.01209 \ 21 \ \alpha(N) = 0.00327 \ 6; \ \alpha(O) = 0.000796 \ 14; \ \alpha(P) = 0.0001366 \ 23; \ \alpha(Q) = 5.59 \times 10^{-6} \ 9$
190.6	7-	90 [#] 142.0 [#] 5		100.1 48.603	6 ⁻ 5 ⁻				
200.581	3-,4-	32.195 ^b 2 124.755 22	$ \leq 101^{b} $ $ 100 16$	168.387 75.820	1 ⁻ ,2 ⁻ ,3 ⁻ 2 ⁻				I_{γ} : $I\gamma \leq 87$ 14.
		147.870 ⁶ 22	≤46 ^b	52.714	3-	M1+E2	1.26 +16-14	5.6 4	$\begin{array}{l} \alpha({\rm K}){=}3.0 \; 4; \; \alpha({\rm L}){=}1.87 \; 4; \; \alpha({\rm M}){=}0.503 \; 14 \\ \alpha({\rm N}){=}0.139 \; 4; \; \alpha({\rm O}){=}0.0337 \; 9; \; \alpha({\rm P}){=}0.00574 \; 11; \\ \alpha({\rm Q}){=}0.000141 \; 16 \\ {\rm I}_{\gamma}{:} \; {\rm I}\gamma{\leq}41 \; 5. \end{array}$

From ENSDF

 $^{242}_{95}\mathrm{Am}_{147}$ -9

²⁴²₉₅Am₁₄₇-9

						Ado	pted Levels, Gai	<mark>nmas</mark> (continued	1)
							γ ⁽²⁴² Am) (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ιγ ^{&}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
230.527	1+	154.708 2	100.0 8	75.820	2-	E1		0.1892 26	α (K)=0.1447 20; α (L)=0.0334 5; α (M)=0.00820 11 α (N)=0.002220 31; α (O)=0.000542 8; α (P)=9.42×10 ⁻⁵ 13; α (O)=4.03×10 ⁻⁶ 6
		186.433 2	91.2 9	44.093	0-	E1		0.1230 17	$\alpha(Q) = .005 \times 10^{-6}$ $\alpha(K) = 0.0951 \ 13; \ \alpha(L) = 0.02100 \ 29; \ \alpha(M) = 0.00514 \ 7$ $\alpha(N) = 0.001392 \ 19; \ \alpha(O) = 0.000341 \ 5; \ \alpha(P) = 6.01 \times 10^{-5} \ 8;$ $\alpha(Q) = 2.70 \times 10^{-6} \ 4$
244.381	3-	94.671 6	18.0 18	149.707	4-	M1+E2	0.71 11	12.3 11	$\begin{array}{l} \alpha(Q) = 2.70 \times 10^{-4} \\ \alpha(L) = 9.1 \ 8; \ \alpha(M) = 2.41 \ 23 \\ \alpha(N) = 0.66 \ 6; \ \alpha(Q) = 0.162 \ 15; \ \alpha(P) = 0.0277 \ 21; \\ \alpha(Q) = 0.00081 \ 7 \end{array}$
		191.667 5	96.3 11	52.714	3-	M1		4.57 6	$\alpha(\mathbf{x}) = 0.605; \ \alpha(\mathbf{L}) = 0.729 \ 10; \ \alpha(\mathbf{M}) = 0.1778 \ 25$ $\alpha(\mathbf{N}) = 0.0486 \ 7; \ \alpha(\mathbf{O}) = 0.01223 \ 17; \ \alpha(\mathbf{P}) = 0.002340 \ 33;$ $\alpha(\mathbf{O}) = 0.0001487 \ 21$
		195.778 6	100.0 10	48.603	5-	E2		0.994 14	$\alpha(K)=0.1522\ 21;\ \alpha(L)=0.611\ 9;\ \alpha(M)=0.1706\ 24$ $\alpha(N)=0.0472\ 7;\ \alpha(O)=0.01131\ 16;\ \alpha(P)=0.001854\ 26;$ $\alpha(Q)=1.455\times10^{-5}\ 20$
254.3	8-	82 [#]		172	7-				
		154.2 [#] 5		100.1	6-				
269.854	3+	39.42 6	100	230.527	1+	(E2)		1470 23	α (L)=1067 17; α (M)=299 5 α (N)=82.5 13; α (O)=19.65 31; α (P)=3.08 5; α (Q)=0.00631 10
274.330	1-	198.498 <i>12</i>	23.9 9	75.820	2-	M1+E2	0.73 6	3.03 13	$\alpha(K)=2.18 \ I2; \ \alpha(L)=0.631 \ 9; \ \alpha(M)=0.1609 \ 23$ $\alpha(N)=0.0442 \ 6; \ \alpha(O)=0.01093 \ I5; \ \alpha(P)=0.001990 \ 31;$ $\alpha(O)=0.3\times10^{-5} \ 5$
		230.242 7	<40	44.093	0-	M1		2.73 4	$\alpha(Q) = 2.5 \times 10^{-5}$ (M)=0.1059 <i>15</i> $\alpha(K) = 2.150 30; \alpha(L) = 0.435 6; \alpha(M) = 0.1059 15\alpha(N) = 0.0289 4; \alpha(O) = 0.00729 10; \alpha(P) = 0.001394 20;$
		274.331 6	100.0 10	0.0	1-	M1		1.674 23	$\alpha(Q) = 8.83 \times 10^{-12}$ $\alpha(K) = 1.320 \ l8; \ \alpha(L) = 0.266 \ 4; \ \alpha(M) = 0.0648 \ 9$ $\alpha(N) = 0.01771 \ 25; \ \alpha(Q) = 0.00446 \ 6; \ \alpha(P) = 0.000852 \ 12;$
276	0-	162.2# 5	100	114	6-				$\alpha(Q)=5.41\times10^{-5}$ 8
289.028	o 4 ⁻	88.44 5	≈2.9	200.581	0 3 ⁻ ,4 ⁻	M1+E2	1.17 +17-12	21.4 14	α (L)=15.6 <i>10</i> ; α (M)=4.29 <i>30</i> α (N)=1.18 <i>8</i> ; α (O)=0.285 <i>20</i> ; α (P)=0.0469 <i>29</i> ;
		213.37 8	100 36	75.820	2-	E2		0.720 10	$\alpha(Q)=0.00070.8$ $\alpha(K)=0.1356.19; \alpha(L)=0.424.6; \alpha(M)=0.1181.17$ $\alpha(N)=0.0326.5; \alpha(Q)=0.00784.11; \alpha(P)=0.001290.18;$
		240.443 32	54 7	48.603	5-	M1+E2	1.33 13	1.17 10	$\alpha(Q)=1.145 \times 10^{-7} I_0$ $\alpha(K)=0.76 \ 9; \ \alpha(L)=0.304 \ 7; \ \alpha(M)=0.0796 \ 16$ $\alpha(N)=0.0219 \ 4; \ \alpha(O)=0.00537 \ 11; \ \alpha(P)=0.000949 \ 25;$ $\alpha(Q)=3.36 \times 10^{-5} \ 34$
292.831	2-	48.514 <i>30</i> 217.043 <i>28</i>	1.8 <i>1</i> 100 <i>9</i>	244.381 75.820	3 ⁻ 2 ⁻	M1+E2	1.01 14	1.93 19	$\alpha(K)=1.32$ 18; $\alpha(L)=0.453$ 11; $\alpha(M)=0.1174$ 20

From ENSDF

²⁴²₉₅Am₁₄₇-10

l

						A	dopted Level	s, Gammas (cont	inued)	
							$\gamma(^{242}A)$	(continued)		
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [@]	$\delta^{@}$	$lpha^\dagger$	Comments
	292.831	2-	240.115 14	98 9	52.714	3-	M1+E2	1.03 +11-10	1.42 10	$\alpha(N)=0.0323 5; \alpha(O)=0.00794 15; \alpha(P)=0.00142 4; \alpha(Q)=5.7\times10^{-5} 7 \alpha(K)=0.99 9; \alpha(L)=0.321 8; \alpha(M)=0.0827 16 \alpha(N)=0.0227 4; \alpha(O)=0.00561 12; \alpha(P)=0.001009 27; \alpha(O)=4 2\times10^{-5} 4$
	296.401	2-	52.05 7	0.5 <i>CA</i>	244.381	3-	M1(+E2)	0.7 9	1.5×10 ² 13	$\alpha(L)=1.1\times10^2 \ lo; \ \alpha(M)=31 \ 27$ $\alpha(N)=8 \ 8; \ \alpha(O)=2.0 \ ls; \ \alpha(P)=0.33 \ 27;$ $\alpha(O)=0.0050 \ ls$
			220.600 24	65 4	75.820	2-	M1		3.08 4	$\alpha(\text{C}) = 0.0050 \ 18$ $\alpha(\text{K}) = 2.424 \ 34; \ \alpha(\text{L}) = 0.490 \ 7; \ \alpha(\text{M}) = 0.1195 \ 17$ $\alpha(\text{N}) = 0.0327 \ 5; \ \alpha(\text{O}) = 0.00822 \ 12; \ \alpha(\text{P}) = 0.001572$ $22; \ \alpha(\text{Q}) = 9.99 \times 10^{-5} \ 14$
			243.690 ^b 11	≤70 ^b	52.714	3-	M1+E2	0.71 6	1.70 8	$\alpha(K)=1.26$ 7; $\alpha(L)=0.328$ 7; $\alpha(M)=0.0827$ 14 $\alpha(N)=0.0227$ 4; $\alpha(O)=0.00564$ 10; $\alpha(P)=0.001040$ 22; $\alpha(Q)=5.28\times10^{-5}$ 27 1 : 1×66 4
			296.412 25	100 8	0.0	1-	M1+E2	0.89 +10-9	0.86 <i>6</i>	$\alpha(\mathbf{K})=0.63 5; \ \alpha(\mathbf{L})=0.169 6; \ \alpha(\mathbf{M})=0.0427 \ 13 \alpha(\mathbf{N})=0.01172 \ 35; \ \alpha(\mathbf{O})=0.00291 \ 9; \ \alpha(\mathbf{D})=0.00535 \ 20; \ \alpha(\mathbf{O})=2.65 \times 10^{-5} \ 21$
-	311.832	1+,2+	41.997 <i>34</i>	6.0 <i>CA</i>	269.854	3+	E2		1081 <i>16</i>	$\alpha(L) = 784 \ 11; \ \alpha(M) = 219.6 \ 32$ $\alpha(N) = 60.7 \ 9; \ \alpha(O) = 14.45 \ 21; \ \alpha(P) = 2.264 \ 33;$ $\alpha(O) = 0.00479 \ 7$
			81.312 <i>15</i>	100 15	230.527	1+	M1+E2	0.78 9	24.2 19	α (L)=17.8 <i>I4</i> ; α (M)=4.8 <i>4</i> α (N)=1.32 <i>I1</i> ; α (O)=0.320 <i>26</i> ; α (P)=0.054 <i>4</i> ; α (O)=0.00121 <i>8</i>
			212.536 ^b 14	≤217 ^b	99.285	0+,1+,2+	(M1+E2)	2.54 +11-10	1.090 <i>30</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.479 \ 25; \ \alpha(\mathbf{L}) = 0.446 \ 6; \ \alpha(\mathbf{M}) = 0.1218 \ 17 \\ &\alpha(\mathbf{N}) = 0.0336 \ 5; \ \alpha(\mathbf{O}) = 0.00813 \ 11; \ \alpha(\mathbf{P}) = 0.001370 \\ &20; \ \alpha(\mathbf{Q}) = 2.49 \times 10^{-5} \ 10 \\ &\mathbf{I}_{\gamma}: \mathbf{I}_{\gamma} \leq 206 \ 11. \end{aligned}$
	323.4+x	(9^+)	142.0 [#] 5	100	181.4+x	(7^+)				
	327.884	3	35.049 11 178.11 7	56 10	149.707	2 4 ⁻	M1+E2	2.7 +4-3	1.94 12	$\alpha(K)=0.68 \ 12; \ \alpha(L)=0.916 \ 13; \ \alpha(M)=0.252 \ 4 \\ \alpha(N)=0.0697 \ 10; \ \alpha(O)=0.01680 \ 24; \ \alpha(P)=0.00279 \\ 4: \ \alpha(O)=3.9\times10^{-5} \ 5$
			252.049 15	100 18	75.820	2-	M1+E2	3.73 10	0.513 9	$\alpha(K) = 0.210 \ 6; \ \alpha(L) = 0.2212 \ 31; \ \alpha(M) = 0.0605 \ 9$ $\alpha(N) = 0.01671 \ 23; \ \alpha(O) = 0.00404 \ 6; \ \alpha(P) = 0.00681 \ 10; \ \alpha(O) = 1.147 \times 10^{-5} \ 27$
	330.740	3-	37.910 5	52 12	292.831	2-				u(1) = 0.000001 + 10, u(2) = 1.11, 10 = 2.1
			41.71 ^b 5	≤12.8 ^b	289.028	4-	M1+E2	0.199 +10-11	120 4	α (L)=89.1 32; α (M)=22.9 9 α (N)=6.29 25; α (O)=1.55 6; α (P)=0.277 9; α (Q)=0.01223 18 L: Iv<11.6 12
			56.421 18		274.330	1-				y, 17 - 11:0 12.

From ENSDF

²⁴²₉₅Am₁₄₇-11

 $^{242}_{95}\mathrm{Am}_{147}\text{--}11$

l

					Adopted Le	vels, Gammas (con	tinued)	
					$\gamma(2^{2})$	⁴² Am) (continued)		
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	Ι _γ &	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	$lpha^\dagger$	Comments
330.740	3-	86.316 ^b 30 278.000 18	<72 ^b 100 7	244.381 3 ⁻ 52.714 3 ⁻				I _γ : Iγ<53 <i>19</i> .
330.837	2-,3-	34.441 ^c 13	1.5 CA	296.401 2-	M1+E2	0.042 29	147 9	α (L)=110 7; α (M)=27.0 18 α (N)=7.4 5; α (O)=1.86 12; α (P)=0.353 19;
		38.005 5	100 24	292.831 2-	M1+E2	0.116 +20-24	128 8	$\alpha(Q)=0.02203 \ 31$ $\alpha(L)=96 \ 6; \ \alpha(M)=24.0 \ 17$ $\alpha(N)=6.6 \ 5; \ \alpha(O)=1.64 \ 11; \ \alpha(P)=0.302 \ 17;$ $\alpha(O)=0.01635 \ 23$
		56.577 <i>3</i> 8	24 9	274.330 1-	E2		256 4	$\alpha(L)=185.3\ 27;\ \alpha(M)=52.0\ 7$ $\alpha(N)=14.38\ 21;\ \alpha(O)=3.43\ 5;\ \alpha(P)=0.540\ 8;$ $\alpha(O)=0\ 001324\ 19$
341.593	0+	111.100 18	70 10	230.527 1+	(M1)		4.62 6	$\alpha(L)=3.475; \alpha(M)=0.84712$ $\alpha(N)=0.231532; \alpha(O)=0.05838; \alpha(P)=0.01115$ $16; \alpha(Q)=0.00071110$
342.805	2-,3-	341.528 22 30.973 ^b 1 46.42 5	$100 \ 12 \\ \leq 320^{b}$	0.0 1 ⁻ 311.832 1 ⁺ ,2 ⁺ 296.401 2 ⁻	M1+E2	0.0606 +34-31		I _γ : Iγ≤281 <i>39</i> .
		193.128 <i>31</i>	100 17	149.707 4-	E2		1.047 15	$\alpha(K)=0.1548\ 22;\ \alpha(L)=0.648\ 9;\ \alpha(M)=0.1809\ 25$ $\alpha(N)=0.0500\ 7;\ \alpha(Q)=0.01199\ 17;$
347	9-	92 [#]		254.3 8-				$\alpha(P)=0.001964\ 28;\ \alpha(Q)=1.512\times10^{-5}\ 21$
355.715	2+	174.4 <i>5</i> 27.82 <i>6</i>	40 CA	172 7 ⁻ 327.884 3 ⁻	E1+M2	0.0049 +9-8	4.58 31	α(L)=3.36 22; α(M)=0.90 7
		(2) 97(-15	160.15	202.821.2=	$(\mathbf{E}_1, \mathbf{M}_2)$	0.07(. (. 7		α (N)=0.244 <i>19</i> ; α (O)=0.057 <i>5</i> ; α (P)=0.0080 <i>8</i> ; α (Q)=0.00024 <i>4</i>
		62.876 15	16.2 15	292.831 2	(E1+M2)	0.0/6 +6-/	4.77	$\alpha(L)=3.4$ 5; $\alpha(M)=0.96$ 15 $\alpha(N)=0.27$ 4; $\alpha(O)=0.067$ 11; $\alpha(P)=0.0120$ 19; $\alpha(O)=0.00062$ 10
		111.27 5	100 9	244.381 3-	E1+M2	0.045 4	0.228 23	$\alpha(L)=0.168 \ 17; \ \alpha(M)=0.044 \ 5 \ \alpha(N)=0.0122 \ 13; \ \alpha(O)=0.00302 \ 33;$
363.434	2+,3+	51.619 35	100	311.832 1+,2+	M1+E2	0.455 +31-32	104 7	α (P)=0.00053 6; α (Q)=2.61×10 ⁻⁵ 33 α (L)=76 5; α (M)=20.4 15 α (N)=5.6 4; α (O)=1.37 10; α (P)=0.230 15;
364.658	2^{+}	23.12 7	0.2	341.593 0+	E2		1.25×10 ⁴ 3	$\alpha(Q) = 0.00587.12$
		94.804 5	100 11	269.854 3+	M1+E2	1.25 +17-14	16.3 9	α (L)=11.9 6; α (M)=3.26 19 α (N)=0.90 5; α (O)=0.217 12; α (P)=0.0357 18; α (O)=0.00054 6
		134.20 7	63 19	230.527 1+	M1(+E2)	0.13 14	12.4 4	$\alpha(\mathbb{X}) = 0.00016$ $\alpha(\mathbb{X}) = 9.75; \ \alpha(\mathbb{L}) = 2.037; \ \alpha(\mathbb{M}) = 0.49822$ $\alpha(\mathbb{N}) = 0.1366; \ \alpha(\mathbb{O}) = 0.034314; \ \alpha(\mathbb{P}) = 0.00653$ $10; \ \alpha(\mathbb{O}) = 0.00040620$
369.207	1-,2-	72.806 30	100 CA	296.401 2-	(E2)		76.5 11	$\alpha(L)=55.4 \ 8; \ \alpha(M)=15.59 \ 22$

²⁴²₉₅Am₁₄₇-12

From ENSDF

²⁴²₉₅Am₁₄₇-12

					Adopted Lev	vels, Gammas (con	tinued)	
					$\gamma(^{24}$	² Am) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	Iγ ^{&}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	$lpha^{\dagger}$	Comments
								α (N)=4.31 6; α (O)=1.028 15; α (P)=0.1628 23; α (Q)=0.000461 6
369.207	1-,2-	94.874 ^b 22	≤9000 ^b	274.330 1-	M1+E2	1.4 +4-3	17.0 <i>17</i>	$\begin{array}{l} \alpha(\text{L}) = 12.4 \ 12; \ \alpha(\text{M}) = 3.4 \ 4 \\ \alpha(\text{N}) = 0.94 \ 10; \ \alpha(\text{O}) = 0.227 \ 24; \ \alpha(\text{P}) = 0.0372 \ 34; \\ \alpha(\text{Q}) = 0.00049 \ 11 \\ \text{I}_{\gamma} : \ \text{I}_{\gamma} \leq 7.2 + 10^3 \ 18. \end{array}$
372.490	4-	41.71 ^b 5	<19.2 ^b	330.740 3-	M1+E2	0.199 +10-11	120 4	α (L)=89.1 32; α (M)=22.9 9 α (N)=6.29 25; α (O)=1.55 6; α (P)=0.277 9; α (Q)=0.01223 18 I _Y : I _Y <17.4 18.
		76.092 14	54 16	296.401 2-	(E2)		62.1 9	$\alpha(L)=45.0 \text{ 6}; \ \alpha(M)=12.64 \ 18$ $\alpha(N)=3.50 \ 5; \ \alpha(O)=0.834 \ 12; \ \alpha(P)=0.1322 \ 19;$ $\alpha(O)=0.000385 \ 5$
		171.951 25	51 8	200.581 3-,4-	(M1)		6.20 9	$\begin{array}{l} \alpha(\mathrm{K}) = 4.88 \ 7; \ \alpha(\mathrm{L}) = 0.992 \ 14; \ \alpha(\mathrm{M}) = 0.2420 \ 34 \\ \alpha(\mathrm{N}) = 0.0661 \ 9; \ \alpha(\mathrm{O}) = 0.01665 \ 23; \ \alpha(\mathrm{P}) = 0.00319 \ 4; \\ \alpha(\mathrm{Q}) = 0.0002026 \ 28 \end{array}$
		222.75 9	43 16	149.707 4-				
		296.732 34	100 12	75.820 2-				
		319.75 6	75 16	52.714 3-	M1+E2	1.14 +26-18	0.58 9	$\alpha(\mathbf{K})=0.42\ 8;\ \alpha(\mathbf{L})=0.123\ 9;\ \alpha(\mathbf{M})=0.0313\ 19$ $\alpha(\mathbf{N})=0.0086\ 5;\ \alpha(\mathbf{O})=0.00213\ 14;\ \alpha(\mathbf{P})=0.000388$ $29;\ \alpha(\mathbf{Q})=1.77\times10^{-5}\ 30$
373.3	9-	97 #		276 8-				
		182.7 [#] 5		190.6 7-				
373.686	4-	45.91 ^b 6	≤23 b	327.884 3-	M1+E2	0.141 +9-10	73.3 20	α (L)=54.7 <i>15</i> ; α (M)=13.7 <i>4</i> α (N)=3.76 <i>11</i> ; α (O)=0.937 <i>26</i> ; α (P)=0.173 <i>4</i> ; α (Q)=0.00931 <i>14</i> L : $l_{2} < \approx 23$
		80.905 <i>19</i>	100 30	292.831 2-	E2		46.4 7	$\alpha(L)=33.65; \alpha(M)=9.4613$ $\alpha(N)=2.624; \alpha(O)=0.6249; \alpha(P)=0.099114;$ $\alpha(O)=0.0003004$
376.947	3+	46.128 ^{<i>a</i>} 33 49.03 5		330.837 2 ⁻ ,3 ⁻ 327.884 3 ⁻				
		84.124 20	36.3 11	292.831 2-	(E1+M2)	0.113 6	2.80 28	α (L)=2.02 20; α (M)=0.57 6 α (N)=0.159 16; α (O)=0.040 4; α (P)=0.0071 7; α (O)=0.00038 4
		132.565 4	100.0 10	244.381 3-	E1+M2	0.0104 +24-32	0.277 6	$\alpha(K) = 0.208 4; \ \alpha(L) = 0.0518 14; \ \alpha(M) = 0.0128 4$ $\alpha(N) = 0.00347 11; \ \alpha(O) = 0.000845 26;$
388.112	3+	95.44 6	100 CA	292.831 2-	E1		0.1534 22	$\alpha(\mathbf{r})=0.000146\ 3;\ \alpha(\mathbf{Q})=6.08\times10^{-5}\ 26$ $\alpha(\mathbf{L})=0.1152\ 16;\ \alpha(\mathbf{M})=0.0284\ 4$ $\alpha(\mathbf{N})=0.00768\ 11;\ \alpha(\mathbf{O})=0.001852\ 26;$
		143.789 28	26 6	244.381 3-	E1+M2	0.185 +20-30	2.0 5	α (P)=0.000308 4; α (Q)=1.138×10 ⁻⁵ 16 α (K)=1.20 30; α (L)=0.56 15; α (M)=0.15 4

From ENSDF

l

				Ad	lopted Level	s, <mark>Gammas</mark> (conti	nued)	
					γ ⁽²⁴² A	m) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
207.147	2= 2= 4=	22 712 2	100 14	262 424 2+ 2+				α (N)=0.042 <i>12</i> ; α (O)=0.0106 <i>29</i> ; α (P)=0.0019 <i>5</i> ; α (Q)=1.08×10 ⁻⁴ <i>30</i>
397.147	2,3,4	69.253 <i>11</i>	100 14	303.434 2°,3° 327.884 3 ⁻	M1+E2	0.41 +9-10	30 4	α (L)=21.8 32; α (M)=5.7 9 α (N)=1.57 26; α (O)=0.38 6; α (P)=0.067 9; α (Q)=0.00249 13
400.521	1-	31.306 <i>36</i> 35.84 8		369.207 1 ⁻ ,2 ⁻ 364.658 2 ⁺				
		69.781 6	31 10	330.740 3-	(E2)		93.6 <i>13</i>	α (L)=67.8 <i>10</i> ; α (M)=19.07 <i>27</i> α (N)=5.27 <i>7</i> ; α (O)=1.258 <i>18</i> ; α (P)=0.1990 <i>28</i> ; α (O)=0.000548 <i>8</i>
		324.84 6	100 20	75.820 2-	M1+E2	1.17 +30-22	0.54 9	$\alpha(\mathbb{Q})$ 0.0005 16 9; $\alpha(\mathbb{M})=0.0295$ 20 $\alpha(\mathbb{N})=0.0081$ 6; $\alpha(\mathbb{O})=0.00201$ 15; $\alpha(\mathbb{P})=0.000365$ 31: $\alpha(\mathbb{O})=1.65\times10^{-5}$ 32
405.880	2-,3,4	28.937 ^a 25		376.947 3+				$51, u(Q) = 1.05 \times 10^{-52}$
		32.195 ^b 2	≤158 ^b	373.686 4-				I _γ : Iγ≤136 22.
		77.988 <mark>b</mark> 23	≤37 b	327.884 3-				I_{γ} : $I_{\gamma} \leq 26 \ 11$.
		161.459 <i>18</i>	100 15	244.381 3-				, ·
405.933	4+	33.443 2	100 18	372.490 4-	E1		2.375 33	$\alpha(L)=1.766\ 25;\ \alpha(M)=0.455\ 6$ $\alpha(N)=0.1218\ 17;\ \alpha(O)=0.0280\ 4;\ \alpha(P)=0.00390\ 5;$ $\alpha(O)=9\ 81\times10^{-5}\ 14$
		50.27 4	0.07 CA	355.715 2+	(E2)		452 7	$\begin{array}{l} \alpha(\text{Q}) = 2.51 \times 10^{-1} I^{4} \\ \alpha(\text{L}) = 328 \ 5; \ \alpha(\text{M}) = 91.9 \ 13 \\ \alpha(\text{N}) = 25.4 \ 4; \ \alpha(\text{O}) = 6.05 \ 9; \ \alpha(\text{P}) = 0.951 \ 14; \\ \alpha(\text{Q}) = 0.002197 \ 32 \end{array}$
409+x	(10 ⁺)	162.1 [#] 5	100	247+x (8 ⁺)				
417.746	$(4)^{+}$	147.870 ^b 22	100 ^b	269.854 3+	M1+E2	1.26 +16-14	5.6 4	$\alpha(K)=3.0 4; \alpha(L)=1.87 4; \alpha(M)=0.503 14$ $\alpha(N)=0.139 4; \alpha(O)=0.0337 9; \alpha(P)=0.00574 11;$ $\alpha(O)=0.000141 16$
418.084	4+	29.94 6		388.112 3+				
		90.178 22	100 28	327.884 3-	E1+M2	0.175 +25-29	4.7 13	α (L)=3.4 <i>10</i> ; α (M)=0.95 <i>27</i> α (N)=0.27 <i>8</i> ; α (O)=0.067 <i>19</i> ; α (P)=0.0120 <i>35</i> ; α (O)=6.5×10 ⁻⁴ <i>19</i>
		129.056 29	71 24	289.028 4-	E1+M2	1.2 +9-4	46 17	$\alpha(K) = 26 \ I0; \ \alpha(L) = 14 \ 5; \ \alpha(M) = 4.0 \ I5$ $\alpha(N) = 1.1 \ 4; \ \alpha(O) = 0.28 \ II; \ \alpha(P) = 0.051 \ I9;$ $\alpha(O) = 0.029 \ II$
		173.60 16	41 27	244.381 3-	E1+M2	0.15 +5-9	0.7 5	$\alpha(K)=0.48 \ 31; \ \alpha(L)=0.19 \ 14; \ \alpha(M)=0.05 \ 4$ $\alpha(N)=0.014 \ 10; \ \alpha(O)=0.0035 \ 26; \ \alpha(P)=6.E-4 \ 5;$ $\alpha(O)=3.6\times10^{-5} \ 27$
419.085	2-	30.973 ^b 1 46.598 16	≤290 ^b 0.56 CA	388.112 3 ⁺ 372.490 4 ⁻				I_{γ} : $I_{\gamma} \leq 255$ 35.
		88.322 <i>31</i> 91.229 <i>24</i>	45 20 57 18	330.740 3 ⁻ 327.884 3 ⁻	M1+E2	0.43 9	11.0 10	α (L)=8.2 7; α (M)=2.10 22

²⁴²₉₅Am₁₄₇-14

From ENSDF

					1	Adopted Level	s, Gammas (conti	nued)	
						γ (²⁴² A	m) (continued)		
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
	419.085	2-	366.351 <i>33</i>	100 <i>19</i>	52.714 3-	M1		0.753 11	$ \begin{array}{c} \alpha(\mathrm{N}) = 0.58 \ 6; \ \alpha(\mathrm{O}) = 0.142 \ 14; \ \alpha(\mathrm{P}) = 0.0255 \ 21; \\ \alpha(\mathrm{Q}) = 0.00109 \ 6 \\ \alpha(\mathrm{K}) = 0.595 \ 8; \ \alpha(\mathrm{L}) = 0.1192 \ 17; \ \alpha(\mathrm{M}) = 0.0290 \ 4 \\ \alpha(\mathrm{N}) = 0.00793 \ 11; \ \alpha(\mathrm{O}) = 0.001996 \ 28; \\ \end{array} $
	420.651	2+,3+,4+	32.526 ^b 21	≤1.8 ^b	388.112 3+	M1+E2	0.33 5	5.2×10 ² 10	$\alpha(P)=0.000382 \ 5; \ \alpha(Q)=2.420\times 10^{-5} \ 34$ $\alpha(L)=3.8\times 10^2 \ 7; \ \alpha(M)=103 \ 21$ $\alpha(N)=28 \ 6; \ \alpha(O)=6.8 \ 13; \ \alpha(P)=1.14 \ 21; \ \alpha(Q)=0.0250 \ 5$ $L: V \leq \sim 1.8$
			43.728 23	11 CA	376.947 3+				1γ . $1\gamma \leq \sim 1.0$.
			57.236 28	100 9	363.434 2+,3	M1+E2	2.4 +14-6	211 19	α (L)=153 <i>I3</i> ; α (M)=43 <i>4</i> α (N)=11.8 <i>I1</i> ; α (O)=2.82 <i>25</i> ; α (P)=0.45 <i>4</i> ; α (O)=0.00180 <i>32</i>
	442.385	5+	36.453 3	49 10	405.933 4+	M1(+E2)	0.5 7	5×10 ² 8	$\alpha(L)=4\times10^{2} 6; \ \alpha(M)=1.1\times10^{2} 16$ $\alpha(N)=3.E1 4; \ \alpha(O)=7 11; \ \alpha(P)=1.1 16;$ $\alpha(O)=0.017 4$
15	446.702	3-	65.408 28 68.701 3 28.937 ^a 25 46.128 ^a 33	14 5 100 7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
			74.248 23 90.985 4	3.5 CA 77 7	372.490 4 ⁻ 355.715 2 ⁺	E1		0.1738 24	α (L)=0.1304 <i>18</i> ; α (M)=0.0322 <i>5</i> α (N)=0.00870 <i>12</i> ; α (O)=0.002095 <i>29</i> ; α (P)=0.000347 <i>5</i> : α (O)=1.260×10 ⁻⁵ <i>18</i>
			296.996 25	100 14	149.707 4-				u(1) = 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.000000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.0000000 + 0.000000 + 0.00000 + 0.00000 + 0.00000 + 0.00000000
	448.9	10-	194.6 [#] 5	100	254.3 8-				
	455.688	1-,2-,3-	124.947 <i>21</i>	100 24	330.740 3-				
	457.090	5+	159.283 ^b 24 38.996 9 68.997 17 83 399 17	$\leq 178^{b}$ ≈ 5.7 $48 \ 14$ $100 \ 20$	296.401 2 ⁻ 418.084 4 ⁺ 388.112 3 ⁺ 373.686 4 ⁻				I_{γ} : $I_{\gamma} ≤ 170 $ 8. I_{γ} : Calculated value.
			168.125 30	31.8	289.028 4-	E1		0.1561 22	$\alpha(K)=0.1200\ 17;\ \alpha(L)=0.0271\ 4;\ \alpha(M)=0.00665$
	464.362	3-,4-	76.258 13	5.0 22	388.112 3+	E1+M2	0.113 +23-29	4.2 18	9 α (N)=0.001801 25; α (O)=0.000440 6; α (P)=7.70×10 ⁻⁵ 11; α (Q)=3.37×10 ⁻⁶ 5 α (L)=3.1 13; α (M)=0.9 4 α (N)=0.24 10; α (O)=0.061 25; α (P)=0.011 5;
									$\alpha(Q) = 5.8 \times 10^{-4} 25$
			133.595 28	8.1 <i>19</i>	330.740 3-				
			175.314 <i>34</i>	6.3 14	289.028 4-	M1+E2	1.62 +33-24	2.73 30	$\begin{aligned} &\alpha(\mathbf{K}) = 1.40 \ 31; \ \alpha(\mathbf{L}) = 0.972 \ 14; \ \alpha(\mathbf{M}) = 0.263 \ 5\\ &\alpha(\mathbf{N}) = 0.0724 \ 14; \ \alpha(\mathbf{O}) = 0.01756 \ 30; \\ &\alpha(\mathbf{P}) = 0.00299 \ 4; \ \alpha(\mathbf{Q}) = 6.7 \times 10^{-5} \ 12 \end{aligned}$

 $^{242}_{95}\mathrm{Am}_{147}\text{-}15$

From ENSDF

					Ad	lopted Level	s, Gammas (conti	nued)	
						γ (²⁴² A	m) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	Ιγ ^{&}	\mathbf{E}_{f}	J_f^π	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
464.362	3-,4-	194.510 5	100.0 10	269.854	3+	E1+M2	0.292 +11-12	1.53 11	$\begin{aligned} &\alpha(\text{K}) = 1.00 \ 7; \ \alpha(\text{L}) = 0.390 \ 28; \ \alpha(\text{M}) = 0.104 \ 8 \\ &\alpha(\text{N}) = 0.0290 \ 21; \ \alpha(\text{O}) = 0.0073 \ 5; \ \alpha(\text{P}) = 0.00135 \ 10; \\ &\alpha(\text{Q}) = 7.7 \times 10^{-5} \ 6 \end{aligned}$
		295.960 <i>14</i> 314.71 <i>7</i>	23.6 <i>10</i> 9.1 <i>21</i>	168.387 149.707	1 ⁻ ,2 ⁻ ,3 ⁻ 4 ⁻	M1+E2	2.5 +9-5	0.32 6	α (K)=0.19 5; α (L)=0.102 6; α (M)=0.0271 13 α (N)=0.00746 35; α (O)=0.00182 9; α (P)=0.000316 20; α (Q)=8.8×10 ⁻⁶ 20
479	10-	133 [#] 202.9 [#] 5		347 276	9- 8-				
483.640	4-	64.54 <i>3</i> 65.557 <i>3</i>	32 4	419.085 418.084	2 ⁻ 4 ⁺	E1+M2	0.028 +3-4	0.89 13	α (L)=0.65 9; α (M)=0.175 26 α (N)=0.049 7; α (O)=0.0119 19; α (P)=0.00203 33; α (O)=9.2×10 ⁻⁵ 18
495.721	3+	435.038 22 76.668 22 89.799 24	100 5 24 11 60 20	48.603 419.085 405.880	5^{-} 2^{-} 2^{-} , 3, 4	M1+E2	1.5 +9-4	22.3.32	$\alpha(Q) = 3.2.710^{-1.0}$ 10 $\alpha(L) = 16.2.23; \ \alpha(M) = 4.5.7$
		122.031 7	100 12	373.686	4-	E1+M2	0.017 +6-12	0.094 11	$\begin{aligned} \alpha(\mathbf{N}) &= 1.24 \ 19; \ \alpha(\mathbf{O}) = 0.30 \ 4; \ \alpha(\mathbf{P}) = 0.048 \ 6; \\ \alpha(\mathbf{Q}) &= 5.4 \times 10^{-4} \ 18 \\ \alpha(\mathbf{L}) &= 0.070 \ 8; \ \alpha(\mathbf{M}) = 0.0175 \ 22 \\ \alpha(\mathbf{N}) &= 0.0047 \ 6; \ \alpha(\mathbf{O}) = 0.00116 \ 16; \ \alpha(\mathbf{P}) = 0.000199 \ 29; \\ \alpha(\mathbf{Q}) &= 8 \ 5110^{-6} \ 16 \end{aligned}$
501.569	(3)-	45.91 ^b 6	≤5.2 ^b	455.688	1-,2-,3-	M1+E2	0.141 +9-10	73.3 20	$\alpha(Q)=8.5\times10^{-710}$ $\alpha(L)=54.7 \ 15; \ \alpha(M)=13.7 \ 4$ $\alpha(N)=3.76 \ 11; \ \alpha(O)=0.937 \ 26; \ \alpha(P)=0.173 \ 4;$ $\alpha(Q)=0.00931 \ 14$ L: $1\times25 \ 2$ for this doubly placed transition
		82.484 ^b 17	≤46 ^b	419.085	2-	M1+E2	4.6 15	41.0 16	$\alpha(L)=29.7 \ 12; \ \alpha(M)=8.33 \ 35$ $\alpha(N)=2.30 \ 10; \ \alpha(O)=0.550 \ 23; \ \alpha(P)=0.0876 \ 34;$ $\alpha(Q)=0.00034 \ 7$ $L_{\alpha}: \ 1_{\alpha} \le 37 \ 9.$
		212.536 ^b 14	≤100 ^b	289.028	4-	(M1+E2)	2.54 +11-10	1.090 <i>30</i>	$\alpha(K)=0.479\ 25;\ \alpha(L)=0.446\ 6;\ \alpha(M)=0.1218\ 17$ $\alpha(N)=0.0336\ 5;\ \alpha(O)=0.00813\ 11;\ \alpha(P)=0.001370\ 20;$ $\alpha(Q)=2.49\times10^{-5}\ 10$ Ly: $1_{2}\leq95\ 5$ for this doubly placed transition.
502.04	1+,2+	160.34 5 271.54 <i>4</i>	43 <i>15</i> 100 <i>14</i>	341.593 230.527	0+ 1 ⁺	M1+E2	0.54 19	1.40 17	$\alpha(K)=1.07 \ 15; \ \alpha(L)=0.248 \ 15; \ \alpha(M)=0.0615 \ 29 \\ \alpha(N)=0.0168 \ 8; \ \alpha(O)=0.00421 \ 21; \ \alpha(P)=0.00079 \ 5; \\ \alpha(Q)=4.4\times10^{-5} \ 6$
505.4+x 506.648	(11 ⁺) 2 ⁺	182.0 [#] 5 87.592 29	100 58 <i>3</i> 7	323.4+x 419.085	(9 ⁺) 2 ⁻	E1+M2	0.096 +18-21	1.8 6	α (L)=1.3 5; α (M)=0.36 <i>13</i> α (N)=0.10 4; α (O)=0.025 9; α (P)=0.0045 <i>17</i> ; α (O)=2.4×10 ⁻⁴ 9
		106.100 ^b 25	≤398 ^b	400.521	1-	E1+M2	0.167 +20-22	2.2 5	$\alpha(L)=1.6 4; \alpha(M)=0.44 10$ $\alpha(N)=0.122 29; \alpha(O)=0.031 7; \alpha(P)=0.0055 13;$

²⁴²₉₅Am₁₄₇-16

From ENSDF

L

					-	Adopted Le	evels, Gammas (continued)	
						$\gamma(^2$	⁴² Am) (continue	<u>d)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ιγ ^{&}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
506.648	2+	236.789 30	100 10	269.854	3+	M1+E2	0.48 +14-16	2.14 19	$\begin{array}{l} \alpha(Q) = 0.00030 \ 7 \\ I_{\gamma}: I_{\gamma} \leq 346 \ 52. \\ \alpha(K) = 1.64 \ 18; \ \alpha(L) = 0.378 \ 13; \ \alpha(M) = 0.0938 \ 24 \\ \alpha(N) = 0.0257 \ 6; \ \alpha(Q) = 0.00642 \ 18; \ \alpha(P) = 0.00120 \ 5; \end{array}$
506.964	(3)+	86.316 ^b 30 89.216 20	≤100 ^b 100 <i>16</i>	420.651 417.746	2 ⁺ ,3 ⁺ ,4 ⁺ (4) ⁺	M1+E2	0.58 8	13.9 11	$\alpha(Q)=6.8 \times 10^{-57} / I_{\gamma}: I_{\gamma} \le 73 \ 27.$ $\alpha(L)=10.2 \ 8; \ \alpha(M)=2.70 \ 23 / \alpha(N)=0.74 \ 6; \ \alpha(Q)=0.182 \ 15; \ \alpha(P)=0.0315 \ 22;$
		142.306 25	70 8	364.658	2+	M1+E2	1.30 +15-13	6.2 4	$\alpha(Q)=0.00106\ 6$ $\alpha(K)=3.2\ 4;\ \alpha(L)=2.19\ 5;\ \alpha(M)=0.591\ 16$ $\alpha(N)=0.163\ 5;\ \alpha(O)=0.0396\ 10;\ \alpha(P)=0.00671\ 14;$ $\alpha(Q)=0.000154\ 16$
		151.27 4	82 15	355.715	2^{+}				
528.545	3+	26.92 <i>6</i> 86.173 <i>31</i>	100 37	501.569 442.385	$(3)^{-}$ 5 ⁺				Mult.: Mult=(M1+E2) from ce data. Placement in the level scheme requires $AI=2$ $A\pi=n_0$
		163.93 5	52 17	364.658	2+	M1+E2	1.2 +5-3	4.1 8	$\alpha(K)=2.4 \ 8; \ \alpha(L)=1.245 \ 33; \ \alpha(M)=0.332 \ 15 \ \alpha(N)=0.091 \ 4; \ \alpha(O)=0.0223 \ 9; \ \alpha(P)=0.00385 \ 7; \ \alpha(O)=1.10 \times 10^{-4} \ 32$
		165.08 4	57 17	363.434	2+,3+	M1+E2	1.6 +5-3	3.4 5	$\alpha(K) = 1.75; \alpha(L) = 1.23424; \alpha(M) = 0.33410$ $\alpha(N) = 0.092227; \alpha(O) = 0.02236; \alpha(P) = 0.003786;$ $\alpha(O) = 8.1 \times 10^{-5}20$
533.815	2-	69.448 11	46 15	464.362	3-,4-	M1+E2	0.33 +9-10	26 4	$\begin{array}{l} \alpha(L) = 19.1 \ 29; \ \alpha(M) = 4.9 \ 8 \\ \alpha(N) = 1.35 \ 23; \ \alpha(O) = 0.33 \ 5; \ \alpha(P) = 0.059 \ 8; \ \alpha(Q) = 0.00257 \\ 12 \end{array}$
		133.293 28	100 31	400.521	1-	M1+E2	2.3 +11-5	6.0 6	$\alpha(K)=1.7 \ 8; \ \alpha(L)=3.12 \ 11; \ \alpha(M)=0.87 \ 4$ $\alpha(N)=0.239 \ 10; \ \alpha(O)=0.0575 \ 23; \ \alpha(P)=0.00943 \ 30;$ $\alpha(Q)=1.07 \times 10^{-4} \ 30$
544.756	2-,3-	43.17 ^b 5 80.400 <i>33</i>	≤14 ^b 46 11	501.569 464.362	(3) ⁻ 3 ⁻ ,4 ⁻	M1		11.80 <i>17</i>	I_{γ} : $I_{\gamma} ≤ ≈ 14$. $\alpha(L) = 8.86 \ 12; \ \alpha(M) = 2.163 \ 30$ $\alpha(N) = 0.592 \ 8; \ \alpha(O) = 0.1490 \ 21; \ \alpha(P) = 0.0285 \ 4;$ $\alpha(O) = 0.001821 \ 26$
		89.070 20	100 29	455.688	1-,2-,3-	M1+E2	0.26 +8-11	10.1 9	α (L)=7.5 6; α (M)=1.89 18 α (N)=0.52 5; α (O)=0.129 12; α (P)=0.0238 18; α (Q)=0.00128 5
		144.254 ^b 17 201.98 7	≤80 ^b 47 15	400.521 342.805	1 ⁻ 2 ⁻ ,3 ⁻	M1+E2	1.9 +8-4	1.55 30	I_{γ} : Iγ≤71 9. α (K)=0.79 29; α (L)=0.555 12; α (M)=0.1501 21 α (N)=0.0414 6; α (O)=0.01004 15; α (P)=0.00171 4; α (O)=3 8×10 ⁻⁵ 11
559.790	2^{-}	113.122 34	100 13	446.702	3-	M1+E2	0.95 +17-15	6.9 5	$\alpha(L) = 5.07 \ 32; \ \alpha(M) = 1.36 \ 10$

From ENSDF

²⁴²₉₅Am₁₄₇-17

 $^{242}_{95}\mathrm{Am}_{147}$ -17

l

					Adop	ted Levels,	Gammas (conti	nued)	
						γ (²⁴² An	n) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	\mathbf{E}_{f}	J_f^π	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
									α (N)=0.375 28; α (O)=0.091 6; α (P)=0.0155 9; α (Q)=0.00039 5
559.790	2^{-}	140.714 <i>16</i> 159.283 ^b 24	67 <i>11</i> ≤228 ^b	419.085 400.521	2- 1-				I_{γ} : $I_{\gamma} \le 217 \ 11$.
561	11-	112 [#] 214.4 [#] .5		448.9 247	10 ⁻				
568.215	4-	84.601 20 125.832 4	3.8 <i>12</i> 69.4 7	483.640 442.385	9 4 ⁻ 5 ⁺	E1		0.0752 11	
		150.10 5	7.6 13	418.084	4+	E1+M2	0.427 15	7.2 4	α (K)=4.34 26; α (L)=2.06 12; α (M)=0.560 34 α (N)=0.157 9; α (O)=0.0393 24; α (P)=0.0072 4;
		191.234 <i>33</i>	100 10	376.947	3+	E1		0.1161 <i>16</i>	$\alpha(Q)=0.000409\ 25$ $\alpha(K)=0.0898\ 13;\ \alpha(L)=0.01973\ 28;$ $\alpha(M)=0.00482\ 7$ $\alpha(N)=0.001308\ 18;\ \alpha(O)=0.000321\ 4;$ $\alpha(P)=5\ 65\times10^{-5}\ 8;\ \alpha(O)=2\ 56\times10^{-6}\ 4$
574.089	(2,3,4) ⁻	29.351 <i>19</i> 176.97 <i>5</i>	70 CA 100 28	544.756 397.147	2 ⁻ ,3 ⁻ 2 ⁻ ,3 ⁻ ,4 ⁻	M1+E2	0.46 +19-23	5.0 5	$\alpha(K) = 3.75; \ \alpha(L) = 0.920 \ 13; \ \alpha(M) = 0.230 \ 6 \\ \alpha(N) = 0.0631 \ 18; \ \alpha(O) = 0.01572 \ 35; \\ \alpha(P) = 0.00292 \ 4; \ \alpha(O) = 0.000157 \ 21$
596.2	11-	147 [#] 222 9 [#] 5		448.9 373 3	10 ⁻ 9 ⁻				a(1)=0.00272 7, a(Q)=0.000137 21
596.425	2-,3-,4-	94.874 ^b 22	≤104 ^b	501.569	(3) ⁻	M1+E2	1.4 +4-3	17.0 <i>17</i>	α (L)=12.4 <i>12</i> ; α (M)=3.4 4 α (N)=0.94 <i>10</i> ; α (O)=0.227 <i>24</i> ; α (P)=0.0372 <i>34</i> ; α (Q)=0.00049 <i>11</i> L + Le ² 22 <i>21</i>
		149.713 <i>11</i>	96 10	446.702	3-	M1+E2	0.20 5	8.94 18	$\alpha(K) = 6.95 \ 17; \ \alpha(L) = 1.492 \ 23; \ \alpha(M) = 0.367 \ 6 \ \alpha(N) = 0.1003 \ 18; \ \alpha(O) = 0.0252 \ 4; \ \alpha(P) = 0.00478 \ 7; \ \alpha(O) = 0.00291 \ 7$
		199.291 20	100 15	397.147	2-,3-,4-	M1		4.09 6	$\alpha(K)=3.22 \ 5; \ \alpha(L)=0.653 \ 9; \ \alpha(M)=0.1592 \ 22 \ \alpha(N)=0.0435 \ 6; \ \alpha(O)=0.01095 \ 15; \ \alpha(P)=0.002095 \ 29; \ \alpha(Q)=0.0001331 \ 19$
603+x?		356 ^{#c} 422 ^{#c}		247+x 181.4+x	(8^+) (7^+)				
603.889	(3,4)+	185.786 25	55 11	418.084	4 ⁺	M1+E2	5.6 +24-11	1.33 6	$\alpha(K)=0.28$ 6; $\alpha(L)=0.766$ 11; $\alpha(M)=0.2133$ 30 $\alpha(N)=0.0589$ 8; $\alpha(O)=0.01415$ 20; $\alpha(D)=0.002325$ 33; $\alpha(O)=2.14\times10^{-5}$ 24
		186.127 <i>34</i>	100 40	417.746	(4)+	M1+E2	2.44 27	1.75 12	$\alpha(r) = 0.0025255; \alpha(Q) = 2.14 \times 10^{-7} 24$ $\alpha(K) = 0.7012; \alpha(L) = 0.76411; \alpha(M) = 0.209530$ $\alpha(N) = 0.05788; \alpha(O) = 0.0139620;$
		334.061 <i>32</i>	44 10	269.854	3+	M1+E2	0.70 +16-1	0.70 8	$\alpha(P)=0.002334\ 34;\ \alpha(Q)=3.8\times10^{-5}\ 5$ $\alpha(K)=0.54\ 7;\ \alpha(L)=0.127\ 8;\ \alpha(M)=0.0315\ 18$ $\alpha(N)=0.0086\ 5;\ \alpha(O)=0.00215\ 13;$ $\alpha(P)=0.000403\ 27;\ \alpha(Q)=2.22\times10^{-5}\ 27$

From ENSDF

L

					Adopte	ed Levels, (Gammas (continu	led)	
						γ ⁽²⁴² Am)	(continued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ‡	Iγ ^{&}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
611+x 612.758	(12 ⁺) 2 ⁻	202.25 $53.00^{b}5$	$100 \\ \leq 54^{b}$	409+x 559.790	(10 ⁺) 2 ⁻	M1+E2	0.06 +3-2	41.0 15	α (L)=30.8 <i>11</i> ; α (M)=7.55 <i>30</i> α (N)=2.07 <i>8</i> ; α (O)=0.519 <i>20</i> ; α (P)=0.0988 <i>32</i> ; α (Q)=0.00616 <i>9</i>
		78.945 19	30 10	533.815	2-	E2		52.1 7	I_{γ} : $I_{\gamma} \le 45$ 9. α (L)=37.8 5; α (M)=10.62 15 α (N)=2.94 4; α (O)=0.701 10; α (P)=0.1112 16; α (Q)=0.000332 5
		106.100 ^b 25	≤210 ^b	506.648	2+	E1+M2	0.167 +20-22	2.2 5	α (L)=1.6 4; α (M)=0.44 10 α (N)=0.122 29; α (O)=0.031 7; α (P)=0.0055 13; α (Q)=0.00030 7 L + L = 182 29;
		193.677 23	90 27	419.085	2-	E2		1.036 15	$\alpha(\mathbf{X})=0.1542\ 22;\ \alpha(\mathbf{L})=0.640\ 9;\ \alpha(\mathbf{M})=0.1787\ 25\ \alpha(\mathbf{N})=0.0494\ 7;\ \alpha(\mathbf{O})=0.01185\ 17;\ \alpha(\mathbf{P})=0.001941\ 27;\ \alpha(\mathbf{O})=1\ 500\times10^{-5}\ 21$
		316.377 25	78 8	296.401	2-	M1+E2	4.77 11	0.230 4	$\alpha(K) = 0.1060 \ 22; \ \alpha(L) = 0.0909 \ 13; \ \alpha(M) = 0.02469 \ 35$ $\alpha(N) = 0.00681 \ 10; \ \alpha(O) = 0.001650 \ 23; \ \alpha(M) = 0.00281 \ 4; \ \alpha(O) = 5.55 \times 10^{-6} \ 10$
		319.91 6	45 11	292.831	2-	M1+E2		0.6 5	$\alpha(K) = 0.54; \ \alpha(L) = 0.135; \ \alpha(M) = 0.03310$ $\alpha(N) = 0.008926; \ \alpha(O) = 0.00227; \ \alpha(P) = 4.1 \times 10^{-4}$ $15; \ \alpha(O) = 2.0 \times 10^{-5}16$
		368.24 6	54 12	244.381	3-	M1+E2		0.43 31	$\alpha(K)=0.32\ 27;\ \alpha(L)=0.084\ 34;\ \alpha(M)=0.021\ 8$ $\alpha(N)=0.0058\ 21;\ \alpha(O)=0.0014\ 5;\ \alpha(P)=2.6\times10^{-4}$ $11:\ \alpha(O)=1\ 3\times10^{-5}\ 10$
		382.234 <i>30</i>	100 10	230.527	1+	E1+M2	0.05 4	0.030 10	$\alpha(K)=0.024$ 7; $\alpha(L)=0.0049$ 22; $\alpha(M)=0.0012$ 6 $\alpha(N)=3.3\times10^{-4}$ 16; $\alpha(O)=8.E-5$ 4; $\alpha(P)=1.5\times10^{-5}$ 8; $\alpha(Q)=8.E-7$ 4 Mult.: 1988Sa18 report mult=E1 or E2. Placement in the level scheme requires $\Delta \pi = ves$
621.527	1-,2-	25.12 5	0.08 CA	596.425	2-,3-,4-				the level scheme requires $\Delta x - y cs$.
		87.726 <i>31</i>	43 18	533.815	2-	M1+E2	0.34 +8-9	11.5 11	α (L)=8.5 8; α (M)=2.17 22 α (N)=0.60 6; α (O)=0.148 15; α (P)=0.0269 22; α (O)=0.00129 6
		165.79 6	42 10	455.688	1-,2-,3-	M1+E2	0.67 +29-27	5.3 9	$\begin{array}{l} \alpha(\text{K}) = 3.8 \ 9; \ \alpha(\text{L}) = 1.149 \ 31; \ \alpha(\text{M}) = 0.294 \ 15 \\ \alpha(\text{N}) = 0.081 \ 4; \ \alpha(\text{O}) = 0.0200 \ 9; \ \alpha(\text{P}) = 0.00361 \ 7; \\ \alpha(\text{Q}) = 0.000163 \ 35 \end{array}$
628.523	3 ⁻ ,4 ⁻ ,5 ⁻	390.92 <i>4</i> 144.890 <i>29</i>	100 <i>13</i> 88 <i>15</i>	230.527 483.640	1+ 4 ⁻	M1+E2	0.32 4	9.45 20	α (K)=7.20 20; α (L)=1.680 28; α (M)=0.417 8 α (N)=0.1143 22; α (O)=0.0286 5; α (P)=0.00535 8; α (O)=0.000303 8
		254.840 ^b 16	≤118 ^b	373.686	4-	M1+E2	0.70 +10-9	1.50 10	$\alpha(K) = 1.12 \ 9; \ \alpha(L) = 0.286 \ 9; \ \alpha(M) = 0.0720 \ 17 \ \alpha(N) = 0.0197 \ 5; \ \alpha(O) = 0.00491 \ 13; \ \alpha(P) = 0.000908$

²⁴²₉₅ Am₁₄₇-19

From ENSDF

²⁴²₉₅Am₁₄₇-19

L

					Adop	ted Levels,	Gammas (contin	ued)		
						γ (²⁴² An	n) (continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
628.523	3-,4-,5-	256.007 33	100 19	372.490	4-	M1+E2	1.42 +31-22	0.92 13		$\begin{array}{c} 29; \ \alpha(\mathrm{Q}) = 4.7 \times 10^{-5} \ 4\\ \mathrm{I}_{\gamma}: \ \mathrm{I}_{\gamma} \leq 109 \ 9.\\ \alpha(\mathrm{K}) = 0.60 \ 12; \ \alpha(\mathrm{L}) = 0.241 \ 11; \ \alpha(\mathrm{M}) = 0.0631\\ 21 \end{array}$
630.291	2-,3-,4-	33.80 5	0.8 <i>CA</i>	596.425	2-,3-,4-					$\alpha(N)=0.0173 \ 6; \ \alpha(O)=0.00425 \ 15; \\ \alpha(P)=0.00075 \ 4; \ \alpha(Q)=2.6\times10^{-5} \ 5$
		96.433 27	97 35	533.815	2-	E2		20.36 29		$\begin{array}{l} \alpha(\text{L}) = 14.75 \ 21; \ \alpha(\text{M}) = 4.15 \ 6 \\ \alpha(\text{N}) = 1.147 \ 16; \ \alpha(\text{O}) = 0.274 \ 4; \ \alpha(\text{P}) = 0.0437 \\ 6; \ \alpha(\text{Q}) = 0.0001515 \ 21 \end{array}$
		183.48 5	100 19	446.702	3-	M1+E2		3.2 19		α (K)=2.1 20; α (L)=0.816 14; α (M)=0.214 13 α (N)=0.059 4; α (O)=0.0144 6; α (P)=0.00255 11; α (O)=9.E–5 8
672.248	(2,3,4) ⁻	75.823 ^b 4	≤349 ^b	596.425	2-,3-,4-	M1		13.99 20		$\begin{array}{l} \alpha(L)=10.51 \ 15; \ \alpha(M)=2.57 \ 4\\ \alpha(N)=0.702 \ 10; \ \alpha(O)=0.1768 \ 25; \\ \alpha(P)=0.0338 \ 5; \ \alpha(O)=0.002162 \ 30 \end{array}$
		98.161 5	62 7	574.089	(2,3,4) ⁻	M1		6.61 9		$\alpha(L)=4.96\ 7;\ \alpha(M)=1.211\ 17$ $\alpha(N)=0.331\ 5;\ \alpha(O)=0.0834\ 12;$ $\alpha(P)=0.01596\ 22;\ \alpha(O)=0.001019\ 14$
		275.087 16	100 6	397.147	2-,3-,4-	M1		1.661 23		$\alpha(K) = 1.310 \ I8; \ \alpha(L) = 0.264 \ 4; \ \alpha(M) = 0.0643 \ 9 \ \alpha(N) = 0.01757 \ 25; \ \alpha(O) = 0.00442 \ 6;$
675.482	(2,3,4)+	71.593 7	41 2	603.889	(3,4)+	M1+E2	0.141 +10-11	17.84 <i>31</i>		$\alpha(P)=0.000846 \ 12; \ \alpha(Q)=5.37\times10^{-5} \ 8 \ \alpha(L)=13.36 \ 23; \ \alpha(M)=3.30 \ 6 \ \alpha(N)=0.905 \ 17; \ \alpha(O)=0.227 \ 4; \ \alpha(P)=0.0426 \ 7; \ \alpha(O)=0.00252 \ 4$
		168.519 8	77 9	506.964	(3)+	M1+E2		4.2 24		$\alpha(K)=2.7\ 25;\ \alpha(L)=1.11\ 6;\ \alpha(M)=0.29\ 4$ $\alpha(N)=0.080\ 10;\ \alpha(O)=0.0197\ 21;$ $\alpha(P)=0.00345\ 9;\ \alpha(Q)=1.2\times10^{-4}\ 10$
		254.840 ^b 16	≤66 ^b	420.651	2+,3+,4+	M1+E2	0.70 +10-9	1.50 <i>10</i>		$\alpha(K)=1.12 \ 9; \ \alpha(L)=0.286 \ 9; \ \alpha(M)=0.0720 \ 17 \ \alpha(N)=0.0197 \ 5; \ \alpha(O)=0.00491 \ 13; \ \alpha(P)=0.000908 \ 29; \ \alpha(Q)=4.7\times10^{-5} \ 4$
		278.319 16	100 6	397.147	2-,3-,4-	(E1)		0.0499 7		$\begin{array}{l} \gamma: 1\gamma \leq 01.5, \\ \alpha(\mathrm{K}) = 0.0393.5; \ \alpha(\mathrm{L}) = 0.00804.11; \\ \alpha(\mathrm{M}) = 0.001956.27 \\ \alpha(\mathrm{N}) = 0.000531.7; \ \alpha(\mathrm{O}) = 0.0001310.18; \\ \alpha(\mathrm{P}) = 2.362 \times 10^{-5}.33; \ \alpha(\mathrm{Q}) = 1.170 \times 10^{-6}.16 \end{array}$
681.894	3-	77.988 ^b 23 113.699 <i>11</i>	≤30 ^b 100 7	603.889 568.215	(3,4) ⁺ 4 ⁻	M1		4.32 6		I_{γ} : Iγ≤21 9. α(L)=3.25 5; α(M)=0.792 11

From ENSDF

 $^{242}_{95}\mathrm{Am}_{147}$ -20

						Ad	lopted Levels	s, <mark>Gammas</mark> (cont	tinued)		
							γ (²⁴² A	m) (continued)			
	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	Ιγ ^{&}	E_f	J_f^π	Mult.@	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
	681.894	3-	137.159 27	30 6	544.756	2-,3-	M1+E2	5.27 14	4.47 6	6	$\begin{aligned} \alpha(N) = 0.2166 \ 30; \ \alpha(O) = 0.0545 \ 8; \\ \alpha(P) = 0.01043 \ 15; \ \alpha(Q) = 0.000665 \ 9 \\ ce(K)/(\gamma + ce) = 0.0898 \ 32; \\ ce(L)/(\gamma + ce) = 0.528 \ 6; \\ ce(M)/(\gamma + ce) = 0.1477 \ 25 \\ ce(N)/(\gamma + ce) = 0.0409 \ 7; \\ ce(O)/(\gamma + ce) = 0.00978 \ 18; \\ ce(P)/(\gamma + ce) = 0.001584 \ 29; \\ ce(Q)/(\gamma + ce) = 1.008 \times 10^{-5} \ 22 \\ \alpha(K) = 0.491 \ 18; \ \alpha(L) = 2.89 \ 4; \ \alpha(M) = 0.809 \\ 11 \\ \alpha(N) = 0.2237 \ 31; \ \alpha(O) = 0.0536 \ 8; \end{aligned}$
	682.7 692+x?	12-	$233.8^{\#} 5$ $369^{\#c}$	100	448.9 323.4+x	10^{-} (9 ⁺)					α (P)=0.00867 <i>12</i> ; α (Q)=5.52×10 ⁻⁵ <i>10</i>
2	704.030	1-,2-,3-	82.484 ^b 17	≤46 ^b	621.527	(8) 1 ⁻ ,2 ⁻	M1+E2	4.6 15	41.0 <i>16</i>		α (L)=29.7 <i>12</i> ; α (M)=8.33 <i>35</i> α (N)=2.30 <i>10</i> ; α (O)=0.550 <i>23</i> ; α (P)=0.0876 <i>34</i> ; α (Q)=0.00034 7
			144 254 <mark>b</mark> 17	<50 ^b	559 790	2-					I_{γ} . $I_{\gamma} \leq 57$ γ . I.: $I_{\gamma} < 44.6$
			202.421 ^b 39	$\leq 48^{b}$	501.569	(3)-	E2		0.876 12		$\alpha(K)=0.1458 \ 20; \ \alpha(L)=0.530 \ 7; \\ \alpha(M)=0.1478 \ 21 \\ \alpha(N)=0.0409 \ 6; \ \alpha(O)=0.00981 \ 14; \\ \alpha(P)=0.001610 \ 23; \ \alpha(Q)=1.324\times10^{-5} \ 19 $
			376.155 32	100 25	327.884	3-	M1+E2	3.9 +10-6	0.152 <i>13</i>		$\begin{split} &I_{\gamma}: I_{\gamma} \leq 38 \ 10, \\ &\alpha(K) = 0.084 \ 11; \ \alpha(L) = 0.0498 \ 16; \\ &\alpha(M) = 0.0133 \ 4 \\ &\alpha(N) = 0.00367 \ 10; \ \alpha(O) = 0.000894 \ 26; \\ &\alpha(P) = 0.000155 \ 5; \ \alpha(Q) = 4.0 \times 10^{-6} \ 4 \end{split}$
	710.389	1-,2-,3-	38.145 <i>10</i> 81.864 <i>32</i>	33 18	672.248 628.523	$(2,3,4)^{-}$ 3 ⁻ ,4 ⁻ ,5 ⁻	M1		11.19 <i>16</i>		α (L)=8.41 <i>12</i> ; α (M)=2.053 <i>29</i> α (N)=0.561 <i>8</i> ; α (O)=0.1414 <i>20</i> ;
			88.869 <i>19</i>	100 35	621.527	1-,2-	M1+E2	0.30 +10-12	10.6 12		α (P)=0.02/0 4; α (Q)=0.001728 24 α (L)=7.9 8; α (M)=1.99 25 α (N)=0.54 7; α (O)=0.135 16; α (P)=0.0248 24; α (Q)=0.00127 7
			136.299 <i>23</i>	34 13	574.089	(2,3,4)-	M1(+E2)	0.14 16	11.8 5		$\alpha(r)=0.0248\ 24;\ \alpha(Q)=0.001277$ $\alpha(K)=9.2\ 6;\ \alpha(L)=1.95\ 7;\ \alpha(M)=0.477\ 25$ $\alpha(N)=0.131\ 7;\ \alpha(O)=0.0328\ 16;$ $\alpha(P)=0.00625\ 20;\ \alpha(O)=0.000388\ 23$
	712.442	2-,3-,4-	83.926 12	56 11	628.523	3-,4-,5-	M1+E2	1.3 +4-3	28 4		$\alpha(L)=20.7 \ 26; \ \alpha(M)=5.7 \ 8 \\ \alpha(N)=1.58 \ 22; \ \alpha(O)=0.38 \ 5; \ \alpha(P)=0.062 \\ 8; \ \alpha(Q)=0.00076 \ 17 $

$^{242}_{95}\mathrm{Am}_{147}\text{-}21$

н

From ENSDF

					Ad	lopted Leve	els, Gammas (con	tinued)	
						$\gamma(^{242})$	Am) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	Ιγ ^{&}	E_f	J_f^π	Mult.@	$\delta^{@}$	$lpha^{\dagger}$	Comments
712.442	2-,3-,4-	138.352 12	53 6	574.089	(2,3,4) ⁻	M1+E2	1.5 +5-3	6.3 8	$ \begin{array}{c} \alpha(\text{K}) = 2.9 \ 10; \ \alpha(\text{L}) = 2.51 \ 11; \ \alpha(\text{M}) = 0.69 \ 4 \\ \alpha(\text{N}) = 0.189 \ 11; \ \alpha(\text{O}) = 0.0457 \ 24; \ \alpha(\text{P}) = 0.00766 \ 29; \\ \alpha(\text{O}) = 0.00015 \ 4 \end{array} $
		293.34 6	83 8	419.085	2-	E2		0.2413 34	$\alpha(K)=0.0815 \ 11; \ \alpha(L)=0.1165 \ 16; \ \alpha(M)=0.0321 \ 4$ $\alpha(N)=0.00885 \ 12; \ \alpha(O)=0.002134 \ 30; \ \alpha(P)=0.000358 \ 5; \ \alpha(O)=5.04\times10^{-6} \ 7$
722	12-	384.531 27 126 [#] 242.5 [#] 5	100 10	327.884 596.2 479	3 ⁻ 11 ⁻ 10 ⁻				
727.4+x 731.225	(13 ⁺) 3 ⁺ ,4 ⁺ ,5 ⁺	222.0 [#] 5 102.698 5	53 10	505.4+x 628.523	(11 ⁺) 3 ⁻ ,4 ⁻ ,5 ⁻	E1+M2	0.122 +13-15	1.40 29	α (L)=1.02 21; α (M)=0.28 6 α (N)=0.079 17; α (O)=0.020 4; α (P)=0.0036 8;
		134.86 <i>4</i> 313.20 7	100 22 55 13	596.425 418.084	2 ⁻ ,3 ⁻ ,4 ⁻ 4 ⁺	M1+E2	2.2 +8-4	0.36 7	α (Q)=0.00019 4 α (K)=0.22 6; α (L)=0.106 7; α (M)=0.0282 15 α (N)=0.0078 4; α (O)=0.00190 11; α (P)=0.000332
794+x?		385 ^{#c} 471 ^{#c}		409+x 323.4+x	(10 ⁺) (9 ⁺)				23; $\alpha(Q)=1.00\times10^{-5}$ 24
814	13-	131 [#] 252.8 [#] 5		682.7 561	12 ⁻ 11 ⁻				
852+x 858.0	(14 ⁺) 13 ⁻	241.1 [#] 5 136 [#]	100	611+x 722	(12 ⁺) 12 ⁻				
873.996	2-	192.108 ^b 6	≤63 ^b	681.894	3-	M1+E2	4.1 +13-7	1.26 8	α (K)=0.35 8; α (L)=0.666 9; α (M)=0.1846 26 α (N)=0.0510 7; α (O)=0.01226 17; α (P)=0.002027 29; α (Q)=2.28×10 ⁻⁵ 31 L: $\ln < 60.5$ 25
		243.690 ^b 11	≤32 ^b	630.291	2-,3-,4-	M1+E2	0.71 6	1.70 8	$\alpha(K)=1.26\ 7;\ \alpha(L)=0.328\ 7;\ \alpha(M)=0.0827\ 14$ $\alpha(N)=0.0227\ 4;\ \alpha(O)=0.00564\ 10;\ \alpha(P)=0.001040$ $22;\ \alpha(Q)=5.28\times10^{-5}\ 27$
		314.33 7	24 4	559.790	2-	E2		0.1946 27	$\begin{split} & I_{\gamma}: 1\gamma \leq 30.5 \ 16. \\ & \alpha(K) = 0.0723 \ 10; \ \alpha(L) = 0.0892 \ 13; \ \alpha(M) = 0.02447 \ 34 \\ & \alpha(N) = 0.00675 \ 9; \ \alpha(O) = 0.001631 \ 23; \\ & \alpha(P) = 0.000275 \ 4; \ \alpha(Q) = 4.26 \times 10^{-6} \ 6 \end{split}$
		585.21 <i>16</i> 599.55 <i>12</i>	46 <i>15</i> 39 <i>14</i>	289.028 274.330	4 ⁻ 1 ⁻	M1+E2	2.84 34	0.055 5	α (K)=0.038 4; α (L)=0.0122 6; α (M)=0.00315 14 α (N)=0.00086 4; α (O)=0.000213 10;
		629.64 8	100 34	244.381	3-				$\alpha(\mathbf{P})=3.86\times10^{-5}\ 20;\ \alpha(\mathbf{Q})=1.62\times10^{-6}\ 15$

From ENSDF

l

						Adopted L	evels, Gammas (continued)	
						$\gamma(2)$	²⁴² Am) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	E_f	J_f^π	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
902.494	(3)-	192.108 ^b 6	≤68 ^b	710.389	1-,2-,3-	M1+E2	4.1 +13-7	1.26 8	$\alpha(K)=0.35 \ 8; \ \alpha(L)=0.666 \ 9; \ \alpha(M)=0.1846 \ 26 \\ \alpha(N)=0.0510 \ 7; \ \alpha(O)=0.01226 \ 17; \ \alpha(P)=0.002027 \\ 29; \ \alpha(Q)=2.28\times10^{-5} \ 31 \\ L: \ 1\times \le 52.27$
		230.242 7	≤97	672.248	(2,3,4) ⁻	M1		2.73 4	$\alpha(K)=2.150\ 30;\ \alpha(L)=0.435\ 6;\ \alpha(M)=0.1059\ 15$ $\alpha(N)=0.0289\ 4;\ \alpha(O)=0.00729\ 10;\ \alpha(P)=0.001394$ $20;\ \alpha(Q)=8.85\times10^{-5}\ 12$ L: $1\gamma < 95.3\ 20$.
		328.409 19	37 3	574.089	(2,3,4) ⁻	M1		1.017 14	$\alpha(K)=0.803 \ 11; \ \alpha(L)=0.1613 \ 23; \ \alpha(M)=0.0393 \ 5$ $\alpha(N)=0.01073 \ 15; \ \alpha(O)=0.00270 \ 4; \ \alpha(P)=0.000517$ $7; \ \alpha(Q)=3.28\times10^{-5} \ 5$
904+x		658.11 <i>6</i> 399 [#] <i>c</i> 495 [#] <i>c</i>	100 16	244.381 505.4+x 409+x	3 ⁻ (11 ⁺) (10 ⁺)				
906.499	(3)-	32.526 ^b 21	≤1.0 ^b	873.996	2-	M1+E2	0.33 5	5.2×10 ² 10	$\begin{array}{l} \alpha(\text{L})=3.8\times10^2 \ 7; \ \alpha(\text{M})=103 \ 2I \\ \alpha(\text{N})=28 \ 6; \ \alpha(\text{O})=6.8 \ I3; \ \alpha(\text{P})=1.14 \ 2I; \\ \alpha(\text{Q})=0.0250 \ 5 \\ \text{I}_{\gamma}: \ \text{I}_{\gamma} \leq \approx 1.0. \end{array}$
		202.421 ^b 39	≤85 ^b	704.030	1 ⁻ ,2 ⁻ ,3 ⁻	E2		0.876 12	
		450.69 6	100 21	455.688	1-,2-,3-	M1+E2	0.86 +35-27	0.28 6	$\alpha(K)=0.21\ 5;\ \alpha(L)=0.049\ 7;\ \alpha(M)=0.0122\ 17$ $\alpha(N)=0.0033\ 5;\ \alpha(O)=0.00084\ 12;\ \alpha(P)=0.000157$ $24;\ \alpha(Q)=8.7\times10^{-6}\ 20$
949.660	(4 ⁻)	43.17 ^b 5 75.664 7	≤15 ^b 100 <i>18</i>	906.499 873.996	(3) ⁻ 2 ⁻	(E2)		63.7 9	I_{γ} : $I_{\gamma} ≤ ≈ 15$. α (L)=46.2 6; α (M)=12.98 18 α (N)=3.59 5; α (O)=0.857 12; α (P)=0.1358 19; α (Q)=0.000394 6
954.1	14-	140 [#] 271.4 [#] 5		814 682.7	13 ⁻ 12 ⁻				
988.6+x	(15+)	261.2 [#] 5	100	727.4+x	(13 ⁺)				
1002	14-	144 [#] 188 [#] 280.5 [#] 5		858.0 814 722	13 ⁻ 13 ⁻ 12 ⁻				
1002.618	(5 ⁻)	53.00 ^b 5	≤75 ^b	949.660	(4 ⁻)	M1+E2	0.06 +3-2	41.0 15	α (L)=30.8 <i>11</i> ; α (M)=7.55 <i>30</i> α (N)=2.07 <i>8</i> ; α (O)=0.519 <i>20</i> ; α (P)=0.0988 <i>32</i> ; α (Q)=0.00616 <i>9</i>
		96.115 <i>16</i>	100 20	906.499	(3)-	(E2)		20.67 29	$\alpha(L) = 14.97 \ 21; \ \alpha(M) = 4.21 \ 6$

 $^{242}_{95}\mathrm{Am}_{147}$ -23

 $^{242}_{95}\mathrm{Am}_{147}$ -23

From ENSDF

					Adopted	l Levels, Ga	mmas (contin	ued)
						γ ⁽²⁴² Am) (continued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ [‡]	$I_{\gamma}^{\&}$	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	α^{\dagger}	Comments
								α (N)=1.165 <i>16</i> ; α (O)=0.278 <i>4</i> ; α (P)=0.0444 <i>6</i> ; α (Q)=0.0001534 <i>21</i>
1024+x		413 [#] 519 [#]		611+x 505.4+x	(12^+) (11^+)			
1103	15-	149 [#]		954.1 814	14 ⁻			
1132+x	(16 ⁺)	289.4 5 280 [#]		852+x	(14 ⁺)			
1151+x		424" 540 [#]		727.4+x 611+x	(13^+) (12^+)			
1156.1	15-	154 ^{#c} 298.1 [#] 5		1002 858.0	14 ⁻ 13 ⁻			
1161.97	1-,2-,3-,4-	255.467 38	98 22	906.499	(3)-	E2	0.380 5	$\alpha(K)=0.1028 \ 14; \ \alpha(L)=0.2016 \ 28; \ \alpha(M)=0.0558 \ 8 \\ \alpha(N)=0.01542 \ 22; \ \alpha(O)=0.00371 \ 5; \ \alpha(P)=0.000618 \ 9; \ \alpha(O)=0.000618 \ 9;$
		451.60 <i>13</i>	79 <i>21</i>	710.389	1-,2-,3-	E2	0.07133 99	$\alpha(Q) = 1.11 \times 10^{-7} I0^{-7} I0^{-7} \alpha(K) = 0.0382 5; \ \alpha(L) = 0.02427 \ 34; \ \alpha(M) = 0.00651 \ 9$ $\alpha(N) = 0.001792 \ 25; \ \alpha(O) = 0.000436 \ 6; \ \alpha(P) = 7.57 \times 10^{-5} \ 11; \ \alpha(O) = 1.875 \times 10^{-6} \ 26$
		617.207 40	100 10	544.756	2-,3-	M1	0.1829 26	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.1448 \ 20; \ \alpha(\mathrm{L}) = 0.0287 \ 4; \ \alpha(\mathrm{M}) = 0.00697 \ 10 \\ \alpha(\mathrm{N}) = 0.001905 \ 27; \ \alpha(\mathrm{O}) = 0.000479 \ 7; \ \alpha(\mathrm{P}) = 9.17 \times 10^{-5} \ 13; \\ \alpha(\mathrm{Q}) = 5.82 \times 10^{-6} \ 8 \end{array} $
1260.9	16-	306.8 [#] 5	100	954.1	14-			
1287+x		435 [#]		852+x	(14+)			
		560#	100	727.4+x	(13 ⁺)			
1287.6+x?	(17^{+})	299 ″	100	988.6+x	(15+)			
1316	16	$314.2^{#}$ 5	100	1002	14			
1426	17	323.1" 3 445#	100	000 6 1 11	15 (15 ⁺)			
1454+X		445" 501 # C		988.0+X	(15^{+})			
$1/152 + x^{2}$	(10^{+})	381 321 [#]	100	032+X	(14)			
1433+X?	(10)	321 326 7 # 5	100	$1152 \pm x$ 1156 1	(10)			
$1587 \pm x^{9}$	17	$_{455}$	100	1130.1 $1132 \pm x$	(16^+)			
1599.0	18-	338 1 [#] 5	100	1260.9	16-			
1652	18-	335.2 [#] 5	100	1316	16-			
2200	(2+,3-)	2200 ^c 80	100	0.0	1-			E_{γ} : From ²⁴¹ Am(n, γ) (1979Va25).

[†] Additional information 1.

24

 $^{242}_{95}\mathrm{Am}_{147}$ -24

 γ (²⁴²Am) (continued)

 ‡ From (n, γ) except where noted otherwise.

- [#] From Coulomb excitation. [@] From conversion coefficient and subshell ratio measurements in (n,γ) . [&] Relative photon intensities deexciting each level, taken from (n,γ) .

^{*a*} Multiply placed.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

²⁴²₉₅Am₁₄₇

Legend

Adopted Levels, Gammas

Level Scheme (continued)

 $^{242}_{95} \mathrm{Am}_{147}$

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

²⁴²₉₅Am₁₄₇

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

²⁴²₉₅Am₁₄₇

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{242}_{95}Am_{147}$

34

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

²⁴²₉₅Am₁₄₇

 $^{242}_{95}\mathrm{Am}_{147}$

 $^{242}_{95}Am_{147}$

		Band(O): K 5/2[523]+v 1	^π =3 ⁺ (π l/2[501])		
		(6 ⁺)	1151		
				Band(P): 5/2[523]-v	K ^π =2 / 1/2[5
				(4+)	-
		(5 ⁺)	1066		
				(3+)	:
Band(M): $K^{\pi} = 2^{-} (\pi 5/2[523] - v 1/2[620])$ (5 ⁻) 1002.618		<u>(4</u> ⁺)	<u>1011</u>	<u>(2</u> ⁺)	
53		(3+)	974.9		
(4 ⁻) 96 949.660					
(4 ⁻) 96 949.660 43 (3) ⁻ 76 906.400	Band(N): K ^π =3 ⁻ (π 5/2[523]+v 1/2[620])				
(4 [−]) 96 949.660 43 (3) [−] 76 906.499 33	Band(N): $K^{\pi}=3^{-}$ (π 5/2[523]+ v 1/2[620]) (3) ⁻ 902.494				

 $^{242}_{95}\mathrm{Am}_{147}$