#### <sup>240</sup>Pu(n, $\gamma$ ) E=th:secondary $\gamma$ 's **1998Wh01**

|                 |                | History             |                        |
|-----------------|----------------|---------------------|------------------------|
| Туре            | Author         | Citation            | Literature Cutoff Date |
| Full Evaluation | C. D. Nesaraja | NDS 130, 183 (2015) | 30-Sep-2015            |

Evaluator would like to acknowledge M. Martin (ORNL) for assisting in this dataset and for providing copies of the private communication between him and R.W.Hoff (co-author of 1998Wh01).

1998Wh01: Secondary gammas measured using curved crystal spectrometer GAMS1 and GAMS2/3 at Institur-Laue Langevin,

Grenoble. GAMS1 was used to measure  $\gamma$  rays between 35-500 keV and GAMS2/3 was used to measure the 15-1500 keV  $\gamma$  rays. Conversion electrons were studies with the BILL electron spectrometer.

| E(level) <sup>‡</sup>         | $J^{\pi \dagger}$                                    | Comments                                                |
|-------------------------------|------------------------------------------------------|---------------------------------------------------------|
| 0#                            | 5/2+                                                 |                                                         |
| 41.9722 <sup>#</sup> 9        | 7/2+                                                 |                                                         |
| 95.7795 <sup>#</sup> 12       | 9/2+                                                 |                                                         |
| 161.315 <sup>#</sup> 4        | $11/2^{+}$                                           |                                                         |
| 161.6853 <sup>@</sup> 9       | $1/2^{+}$                                            |                                                         |
| 170.9399 <sup>@</sup> 9       | $3/2^{+}$                                            |                                                         |
| 175.0523 <sup>&amp;</sup> 14  | 7/2+                                                 |                                                         |
| 222.9879 <sup>@</sup> 11      | 5/2+                                                 |                                                         |
| 231.934 <sup>&amp;</sup> 9    | 9/2+                                                 |                                                         |
| 244.8895 <sup>@</sup> 13      | 7/2+                                                 |                                                         |
| 337.1363 <sup>@</sup> 23      | 9/2+                                                 |                                                         |
| 404.4526 <sup>a</sup> 17      | (9/2)-                                               |                                                         |
| 408.899 <sup><i>a</i></sup> 3 | $(7/2)^{-}$                                          |                                                         |
| 518.8121° 25                  | 5/2                                                  |                                                         |
| 561.421 <sup>e</sup> 5        | 7/2-                                                 |                                                         |
| 614.836 <sup>e</sup> 9        | (9/2-)                                               |                                                         |
| 755.1743 <sup>b</sup> 21      | $1/2^{+}$                                            |                                                         |
| 769.270 <sup><i>f</i></sup> 4 | 1/2-                                                 |                                                         |
| 779.1504 <sup>f</sup> 21      | 3/2-                                                 |                                                         |
| 784.1525 <sup>b</sup> 25      | 3/2+                                                 |                                                         |
| 800.443 <sup>c</sup> 5        | 3/2+                                                 |                                                         |
| 800.479 <sup>6</sup> 6        | 5/2+                                                 |                                                         |
| 810.945 <sup><i>J</i></sup> 4 | 5/2-                                                 |                                                         |
| 831.587° 7                    | 5/2+                                                 |                                                         |
| 833.47 10                     | $\frac{7}{2^{-}}$                                    | E(level): See comment on the $496\gamma$ doublet.       |
| 841 9575 <mark>8</mark> 22    | $\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}$ |                                                         |
| 850.5395 <sup>8</sup> 21      | 3/2-                                                 |                                                         |
| 869.383 <sup>b</sup> 7        | 7/2+                                                 |                                                         |
| 897.503? <sup>8</sup> 22      | (5/2 <sup>-</sup> )                                  |                                                         |
| 940.311 10                    | $3/2^+$                                              |                                                         |
| 942.384 3                     | 3/2*                                                 |                                                         |
| $964.940^{-10}$               | 1/2                                                  |                                                         |
| 1009.438 7                    | 3/2<br>3/2-                                          | $J^{\pi}$ : M1 $\gamma'$ s to $1/2^{-}$ and $5/2^{-}$ . |
| 1090.023 5                    | 3/2-                                                 |                                                         |
| 1223.841 9                    | 1/2,3/2                                              |                                                         |

Continued on next page (footnotes at end of table)

### <sup>240</sup>Pu( $n,\gamma$ ) E=th:secondary $\gamma$ 's **1998Wh01** (continued)

#### <sup>241</sup>Pu Levels (continued)

| E(level) <sup>‡</sup> | $J^{\pi \dagger}$ |
|-----------------------|-------------------|
| 1253.792 13           | 1/2-,3/2-         |
| 1296.70 5             | 3/2-              |
| 1357.682 22           | 1/2,3/2           |

<sup>†</sup> From Adopted Levels.

<sup>‡</sup> From a least-squares fit to the  $E\gamma$  values except as noted otherwise. An additional uncertainty of 20 ppm due to the uncertainty in the  $E\gamma$  calibration must be added to get absolute level energies.

# Band(A): 5/2[622] band.

<sup>@</sup> Band(B): 1/2[631] band.

<sup>&</sup> Band(C): 7/2[624] band.

<sup>a</sup> Band(D): 7/2[743] band.

 $^b$  Band(E): 1/2[620] band.

<sup>c</sup> Band(F): 3/2[631] band.

<sup>*d*</sup> Band(G): 1/2[501] band.

<sup>*e*</sup> Band(H):  $5/2[622] \otimes 0^{-}$  band.

f Band(I):  $1/2[761] + 1/2[631] \otimes 0^{-}$ .

<sup>g</sup> Band(J):  $1/2[620] \otimes 0^{-} + 1/2[631] \otimes 0^{-}$ .

| L |                                                 |                                   |                        |                      |          | <sup>240</sup> <b>Pu</b> | $(\mathbf{n}, \gamma)$ E=th:s | secondary $\gamma$ 's     | 1998Wh01 (     | continued)                                                                                                                                                                                                                                                                                                                               |
|---|-------------------------------------------------|-----------------------------------|------------------------|----------------------|----------|--------------------------|-------------------------------|---------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                 |                                   |                        |                      |          |                          |                               | $\gamma(^{241}\text{Pu})$ |                |                                                                                                                                                                                                                                                                                                                                          |
|   | $E_{\gamma}^{\dagger}$                          | $I_{\gamma}$ ‡ $f$                | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$     | Mult. <sup>a</sup>            | $\delta^{e}$              | $\alpha^{d}$   | Comments                                                                                                                                                                                                                                                                                                                                 |
|   | x35.788 1<br>41.972 1                           | 0.100 <i>12</i><br>0.146 <i>5</i> | 41.9722                | 7/2+                 | 0        | 5/2+                     | M1+E2                         | 0.186 4                   | 102.4 20       | $\alpha$ (L)=76.2 <i>15</i> ; $\alpha$ (M)=19.4 <i>4</i><br>$\alpha$ (N)=5.30 <i>11</i> ; $\alpha$ (O)=1.294 <i>25</i> ; $\alpha$ (P)=0.231 <i>5</i> ; $\alpha$ (Q)=0.01089<br><i>16</i>                                                                                                                                                 |
|   | x51.325 2<br>52.048 2                           | 0.049 <i>5</i><br>0.054 <i>6</i>  | 222.9879               | 5/2+                 | 170.9399 | 3/2+                     | M1+E2                         | 0.498 6                   | 100.3 19       | $\alpha$ (L)=73.6 <i>14</i> ; $\alpha$ (M)=19.7 <i>4</i><br>$\alpha$ (N)=5.41 <i>11</i> ; $\alpha$ (O)=1.293 <i>24</i> ; $\alpha$ (P)=0.215 <i>4</i> ; $\alpha$ (Q)=0.00506                                                                                                                                                              |
|   | 53.807 1                                        | 0.086 11                          | 95.7795                | 9/2+                 | 41.9722  | 7/2+                     | M1+E2                         | 0.201 8                   | 44.7 11        | α(L)=33.3 8; α(M)=8.42 21<br>α(N)=2.30 6; α(O)=0.563 14; α(P)=0.1021 22;<br>α(O)=0.00520 8                                                                                                                                                                                                                                               |
|   | 56.89 <i>3</i>                                  | 0.0033 4                          | 231.934                | 9/2+                 | 175.0523 | 7/2+                     | M1+E2                         | 0.68                      | 92.4 <i>14</i> | α(L)=67.6 I0; α(M)=18.4 3<br>α(N)=5.03 8; α(O)=1.198 I7; α(P)=0.196 3; α(Q)=0.00346 5<br>$E_{\gamma},I_{\gamma}$ : Not seen in (n,γ) spectrum. Values are from<br><sup>245</sup> Cm(α) decay, where Iγ/Iγ(190γ)=0.165 I1.                                                                                                                |
|   | 57.806 2                                        | 0.066 10                          | 841.9575               | 1/2-                 | 784.1525 | 3/2+                     | E1 <sup>b</sup>               |                           | 0.555          | $\alpha$ (L)=0.416 6; $\alpha$ (M)=0.1037 15<br>$\alpha$ (N)=0.0277 4; $\alpha$ (O)=0.00649 9; $\alpha$ (P)=0.001012 15;<br>$\alpha$ (O)=3.26×10 <sup>-5</sup> 5                                                                                                                                                                         |
|   | 61.303 <i>1</i>                                 | 0.091 3                           | 222.9879               | 5/2+                 | 161.6853 | 1/2+                     | E2                            |                           | 160.0          | $\alpha(Q)=5.20\times10^{-5}$<br>$\alpha(L)=116.2$ 17; $\alpha(M)=32.5$ 5<br>$\alpha(N)=8.92$ 13; $\alpha(O)=2.10$ 3; $\alpha(P)=0.330$ 5; $\alpha(Q)=0.000831$<br>12<br>Mult.: $\delta>2.4$ from $\alpha(L2)exp$ , >0.64 from L3/L2, and 5.5<br>+8-6 from L1/L2. Placement in the level scheme requires<br>$\Delta L=2$ $\Delta \pi=n0$ |
|   | x62.812 2                                       | 0.067 5                           |                        |                      |          |                          |                               |                           |                | $\Delta J = 2, \ \Delta I = 110.$                                                                                                                                                                                                                                                                                                        |
|   | 65.535 <i>3</i>                                 | 0.164 7                           | 161.315                | 11/2+                | 95.7795  | 9/2+                     | M1(+E2)                       | ≤0.44                     | 27 8           | $\alpha(L)=20$ 6; $\alpha(M)=5.2$ 17<br>$\alpha(N)=1.4$ 5; $\alpha(O)=0.34$ 11; $\alpha(P)=0.061$ 16; $\alpha(O)=0.00281$ 20                                                                                                                                                                                                             |
|   | 68.904 2                                        | 0.029 5                           | 869.383                | 7/2+                 | 800.479  | 5/2+                     | M1+E2                         | 0.14 5                    | 18.1 <i>12</i> | $\alpha(L)=13.6 \; 9; \; \alpha(M)=3.35 \; 25$<br>$\alpha(N)=0.91 \; 7; \; \alpha(O)=0.226 \; 16; \; \alpha(P)=0.0423 \; 25;$<br>$\alpha(O)=0\; 00255 \; 5$                                                                                                                                                                              |
|   | 71.390 2                                        | 0.042 3                           | 850.5395               | 3/2-                 | 779.1504 | 3/2-                     | M1+E2                         | 0.10 +4-5                 | 15.7 7         | $\begin{array}{l} \alpha(Q)=0.00253 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                               |
|   | <sup>x</sup> 72.584 <i>3</i><br>73.950 <i>1</i> | 0.018 <i>3</i><br>0.056 <i>3</i>  | 244.8895               | 7/2+                 | 170.9399 | 3/2+                     | E2                            |                           | 65.3           | $\alpha$ (L)=47.4 7; $\alpha$ (M)=13.27 19<br>$\alpha$ (N)=3.65 6; $\alpha$ (O)=0.858 12; $\alpha$ (P)=0.1356 19;<br>$\alpha$ (Q)=0.000381 6<br>Mult.: $\delta$ =1.8 +10-4 from $\alpha$ (L2)exp, >0.77 from L3/L2, and<br>>0.56 from M3/M2. Placement in the level scheme requires<br>$\Delta$ J=2.                                     |
|   | <sup>x</sup> 75.331 2<br>79.262 7               | 0.034 6<br>0.007 2                | 175.0523               | 7/2+                 | 95.7795  | 9/2+                     | M1+E2                         | 0.65 +25-22               | 22 6           | $\alpha$ (L)=16 4; $\alpha$ (M)=4.3 <i>12</i><br>$\alpha$ (N)=1.2 4; $\alpha$ (O)=0.28 8; $\alpha$ (P)=0.047 <i>11</i> ; $\alpha$ (Q)=0.00129 22                                                                                                                                                                                         |

ω

 $^{241}_{94}\mathrm{Pu}_{147}\text{-}3$ 

|                              |                                  |                        |                      | 2        | <sup>40</sup> Pu(n   | $(,\gamma)$ E=th:s | econdary $\gamma'$ s | <b>1998W</b>    | h01 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------|----------------------------------|------------------------|----------------------|----------|----------------------|--------------------|----------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                  |                        |                      |          |                      |                    |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ${\rm E_{\gamma}}^{\dagger}$ | $_{\mathrm{I}_{\gamma}}$ ‡ $f$   | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{e}$         | $\alpha^{d}$    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 86.783 1                     | 0.134 6                          | 841.9575               | 1/2-                 | 755.1743 | 1/2+                 | E1 <sup>b</sup>    |                      | 0.191           | $\begin{aligned} &\alpha(\text{L})=0.1436\ 21;\ \alpha(\text{M})=0.0354\ 5\\ &\alpha(\text{N})=0.00951\ 14;\ \alpha(\text{O})=0.00226\ 4;\ \alpha(\text{P})=0.000372\ 6;\\ &\alpha(\text{Q})=1.381\times10^{-5}\ 20 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <sup>x</sup> 86.965 4        | 0.023 4                          |                        |                      |          |                      |                    |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95.365 1                     | 0.077 4                          | 850.5395               | 3/2-                 | 755.1743 | 1/2+                 | E1 <sup>b</sup>    |                      | 0.1495          | $\alpha$ (L)=0.1123 <i>16</i> ; $\alpha$ (M)=0.0277 <i>4</i><br>$\alpha$ (N)=0.00743 <i>11</i> ; $\alpha$ (O)=0.001770 <i>25</i> ; $\alpha$ (P)=0.000294 <i>5</i> ;<br>$\alpha$ (O)=1.128×10 <sup>-5</sup> <i>16</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 95.786 <i>3</i>              | 0.013 2                          | 95.7795                | 9/2+                 | 0        | 5/2+                 | E2                 |                      | 19.3            | $\alpha(L)=14.00\ 20;\ \alpha(M)=3.92\ 6$<br>$\alpha(N)=1.078\ 15;\ \alpha(O)=0.254\ 4;\ \alpha(P)=0.0404\ 6;\ \alpha(Q)=0.0001375$<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 114.148 2                    | 0.097 5                          | 337.1363               | 9/2+                 | 222.9879 | 5/2+                 | E2                 |                      | 8.55            | $\alpha(L)=6.21 \ 9; \ \alpha(M)=1.737 \ 25$<br>$\alpha(N)=0.478 \ 7; \ \alpha(O)=0.1126 \ 16; \ \alpha(P)=0.0180 \ 3; \ \alpha(Q)=7.24\times10^{-5}$<br>II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x119.734 5<br>133.081 2      | 0.032 <i>4</i><br>0.111 <i>3</i> | 175.0523               | 7/2+                 | 41.9722  | 7/2+                 | M1+E2              | 0.222 9              | 11.36 <i>17</i> | $\alpha(K)=8.80 \ 13; \ \alpha(L)=1.92 \ 3; \ \alpha(M)=0.473 \ 7 \ \alpha(N)=0.1287 \ 19; \ \alpha(O)=0.0319 \ 5; \ \alpha(P)=0.00599 \ 9; \ \alpha(Q)=0.000367 \ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 136.127 20                   | 0.0111 <i>1</i>                  | 231.934                | 9/2+                 | 95.7795  | 9/2+                 | M1+E2              | 0.63 21              | 9.0 <i>10</i>   | Mult.: The authors' value for I(ce(L3)) in Table II is incorrect<br>(priv comm from R. W. Hoff. The correct value is not available).<br>$\delta$ is from L2/L1 and M2/M1.<br>$\alpha(K)=6.3$ 12; $\alpha(L)=2.04$ 15; $\alpha(M)=0.53$ 5<br>$\alpha(N)=0.144$ 14; $\alpha(O)=0.035$ 3; $\alpha(P)=0.0062$ 4; $\alpha(Q)=0.00027$ 5<br>I <sub><math>\gamma</math></sub> : I $\gamma$ is taken from I $\gamma$ /I $\gamma$ (190 $\gamma$ )=0.555 16 in <sup>245</sup> Cm( $\alpha$ ) decay<br>since the measured I $\gamma$ of 0.029 5 from 1998Wh01 is too large<br>and apparently includes a contribution from fission product<br>$\gamma$ -rays according to the authors. |
| 149.107 6                    | 0.035 5                          | 244.8895               | 7/2+                 | 95.7795  | 9/2+                 | M1                 |                      | 8.48            | $E_{\gamma}$ : From ce spectrum in 1998Wh01.<br>$\alpha(K)=6.69 \ 10; \ \alpha(L)=1.346 \ 19; \ \alpha(M)=0.327 \ 5$<br>$\alpha(N)=0.0891 \ 13; \ \alpha(O)=0.0222 \ 4; \ \alpha(P)=0.00422 \ 6; \ \alpha(Q)=0.000276$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 161.685 <i>1</i>             | 20.57 20                         | 161.6853               | 1/2+                 | 0        | 5/2+                 | E2                 |                      | 1.96            | 4<br>$\alpha(K)=0.190 \ 3; \ \alpha(L)=1.289 \ 18; \ \alpha(M)=0.360 \ 5$<br>$\alpha(N)=0.0989 \ 14; \ \alpha(O)=0.0234 \ 4; \ \alpha(P)=0.00378 \ 6;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 170.940 <i>1</i>             | 0.378 7                          | 170.9399               | 3/2+                 | 0        | 5/2+                 | M1                 |                      | 5.76            | $\alpha(Q)=2.31\times10^{-5} 4$<br>$\alpha(K)=4.55 7; \ \alpha(L)=0.912 \ 13; \ \alpha(M)=0.222 \ 4$<br>$\alpha(N)=0.0603 \ 9; \ \alpha(O)=0.01501 \ 21; \ \alpha(P)=0.00286 \ 4;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 175.051 2                    | 0.362 4                          | 175.0523               | 7/2+                 | 0        | 5/2+                 | M1+E2              | 0.217 19             | 5.21            | $\alpha(Q)=0.0001873$<br>$\alpha(K)=4.077; \ \alpha(L)=0.85512; \ \alpha(M)=0.2093$<br>$\alpha(N)=0.05708; \ \alpha(O)=0.0141420; \ \alpha(P)=0.002674; \ \alpha(Q)=0.0001673$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 181.017 2                    | 0.250 7                          | 222.9879               | 5/2+                 | 41.9722  | 7/2+                 | M1+E2              | 0.19 4               | 4.77 9          | $\alpha(Q) = 0.000107/5$<br>$\alpha(K) = 3.74 \ 8; \ \alpha(L) = 0.775 \ 11; \ \alpha(M) = 0.189 \ 3$<br>$\alpha(N) = 0.0516 \ 8; \ \alpha(O) = 0.01281 \ 18; \ \alpha(P) = 0.00242 \ 4;$<br>$\alpha(Q) = 0.000154 \ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 185.132 22                   | 0.004 2                          | 940.311                | 3/2+                 | 755.1743 | $1/2^{+}$            |                    |                      |                 | Mult.: $\alpha(K)$ exp=0.08 3 compared with 0.095 (E1) and 0.166 (E2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

From ENSDF

 $^{241}_{94}\mathrm{Pu}_{147}\text{-}4$ 

|                                         |                                   |                        |                      | 240      | Pu(n,)               | γ) E=th:sec        | condary $\gamma'$ s          | 1998Wh0      | 1 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|-----------------------------------|------------------------|----------------------|----------|----------------------|--------------------|------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                   |                        |                      |          |                      | <u> </u>           | ( <sup>241</sup> Pu) (contir | nued)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ${\rm E_{\gamma}}^{\dagger}$            | $_{\mathrm{I}_{\gamma}}$ ‡ $f$    | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{e}$                 | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 187.414 6                               | 0.042 9                           | 942.584                | 3/2+                 | 755.1743 | 1/2+                 | M1+E2              | 1.1 3                        | 2.6 6        | The probable $J^{\pi}$ of the 940 level requires $\Delta \pi$ =no. See<br>comment on $J^{\pi}$ (940 level) in Adopted Levels.<br>$\alpha(K)=1.7 \ 6; \ \alpha(L)=0.688 \ 11; \ \alpha(M)=0.180 \ 4$<br>$\alpha(N)=0.0493 \ 11; \ \alpha(O)=0.01193 \ 20; \ \alpha(P)=0.00209 \ 5;$<br>$\alpha(D)=7.224$                                                                                                                                                               |
| 189.965 10                              | 0.020 2                           | 231.934                | 9/2+                 | 41.9722  | 7/2+                 | M1+E2              | 0.63 +6-7                    | 3.36 16      | $\alpha(Q) = 7.5 \times 10^{-4} 21^{-4} \alpha(M) = 0.1680 25$<br>$\alpha(N) = 0.0459 7; \ \alpha(Q) = 0.01125 16; \ \alpha(P) = 0.00205 3;$                                                                                                                                                                                                                                                                                                                          |
| 195.669 <i>10</i>                       | 0.038 5                           | 964.940                | 1/2-                 | 769.270  | 1/2-                 | M1                 |                              | 3.93         | $\alpha(Q)=0.000103 \ \delta$<br>$\alpha(K)=3.11 \ 5; \ \alpha(L)=0.621 \ 9; \ \alpha(M)=0.1511 \ 22$<br>$\alpha(N)=0.0411 \ 6; \ \alpha(O)=0.01023 \ 15; \ \alpha(P)=0.00195 \ 3;$<br>$\alpha(Q)=0.0001271 \ 18$<br>Mult.: $\alpha(K)$ exp allows an E2 admixture with $\delta$ <0.34; however,                                                                                                                                                                      |
| 202.910 7                               | 0.039 7                           | 244.8895               | 7/2+                 | 41.9722  | 7/2+                 | M1+E2              | 0.66 3                       | 2.72 7       | the placement is from J=1/2 to J=1/2.<br>$\alpha(K)=2.00 \ 6; \ \alpha(L)=0.537 \ 8; \ \alpha(M)=0.1355 \ 19$<br>$\alpha(N)=0.0370 \ 6; \ \alpha(O)=0.00907 \ 13; \ \alpha(P)=0.001655 \ 24;$                                                                                                                                                                                                                                                                         |
| <sup>x</sup> 209.745 9                  | 0.037 9                           |                        |                      |          |                      | M1+E2              | 3.0 +21-7                    | 0.97 16      | $\alpha(Q)=0.53\times10^{-7}25$<br>$\alpha(K)=0.38\ 16;\ \alpha(L)=0.428\ 9;\ \alpha(M)=0.1169\ 18$<br>$\alpha(N)=0.0321\ 5;\ \alpha(O)=0.00764\ 12;\ \alpha(P)=0.00127\ 3;$<br>$\alpha(Q)=2.0\times10^{-5}\ 6$<br>$E_{\gamma}: Placed by the authors from the 965 level; however, that placement requires mult=E1. Removal of this transition from that level is done with permission of R. W. Hoff (priv comm).$                                                    |
| x211.666 <i>11</i><br>222.971 <i>20</i> | 0.063 <i>18</i><br>0.126 <i>5</i> | 222.9879               | 5/2+                 | 0        | 5/2+                 | M1+E2              | 0.609 <i>23</i>              | 2.14 5       | $\alpha(K)=1.61$ 4; $\alpha(L)=0.401$ 6; $\alpha(M)=0.1005$ 15<br>$\alpha(N)=0.0274$ 4; $\alpha(O)=0.00674$ 10; $\alpha(P)=0.001241$ 19;<br>$\alpha(Q)=6.66\times10^{-5}$ 15<br>$E_{\gamma}$ : Uncertainty in authors' table I is 3 eV. The value should be<br>20 eV (priv comm from R. W. Hoff).<br>Mult.: the value for M3/M2 given in the authors' Table II is<br>incorrect (priv comm from R. W. Hoff). The $\delta$ value is<br>deduced from L 2/L 1 and L 2/L 1 |
| <sup>x</sup> 229.403 4                  | 0.095 6                           |                        |                      |          |                      | E2                 |                              | 0.517        | acduced from L2/L1 and L3/L1.<br>$\alpha(K)=0.1222 \ I8; \ \alpha(L)=0.288 \ 4; \ \alpha(M)=0.0796 \ I2$<br>$\alpha(N)=0.0219 \ 3; \ \alpha(O)=0.00518 \ 8; \ \alpha(P)=0.000854 \ I2;$<br>$\alpha(Q)=8.65\times10^{-6} \ I3$<br>Mult.: $\alpha(K)exp$ gives $\delta>7.8$ .<br>$E_{\gamma}$ : Placed by the authors from the 404 level; however, that<br>placement requires mult=E1. Removal of this transition from                                                  |
| 231.96 3                                | 0.00118 20                        | 231.934                | 9/2+                 | 0        | 5/2+                 | [E2]               |                              | 0.497        | that level is done with permission of R. W. Hoff (priv comm).<br>$\alpha(K)=0.1200 \ 17; \ \alpha(L)=0.275 \ 4; \ \alpha(M)=0.0760 \ 11$<br>$\alpha(N)=0.0209 \ 3; \ \alpha(O)=0.00495 \ 7; \ \alpha(P)=0.000816 \ 12;$<br>$\alpha(Q)=8.41\times10^{-6} \ 12$<br>$E_{\gamma},I_{\gamma}$ : Not seen in $(n,\gamma)$ spectrum. Values are from <sup>245</sup> Cm $(\alpha)$ ,<br>where $I_{\gamma}/I_{\gamma}(190\gamma)=0.059 \ 8$ .                                  |

S

|                          |                    |                        |                      |          |                      | $\gamma(^2$        | <sup>41</sup> Pu) (continued | 1)           |                                                                                                                                                                                                                                                                            |
|--------------------------|--------------------|------------------------|----------------------|----------|----------------------|--------------------|------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{\gamma}^{\dagger}$   | $I_{\gamma}$ ‡ $f$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{e}$                 | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                   |
| 233.844 3                | 0.121 4            | 408.899                | (7/2)-               | 175.0523 | 7/2+                 | E1 <sup>b</sup>    |                              | 0.0719       | $\alpha$ (K)=0.0563 8; $\alpha$ (L)=0.01169 17; $\alpha$ (M)=0.00284 4<br>$\alpha$ (N)=0.000768 11; $\alpha$ (O)=0.000187 3; $\alpha$ (P)=3.33×10 <sup>-5</sup> 5;<br>$\alpha$ (O)=1.637×10 <sup>-6</sup> 23                                                               |
| 239.493 8                | 0.055 5            | 1090.023               | 3/2-                 | 850.5395 | 3/2-                 | M1(+E2)            | ≤0.35                        | 2.13 11      | $\alpha(K)=1.67 \ 10; \ \alpha(L)=0.346 \ 8; \ \alpha(M)=0.0844 \ 16 \\ \alpha(N)=0.0230 \ 5; \ \alpha(O)=0.00571 \ 12; \ \alpha(P)=0.00108 \ 3; \\ \alpha(Q)=6.8\times10^{-5} \ 4$                                                                                        |
| 240.167 12               | 0.040 5            | 1009.438               | 3/2-                 | 769.270  | 1/2-                 | M1(+E2)            | ≤0.33                        | 2.13 10      | $\alpha(K)=1.67 \ 9; \ \alpha(L)=0.343 \ 8; \ \alpha(M)=0.0838 \ 15 \\ \alpha(N)=0.0228 \ 4; \ \alpha(O)=0.00567 \ 11; \ \alpha(P)=0.001073 \ 24; \\ \alpha(Q)=6.8\times10^{-5} \ 4$                                                                                       |
| *240.986 7               | 0.054 4            |                        | o (7 -               |          | o. ( <b>a</b> . )    | M1+E2              | 3.7 +10-5                    | 0.55 5       | $\alpha(K)=0.22 4; \alpha(L)=0.242 5; \alpha(M)=0.0661 11$<br>$\alpha(N)=0.0182 3; \alpha(O)=0.00433 7; \alpha(P)=0.000725 14;$<br>$\alpha(Q)=1.19\times10^{-5} 16$                                                                                                        |
| 241.381 17               | 0.052 6            | 337.1363               | 9/2+                 | 95.7795  | 9/2+                 | M1+E2              | 1.8 3                        | 0.85 13      | $\alpha(K)=0.49 \ 12; \ \alpha(L)=0.259 \ 9; \ \alpha(M)=0.0689 \ 17 \\ \alpha(N)=0.0189 \ 5; \ \alpha(O)=0.00454 \ 13; \ \alpha(P)=0.00078 \ 3; \\ \alpha(Q)=2.2\times10^{-5} \ 5$                                                                                        |
| *247.129 23              | 0.063 8            |                        |                      |          |                      | M1+E2              | 3.9 +14-7                    | 0.50 5       | $\alpha$ (K)=0.20 5; $\alpha$ (L)=0.219 5; $\alpha$ (M)=0.0597 10<br>$\alpha$ (N)=0.0164 3; $\alpha$ (O)=0.00390 7; $\alpha$ (P)=0.000654 14;<br>$\alpha$ (Q)=1.08×10 <sup>-5</sup> 16                                                                                     |
| x247.591 4<br>248.066 6  | 0.099 9<br>0.076 6 | 1090.023               | 3/2-                 | 841.9575 | 1/2-                 | M1+E2              | 0.28 5                       | 1.90 5       | $\alpha$ (K)=1.49 5; $\alpha$ (L)=0.311 6; $\alpha$ (M)=0.0760 12<br>$\alpha$ (N)=0.0207 4; $\alpha$ (O)=0.00513 9; $\alpha$ (P)=0.000970 17;<br>$\alpha$ (Q)=6.08×10 <sup>-5</sup> 17                                                                                     |
| x278.420 20<br>308.674 2 | 0.053 5<br>0.503 8 | 404.4526               | (9/2)-               | 95.7795  | 9/2+                 | E1                 |                              | 0.0389       | $\alpha$ (K)=0.0308 5; $\alpha$ (L)=0.00610 9; $\alpha$ (M)=0.001478 21<br>$\alpha$ (N)=0.000399 6; $\alpha$ (O)=9.76×10 <sup>-5</sup> 14; $\alpha$ (P)=1.762×10 <sup>-5</sup> 25; $\alpha$ (O)=9.23×10 <sup>-7</sup> 13                                                   |
| 313.123 4                | 0.110 7            | 408.899                | (7/2)-               | 95.7795  | 9/2+                 | E1 <sup>b</sup>    |                              | 0.0377       | $\alpha(K)=0.0299 5; \alpha(L)=0.00590 9; \alpha(M)=0.001431 20$<br>$\alpha(N)=0.000386 6; \alpha(O)=9.45\times10^{-5} 14; \alpha(P)=1.707\times10^{-5}$<br>$24: \alpha(O)=8.97\times10^{-7} 13$                                                                           |
| 320.746 7                | 0.056 4            | 1090.023               | 3/2-                 | 769.270  | 1/2-                 | M1(+E2)            | ≤0.47                        | 0.92 8       | $\alpha(K)=0.727; \ \alpha(L)=0.148 \ 8; \ \alpha(M)=0.0363 \ 17$<br>$\alpha(N)=0.0099 \ 5; \ \alpha(O)=0.00245 \ 12; \ \alpha(P)=0.000463 \ 25;$<br>$\alpha(O)=2.9 \times 10^{-5} \ 3$                                                                                    |
| 359.149 <i>13</i>        | 0.045 11           | 534.202                | +                    | 175.0523 | 7/2+                 | E2                 |                              | 0.1240       | $\alpha(K) = 0.0559 \ 8; \ \alpha(L) = 0.0498 \ 7; \ \alpha(M) = 0.01350 \ 19$<br>$\alpha(N) = 0.00370 \ 6; \ \alpha(O) = 0.000885 \ 13; \ \alpha(P) = 0.0001503 \ 21;$<br>$\alpha(Q) = 2.91 \times 10^{-6} \ 4$                                                           |
| 362.479 2                | 1.271 18           | 404.4526               | (9/2)-               | 41.9722  | 7/2+                 | E1                 |                              | 0.0276       | Mult.: $\alpha$ (K)exp gives $\delta$ >4.9.<br>$\alpha$ (K)=0.0220 3; $\alpha$ (L)=0.00425 6; $\alpha$ (M)=0.001028 15<br>$\alpha$ (N)=0.000278 4; $\alpha$ (O)=6.80×10 <sup>-5</sup> 10; $\alpha$ (P)=1.238×10 <sup>-5</sup><br>18; $\alpha$ (O)=6.70×10 <sup>-7</sup> 10 |
| 367.10 8                 | 0.370 13           | 408.899                | (7/2)-               | 41.9722  | 7/2+                 | E1 <b>b</b>        |                              | 0.0269       | $\alpha(K)=0.0214 \ 3; \ \alpha(L)=0.00413 \ 6; \ \alpha(M)=0.000999 \ 14$                                                                                                                                                                                                 |

 $^{241}_{94}\mathrm{Pu}_{147}\text{-}6$ 

|   |                                                                |                            |                        |                                    | <sup>240</sup> <b>Pu(n,</b> ) | γ) <b>E</b> =        | th:seconda                   | ry γ's <b>1998</b> | Wh01 (cont   | inued)                                                                                                                                                                                                                                                                                                      |
|---|----------------------------------------------------------------|----------------------------|------------------------|------------------------------------|-------------------------------|----------------------|------------------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                |                            |                        |                                    |                               |                      | $\gamma$ ( <sup>241</sup> Pr | u) (continued)     |              |                                                                                                                                                                                                                                                                                                             |
|   | $E_{\gamma}^{\dagger}$                                         | $I_{\gamma}$ ‡ $f$         | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                 | $E_f$ .                       | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup>           | $\delta^{e}$       | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                    |
|   | ř202 164 15                                                    | 0.047.5                    |                        |                                    |                               | <u> </u>             |                              |                    |              | $\alpha$ (N)=0.000270 4; $\alpha$ (O)=6.62×10 <sup>-5</sup> 10; $\alpha$ (P)=1.204×10 <sup>-5</sup><br>17; $\alpha$ (Q)=6.54×10 <sup>-7</sup> 10                                                                                                                                                            |
|   | x382.164 15<br>x402.54 3                                       | 0.047 5 0.101 23           |                        |                                    |                               |                      | E1                           |                    | 0.0222       | $\alpha$ (K)=0.01774 25; $\alpha$ (L)=0.00338 5; $\alpha$ (M)=0.000816 12<br>$\alpha$ (N)=0.000221 3; $\alpha$ (O)=5.41×10 <sup>-5</sup> 8; $\alpha$ (P)=9.89×10 <sup>-6</sup><br>14: $\alpha$ (O)=5.46×10 <sup>-7</sup> 8                                                                                  |
|   | 403.260 14                                                     | 0.061 9                    | 1253.792               | 1/2 <sup>-</sup> ,3/2 <sup>-</sup> | 850.5395 3/                   | /2-                  | M1+E2                        | 2.9 +9-6           | 0.137 24     | $\alpha(K)=0.085\ 20;\ \alpha(L)=0.038\ 3;\ \alpha(M)=0.0100\ 6$<br>$\alpha(N)=0.00275\ 17;\ \alpha(O)=0.00066\ 5;\ \alpha(P)=0.000117\ 9;$<br>$\alpha(Q)=3.8\times10^{-6}\ 8$                                                                                                                              |
|   | <sup>x</sup> 404.707 <i>10</i><br><sup>x</sup> 405.90 <i>5</i> | 0.056 8<br>0.056 <i>12</i> |                        |                                    |                               |                      | E2                           |                    | 0.0887       | $\alpha$ (K)=0.0449 7; $\alpha$ (L)=0.0322 5; $\alpha$ (M)=0.00865 13<br>$\alpha$ (N)=0.00237 4; $\alpha$ (O)=0.000568 8; $\alpha$ (P)=9.75×10 <sup>-5</sup> 14;<br>$\alpha$ (Q)=2.21×10 <sup>-6</sup> 3                                                                                                    |
|   | <sup>x</sup> 408.70 <i>3</i>                                   | 0.048 7                    |                        |                                    |                               |                      | M1(+E2)                      | 0.8 4              | 0.35 11      | Mult.: $\alpha(K)\exp \text{ gives } \delta > 4.3.$<br>$\alpha(K)=0.26 \ 9; \ \alpha(L)=0.061 \ 13; \ \alpha(M)=0.015 \ 3$<br>$\alpha(N)=0.0041 \ 8; \ \alpha(O)=0.00102 \ 20; \ \alpha(P)=0.00019 \ 4;$<br>$\alpha(O)=1.1\times10^{-5} \ 4$                                                                |
| J | x429.139 22                                                    | 0.040 6                    |                        |                                    |                               |                      | M1+E2                        | 2.4 +9-4           | 0.132 24     | $\begin{array}{l} \alpha(Q)=1.1\times10 & 4 \\ \alpha(K)=0.087 \ 20; \ \alpha(L)=0.033 \ 3; \ \alpha(M)=0.0086 \ 7 \\ \alpha(N)=0.00234 \ 18; \ \alpha(O)=0.00057 \ 5; \ \alpha(P)=0.000101 \ 9; \\ \alpha(Q)=3 \ 8\times10^{-6} \ 8 \end{array}$                                                           |
|   | <sup>x</sup> 439.382 20                                        | 0.066 7                    |                        |                                    |                               |                      | M1+E2                        | 3.5 +19-7          | 0.098 15     | $\alpha(Q)=2.5\times10^{-6}$ 5<br>$\alpha(K)=0.061$ 13; $\alpha(L)=0.0276$ 18; $\alpha(M)=0.0073$ 4<br>$\alpha(N)=0.00198$ 11; $\alpha(O)=0.00048$ 3; $\alpha(P)=8.4\times10^{-5}$ 6;<br>$\alpha(Q)=2.7\times10^{-6}$ 5                                                                                     |
|   | <sup>x</sup> 439.750 6                                         | 0.117 7                    |                        |                                    |                               |                      |                              |                    |              | Mult.: $\alpha$ (K)exp=0.025 5. Theory values are 0.0150 5 (E1) and 0.0394 12 (E2).                                                                                                                                                                                                                         |
|   | 444.687 9                                                      | 0.126 18                   | 1223.841               | 1/2,3/2                            | 779.1504 3/                   | /2-                  | E1 <sup><i>c</i></sup>       |                    | 0.0182       | $\alpha$ (K)=0.01454 21; $\alpha$ (L)=0.00273 4; $\alpha$ (M)=0.000659 10<br>$\alpha$ (N)=0.0001781 25; $\alpha$ (O)=4.37×10 <sup>-5</sup> 7; $\alpha$ (P)=8.02×10 <sup>-6</sup><br>12: $\alpha$ (O)=4.51×10 <sup>-7</sup> 7                                                                                |
|   | <sup>x</sup> 464.78 6                                          | 0.063 13                   |                        |                                    |                               |                      | E1                           |                    | 0.01663      | $\alpha(K)=0.01333 \ I9; \ \alpha(L)=0.00249 \ 4; \ \alpha(M)=0.000600 \ 9 \ \alpha(N)=0.0001622 \ 23; \ \alpha(O)=3.99\times10^{-5} \ 6; \ \alpha(P)=7.32\times10^{-6}$                                                                                                                                    |
|   | 465.646 5                                                      | 0.287 11                   | 561.421                | 7/2-                               | 95.7795 9/                    | /2+                  |                              |                    |              | 11; $\alpha(Q)=4.15\times10^{-7}$ 6<br>Mult.: $\alpha(K)\exp=0.019$ 3 compared with 0.0134 (E1) and 0.0356 (E2). Placement in the level scheme requires $\Delta\pi=no$ . See comment on $J^{\pi}(561 \text{ level})$ in Adopted Levels levels                                                               |
|   | <sup>x</sup> 468.23 5                                          | 0.071 15                   |                        |                                    |                               |                      | M1+E2                        | 3.1 +20-7          | 0.089 17     | $\alpha(K)=0.058 \ 14; \ \alpha(L)=0.0231 \ 21; \ \alpha(M)=0.0060 \ 5 \ \alpha(N)=0.00165 \ 13; \ \alpha(O)=0.00040 \ 4; \ \alpha(P)=7.1\times10^{-5} \ 7; \ \alpha(O)=2.5\times10^{-6} \ \epsilon$                                                                                                        |
|   | 476.840 <i>3</i>                                               | 1.04 5                     | 518.8121               | 5/2-                               | 41.9722 7/                    | /2+                  | (E1)                         |                    | 0.01581      | $\alpha(Q)=2.5\times10^{-6} 6$ $\alpha(K)=0.01268 \ 18; \ \alpha(L)=0.00236 \ 4; \ \alpha(M)=0.000568 \ 8$ $\alpha(N)=0.0001537 \ 22; \ \alpha(O)=3.78\times10^{-5} \ 6; \ \alpha(P)=6.95\times10^{-6} 10; \ \alpha(Q)=3.96\times10^{-7} \ 6$ Mult.: $\alpha(K)\exp=0.020 \ 3$ compared with 0.013 (E1) and |

From ENSDF

<sup>241</sup><sub>94</sub>Pu<sub>147</sub>-7

I

|                                                  |                                    |                        |                      | <sup>240</sup> <b>Pu</b> | ι( <b>n,</b> γ) Ε    | E=th:second        | ary γ's 1998    | Wh01 (cont   | inued)                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|------------------------------------|------------------------|----------------------|--------------------------|----------------------|--------------------|-----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                    |                        |                      |                          |                      | $\gamma(^{241})$   | Pu) (continued) |              |                                                                                                                                                                                                                                                                                                                                                                                                             |
| $E_{\gamma}^{\dagger}$                           | $_{\mathrm{I}_{\gamma}}$ ‡ $f$     | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$         | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{e}$    | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                    |
| x 102 ( (2 (                                     | 0.52.7                             |                        |                      |                          | <u>`</u>             |                    |                 |              | 0.034 (E2). Placement in the level scheme requires $\Delta \pi$ =yes.                                                                                                                                                                                                                                                                                                                                       |
| <sup>x</sup> 483.662 6<br><sup>x</sup> 484.521 7 | 0.537                              |                        |                      |                          |                      | E1                 |                 | 0.01532      | $\alpha(K)=0.01229 \ 18; \ \alpha(L)=0.00228 \ 4; \ \alpha(M)=0.000550 \ 8 \\ \alpha(N)=0.0001486 \ 21; \ \alpha(O)=3.65\times10^{-5} \ 6; \ \alpha(P)=6.72\times10^{-6} \\ 10; \ \alpha(Q)=3.84\times10^{-7} \ 6 \\ E_{\gamma}: Placed by the authors from the 1253 level; however, mult=E1 to the 1/2- 769 level is inconsistent with \pi=- given by the other three transitions de-exciting this level.$ |
| 490.624 9                                        | 0.184 14                           | 1009.438               | 3/2-                 | 518.8121                 | 5/2-                 | M1(+E2)            | ≤0.6            | 0.28 4       | $\alpha(K)=0.22 \ 3; \ \alpha(L)=0.044 \ 5; \ \alpha(M)=0.0108 \ 10$<br>$\alpha(N)=0.0029 \ 3; \ \alpha(O)=0.00073 \ 7; \ \alpha(P)=0.000138 \ 14;$<br>$\alpha(Q)=8.8\times10^{-6} \ 12$                                                                                                                                                                                                                    |
| x490.927 8<br>x491.423 10                        | 0.195 <i>16</i><br>0.409 <i>23</i> |                        |                      |                          |                      | E2                 |                 | 0.0548       | $\alpha$ (K)=0.0318 5; $\alpha$ (L)=0.01692 24; $\alpha$ (M)=0.00449 7<br>$\alpha$ (N)=0.001228 18; $\alpha$ (O)=0.000296 5; $\alpha$ (P)=5.15×10 <sup>-5</sup> 8;<br>$\alpha$ (Q)=1.463×10 <sup>-6</sup> 21                                                                                                                                                                                                |
| 496.217 <sup>g@</sup>                            | ≤0.498 <sup>g@</sup>               | 833.4                  | 7/2-                 | 337.1363                 | 9/2+                 | (E1)               |                 | 0.01462      | $\alpha(K)=0.01174 \ 17; \ \alpha(L)=0.00217 \ 3; \ \alpha(M)=0.000523 \ 8$<br>$\alpha(N)=0.0001414 \ 20; \ \alpha(O)=3.48\times10^{-5} \ 5; \ \alpha(P)=6.41\times10^{-6}$<br>$9; \ \alpha(Q)=3.68\times10^{-7} \ 6$                                                                                                                                                                                       |
| 496.217 <sup>g@</sup>                            | ≤0.498 <sup>g@</sup>               | 1296.70                | 3/2-                 | 800.443                  | 3/2+                 | (E1)               |                 | 0.01462      | $\alpha(K)=0.01174 \ 17; \ \alpha(L)=0.00217 \ 3; \ \alpha(M)=0.000523 \ 8 \\ \alpha(N)=0.0001414 \ 20; \ \alpha(O)=3.48\times10^{-5} \ 5; \ \alpha(P)=6.41\times10^{-6} \\ 9; \ \alpha(O)=3.68\times10^{-7} \ 6$                                                                                                                                                                                           |
| ×501.45 3                                        | 0.121 14                           |                        |                      |                          |                      | E1                 |                 | 0.01432      | $\alpha(K) = 0.01150 \ 17; \ \alpha(L) = 0.00213 \ 3; \ \alpha(M) = 0.000512 \ 8$<br>$\alpha(N) = 0.0001384 \ 20; \ \alpha(O) = 3.40 \times 10^{-5} \ 5; \ \alpha(P) = 6.27 \times 10^{-6} \ 9; \ \alpha(Q) = 3.60 \times 10^{-7} \ 5$                                                                                                                                                                      |
| 515.70 <i>3</i>                                  | 0.101 20                           | 1357.682               | 1/2,3/2              | 841.9575                 | 1/2-                 | M1+E2 <sup>C</sup> | 1.0 +5-3        | 0.16 5       | $\alpha(K)=0.12 4; \ \alpha(L)=0.028 6; \ \alpha(M)=0.0070 \ 13$<br>$\alpha(N)=0.0019 4; \ \alpha(O)=0.00047 \ 9; \ \alpha(P)=8.8\times10^{-5} \ 17;$<br>$\alpha(O)=5.0\times10^{-6} \ 14$                                                                                                                                                                                                                  |
| <sup>x</sup> 515.95 <i>3</i>                     | 0.103 19                           |                        |                      |                          |                      | M1+E2              | 2.2 +8-4        | 0.087 16     | $\alpha(Q)=2.6\times10^{-14}$<br>$\alpha(K)=0.061 \ 14; \ \alpha(L)=0.0192 \ 20; \ \alpha(M)=0.0049 \ 5$<br>$\alpha(N)=0.00134 \ 13; \ \alpha(O)=0.00033 \ 4; \ \alpha(P)=5.9\times10^{-5} \ 7;$<br>$\alpha(Q)=2.6\times10^{-6} \ 6$                                                                                                                                                                        |
| 518.810 4                                        | 3.21 6                             | 518.8121               | 5/2-                 | 0                        | 5/2+                 | E1                 |                 | 0.01340      | $\alpha(\chi) = 2.0 \times 10^{-10}$ 0<br>$\alpha(K) = 0.01078$ 15; $\alpha(L) = 0.00198$ 3; $\alpha(M) = 0.000477$ 7<br>$\alpha(N) = 0.0001290$ 18; $\alpha(O) = 3.17 \times 10^{-5}$ 5; $\alpha(P) = 5.86 \times 10^{-6}$<br>$\alpha(Q) = 3.38 \times 10^{-7}$ 5                                                                                                                                          |
| 519.433 8                                        | 0.53 4                             | 561.421                | 7/2-                 | 41.9722                  | 7/2+                 |                    |                 |              | Mult.: $\alpha(K)$ =2.35×10 <sup>-1</sup> J<br>Mult.: $\alpha(K)$ exp=0.040 21 compared with 0.0108 (E1) and 0.0288 (E2). See comment on $J^{\pi}(561 \text{ level})$ in Adopted Lekeels.                                                                                                                                                                                                                   |
| x520.505 23<br>x521.11 3                         | 0.094 <i>13</i><br>0.073 <i>13</i> |                        |                      |                          |                      | M1+E2              | 2.6 +13-6       | 0.076 16     | $\alpha(K)=0.052$ 13; $\alpha(L)=0.0175$ 20; $\alpha(M)=0.0045$ 5                                                                                                                                                                                                                                                                                                                                           |

 $\infty$ 

|                                     |                                  |                        |                     | 24       | <sup>0</sup> Pu(n,   | $\gamma$ ) E=th:seconda    | ry γ's <b>1998</b> | 3Wh01 (con   | tinued)                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------|----------------------------------|------------------------|---------------------|----------|----------------------|----------------------------|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                  |                        |                     |          |                      | $\gamma$ <sup>(241</sup> P | u) (continued)     |              |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $E_{\gamma}^{\dagger}$              | $_{\mathrm{I}_{\gamma}}$ ‡ $f$   | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$  | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup>         | $\delta^{e}$       | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                             |
| <sup>x</sup> 527.258 25             | 0.064 18                         |                        |                     |          |                      | M1+E2                      | 1.6 +9-4           | 0.11 3       | $\begin{aligned} &\alpha(\text{N}) = 0.00123 \ 13; \ \alpha(\text{O}) = 0.00030 \ 3; \ \alpha(\text{P}) = 5.4 \times 10^{-5} \ 7; \\ &\alpha(\text{Q}) = 2.2 \times 10^{-6} \ 5 \\ &\alpha(\text{K}) = 0.08 \ 3; \ \alpha(\text{L}) = 0.021 \ 4; \ \alpha(\text{M}) = 0.0053 \ 9 \\ &\alpha(\text{N}) = 0.00144 \ 24; \ \alpha(\text{O}) = 0.00035 \ 6; \ \alpha(\text{P}) = 6.5 \times 10^{-5} \ 12; \end{aligned}$ |
| <sup>x</sup> 528.20 5               | 0.079 9                          |                        |                     |          |                      | (M1+E2+E0)                 |                    | 0.15 11      | $\begin{array}{l} \alpha(\mathrm{Q}) = 3.2 \times 10^{-6} \ 10 \\ \alpha(\mathrm{K}) = 0.12 \ 9; \ \alpha(\mathrm{L}) = 0.027 \ 13; \ \alpha(\mathrm{M}) = 0.007 \ 3 \\ \alpha(\mathrm{N}) = 0.0018 \ 9; \ \alpha(\mathrm{O}) = 0.00044 \ 21; \ \alpha(\mathrm{P}) = 8.\mathrm{E-5} \ 5; \\ \alpha(\mathrm{Q}) = 5.\mathrm{E-6} \ 4 \end{array}$                                                                     |
| <sup>x</sup> 541.594 6              | 0.44 4                           |                        |                     |          |                      | E1                         |                    | 0.01234      | Mult.: $\alpha$ (K)exp=0.35 7 compared with 0.217 7 for<br>mult=M1 suggests the possibility of an E0 component.<br>$\alpha$ (K)=0.00993 14; $\alpha$ (L)=0.00182 3; $\alpha$ (M)=0.000437 7<br>$\alpha$ (N)=0.0001182 17; $\alpha$ (O)=2.91×10 <sup>-5</sup> 4; $\alpha$ (P)=5.37×10 <sup>-6</sup><br>8: $\alpha$ (O)=3.13×10 <sup>-7</sup> 5                                                                        |
| <sup>x</sup> 546.479 25             | 0.081 10                         |                        |                     |          |                      | E1                         |                    | 0.01213      | $\alpha(K)=0.00976 \ 14; \ \alpha(L)=0.00179 \ 3; \ \alpha(M)=0.000429 \ 6$<br>$\alpha(N)=0.0001160 \ 17; \ \alpha(O)=2.86\times10^{-5} \ 4; \ \alpha(P)=5.28\times10^{-6} \ 8; \ \alpha(Q)=3.08\times10^{-7} \ 5$                                                                                                                                                                                                   |
| <sup>x</sup> 549.115 9<br>556.164 3 | 0.244 <i>11</i><br>2.95 <i>5</i> | 779.1504               | 3/2-                | 222.9879 | 5/2+                 | E1                         |                    | 0.01172      | $\alpha$ (K)=0.00944 <i>14</i> ; $\alpha$ (L)=0.001724 <i>25</i> ; $\alpha$ (M)=0.000414 <i>6</i><br>$\alpha$ (N)=0.0001120 <i>16</i> ; $\alpha$ (O)=2.76×10 <sup>-5</sup> <i>4</i> ; $\alpha$ (P)=5.10×10 <sup>-6</sup>                                                                                                                                                                                             |
| 561.168 4                           | 2.25 5                           | 784.1525               | 3/2+                | 222.9879 | 5/2+                 | M1(+E2)                    | ≤0.66              | 0.19 3       | 8; $\alpha(Q)=2.98\times10^{-5}$<br>$\alpha(K)=0.150\ 23$ ; $\alpha(L)=0.030\ 4$ ; $\alpha(M)=0.0074\ 8$<br>$\alpha(N)=0.00200\ 22$ ; $\alpha(O)=0.00050\ 6$ ; $\alpha(P)=9.4\times10^{-5}\ 11$ ;<br>$\alpha(Q)=6\ 0\times10^{-6}\ 9$                                                                                                                                                                                |
| 561.437 20                          | 0.365 19                         | 561.421                | 7/2-                | 0        | 5/2+                 |                            |                    |              | Mult.: $\alpha$ (K)exp=0.038 8 gives mult=M1+E2 with $\delta$ =3.2<br>+21-8; however, placement in the level scheme requires<br>$\Delta \pi$ =yes. See comment on $J^{\pi}$ (561 level) in Adopted Levels                                                                                                                                                                                                            |
| 566.057 4                           | 1.17 5                           | 810.945                | 5/2-                | 244.8895 | 7/2+                 | E1                         |                    | 0.01134      | $\alpha(K) = 0.00913 \ I3; \ \alpha(L) = 0.001664 \ 24; \ \alpha(M) = 0.000400 \ 6 \\ \alpha(N) = 0.0001081 \ I6; \ \alpha(O) = 2.66 \times 10^{-5} \ 4; \ \alpha(P) = 4.92 \times 10^{-6} \\ 7; \ \alpha(O) = 2.80 \times 10^{-7} \ 4$                                                                                                                                                                              |
| 572.863 9                           | 0.134 12                         | 614.836                | (9/2 <sup>-</sup> ) | 41.9722  | 7/2+                 |                            |                    |              | Mult.: $\alpha(Q)=2.69\times10^{-4}$<br>Mult.: $\alpha(K)$ exp=0.022 6 compared with 0.0089 (E1) and 0.024 (E2) favors E2. See comment on $J^{\pi}(615 \text{ level})$ in Adopted Levels                                                                                                                                                                                                                             |
| <sup>x</sup> 575.084 20             | 0.200 18                         |                        |                     |          |                      | M1+E2                      | 1.6 3              | 0.084 15     | $\alpha(K)=0.062 \ I3; \ \alpha(L)=0.0163 \ 20; \ \alpha(M)=0.0041 \ 5$<br>$\alpha(N)=0.00112 \ I3; \ \alpha(O)=0.00027 \ 3; \ \alpha(P)=5.0\times10^{-5} \ 6;$<br>$\alpha(O)=2 \ 6\times10^{-6} \ 5$                                                                                                                                                                                                                |
| <sup>x</sup> 576.68 9               | 0.045 12                         |                        |                     |          |                      | M1(+E2)                    | ≤0.61              | 0.179 23     | $\alpha(Q)=2.6\times10^{-5}$ g (M)=0.0069 7<br>$\alpha(N)=0.00188$ 19; $\alpha(O)=0.00047$ 5; $\alpha(P)=8.9\times10^{-5}$ 9;<br>$\alpha(Q)=5.6\times10^{-6}$ 8                                                                                                                                                                                                                                                      |
| <sup>x</sup> 577.561 4              | 1.14 3                           |                        |                     |          |                      | M1+E2                      | 0.62 23            | 0.155 24     | $\alpha(Q)=3.5\times10^{-6} \text{ o}$<br>$\alpha(K)=0.121\ 20;\ \alpha(L)=0.025\ 3;\ \alpha(M)=0.0062\ 8$<br>$\alpha(N)=0.00168\ 20;\ \alpha(O)=0.00042\ 5;\ \alpha(P)=7.9\times10^{-5}\ 10;$<br>$\alpha(Q)=4.9\times10^{-6}\ 8$                                                                                                                                                                                    |

From ENSDF

|                                |                                    |                        |                      | <sup>240</sup> | Pu(n,y)                | E=th:second          | ary γ's 1998W   | h01 (contin  | ued)                                                                                                                                                                                                                                                                                                      |
|--------------------------------|------------------------------------|------------------------|----------------------|----------------|------------------------|----------------------|-----------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                    |                        |                      |                |                        | $\gamma(^{241})$     | Pu) (continued) |              |                                                                                                                                                                                                                                                                                                           |
| $E_{\gamma}^{\dagger}$         | $_{\mathrm{I}_{\gamma}}$ ‡ $f$     | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$          | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>a</sup>   | $\delta^{e}$    | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                  |
| x584.431 12                    | 0.191 25                           | 001 505                | 5 (0)                | 244 0005       |                        |                      |                 | 0.105.0      |                                                                                                                                                                                                                                                                                                           |
| 586.703 16                     | 0.097 10                           | 831.587                | 5/21                 | 244.8895       | 7/21                   | M1(+E2)              | ≤0.32           | 0.185 8      | $ \begin{array}{l} \alpha(\text{K}) = 0.146 \ /; \ \alpha(\text{L}) = 0.0289 \ 11; \ \alpha(\text{M}) = 0.00 \ / 01 \ 24 \\ \alpha(\text{N}) = 0.00191 \ 7; \ \alpha(\text{O}) = 0.000474 \ 17; \ \alpha(\text{P}) = 9.0 \times 10^{-5} \\ 4; \ \alpha(\text{Q}) = 5.83 \times 10^{-6} \ 25 \end{array} $ |
| 587.953 24                     | 0.099 10                           | 810.945                | 5/2-                 | 222.9879       | 5/2+                   | [E1]                 |                 | 0.01055      | $\alpha(K)=0.00851 \ 12; \ \alpha(L)=0.001543 \ 22; \ \alpha(M)=0.000370 \ 6 \ \alpha(N)=0.0001001 \ 14; \ \alpha(Q)=2.47\times10^{-5} \ 4;$                                                                                                                                                              |
| 502 400 4                      | 2 50 (                             |                        | 1/2+                 | 1 (1 (0.52     | 1 /2+                  |                      |                 | 0.107        | $\alpha(P) = 4.57 \times 10^{-6} \ 7; \ \alpha(Q) = 2.69 \times 10^{-7} \ 4$                                                                                                                                                                                                                              |
| 593.488 4                      | 2.70 4                             | /55.1/43               | 1/2                  | 161.6853       | 1/2*                   | MI                   |                 | 0.186        | $\begin{array}{l} \alpha(\mathrm{K})=0.1478\ 21;\ \alpha(\mathrm{L})=0.0289\ 4;\ \alpha(\mathrm{M})=0.00701\ 10\\ \alpha(\mathrm{N})=0.00191\ 3;\ \alpha(\mathrm{O})=0.000474\ 7;\ \alpha(\mathrm{P})=9.02\times10^{-5}\\ 13;\ \alpha(\mathrm{Q})=5.88\times10^{-6}\ 9 \end{array}$                       |
|                                |                                    |                        |                      |                |                        |                      |                 |              | Mult.: $\alpha$ (K)exp allows an E2 admixture with $\delta$ <0.55; however, the placement is from J=1/2 to J=1/2.                                                                                                                                                                                         |
| 598.328 6                      | 2.51 4                             | 769.270                | 1/2-                 | 170.9399       | 3/2+                   | E1                   |                 | 0.01021      | $\alpha(K)=0.00823$ 12; $\alpha(L)=0.001490$ 21; $\alpha(M)=0.000358$<br>5<br>(D) $0.(7)(10^{-5})(4)(0)$ 2.28 $(10^{-5})(4)$                                                                                                                                                                              |
|                                |                                    |                        |                      |                |                        |                      |                 |              | $\alpha(N)=9.07\times10^{-14}, \alpha(O)=2.58\times10^{-4}, \alpha(P)=4.42\times10^{-6} 7; \alpha(Q)=2.61\times10^{-7} 4$                                                                                                                                                                                 |
| <sup>x</sup> 598.830 24        | 0.133 15                           |                        |                      |                |                        | M1+E2                | 1.2 3           | 0.095 21     | $\alpha(K)=0.072 \ 18; \ \alpha(L)=0.017 \ 3; \ \alpha(M)=0.0042 \ 7 \ \alpha(N)=0.00115 \ 18; \ \alpha(O)=0.00028 \ 5; \ \alpha(P)=5.3\times10^{-5} \ 9; \ \alpha(O)=2.9\times10^{-6} \ 7$                                                                                                               |
| 602.53 <i>3</i>                | 0.22 5                             | 1357.682               | 1/2,3/2              | 755.1743       | $1/2^{+}$              | M1(+E2) <sup>C</sup> | ≤0.82           | 0.15 3       | $\alpha(Q) = 2.5 \times 10^{-7}$<br>$\alpha(K) = 0.118\ 25;\ \alpha(L) = 0.024\ 4;\ \alpha(M) = 0.0058\ 9$                                                                                                                                                                                                |
| <sup>x</sup> 605 546 7         | 0 518 11                           |                        |                      |                |                        | F1 F2                |                 |              | $\alpha$ (N)=0.00159 24; $\alpha$ (O)=0.00039 6; $\alpha$ (P)=7.5×10 <sup>-5</sup><br>12; $\alpha$ (Q)=4.7×10 <sup>-6</sup> 10                                                                                                                                                                            |
| 607.580 <i>5</i>               | 1.57 4                             | 769.270                | 1/2-                 | 161.6853       | 1/2+                   | E1,E2<br>E1          |                 | 0.00992      | $\alpha(K)=0.00800 \ 12; \ \alpha(L)=0.001446 \ 21; \ \alpha(M)=0.000347$                                                                                                                                                                                                                                 |
|                                |                                    |                        |                      |                |                        |                      |                 |              | $\alpha(N)=9.38\times10^{-5}$ 14; $\alpha(O)=2.31\times10^{-5}$ 4;<br>$\alpha(P)=4$ 29×10 <sup>-6</sup> 6: $\alpha(O)=2.54\times10^{-7}$ 4                                                                                                                                                                |
| 608.229 9                      | 0.437 16                           | 779.1504               | 3/2-                 | 170.9399       | 3/2+                   | E1                   |                 | 0.00990      | $\alpha(\mathbf{K}) = 0.00798 \ 12; \ \alpha(\mathbf{L}) = 0.001443 \ 21; \ \alpha(\mathbf{M}) = 0.000346$<br>5<br>( <b>b</b> ) $\alpha(\mathbf{K}) = 0.001443 \ 21; \ \alpha(\mathbf{M}) = 0.000346$                                                                                                     |
|                                |                                    |                        |                      |                |                        |                      |                 |              | $\alpha(N) = 9.36 \times 10^{-5} \ 14; \ \alpha(O) = 2.31 \times 10^{-5} \ 4; \ \alpha(P) = 4.28 \times 10^{-6} \ 6; \ \alpha(Q) = 2.53 \times 10^{-7} \ 4$                                                                                                                                               |
| 608.608 10                     | 0.379 12                           | 831.587                | 5/2+                 | 222.9879       | 5/2+                   | M1+E2                | 0.54 +23-26     | 0.142 22     | $\alpha(K)=0.112 \ 18; \ \alpha(L)=0.023 \ 3; \ \alpha(M)=0.0056 \ 7 \ \alpha(N)=0.00152 \ 18; \ \alpha(O)=0.00038 \ 5; \ \alpha(P)=7.1\times10^{-5} \ 9;$                                                                                                                                                |
| 617.457 5                      | 2.17 3                             | 779.1504               | 3/2-                 | 161.6853       | 1/2+                   | E1                   |                 | 0.00962      | $\alpha(Q)=4.5\times10^{-6}$ 7<br>$\alpha(K)=0.00777$ 11; $\alpha(L)=0.001401$ 20; $\alpha(M)=0.000336$<br>5                                                                                                                                                                                              |
| rc10.05.0                      | 0.051.10                           |                        |                      |                |                        |                      |                 |              | $\alpha$ (N)=9.09×10 <sup>-5</sup> <i>13</i> ; $\alpha$ (O)=2.24×10 <sup>-5</sup> <i>4</i> ;<br>$\alpha$ (P)=4.15×10 <sup>-6</sup> <i>6</i> ; $\alpha$ (Q)=2.47×10 <sup>-7</sup> <i>4</i>                                                                                                                 |
| *618.95 8<br>622.464 <i>14</i> | 0.051 <i>13</i><br>0.190 <i>12</i> | 784.1525               | 3/2+                 | 161.6853       | $1/2^{+}$              | M1(+E2)              | ≤0.71           | 0.142 23     | $\alpha(K)=0.112$ 19; $\alpha(L)=0.023$ 3; $\alpha(M)=0.0055$ 7                                                                                                                                                                                                                                           |

|                              |                    |                        |                      | <sup>240</sup> P  | $u(n,\gamma)$ E=th:se | econdary $\gamma$ 's 19             | 998Wh01 (co     | ontinued)                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|--------------------|------------------------|----------------------|-------------------|-----------------------|-------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                    |                        |                      |                   |                       | $\gamma(^{241}\text{Pu})$ (continue | ed)             |                                                                                                                                                                                                                                                                                                                                                                                                     |
| $E_{\gamma}^{\dagger}$       | $I_{\gamma}$ ‡ $f$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f = J_f^{\pi}$ | Mult. <sup>a</sup>    | $\delta^{e}$                        | $\alpha^{d}$    | Comments                                                                                                                                                                                                                                                                                                                                                                                            |
| <sup>x</sup> 624.02 4        | 0.079 10           |                        |                      |                   | M1+E2                 | 0.62 28                             | 0.126 23        | $\begin{aligned} &\alpha(\text{N})=0.00149 \ 19; \ \alpha(\text{O})=0.00037 \ 5; \ \alpha(\text{P})=7.0\times10^{-5} \ 10; \\ &\alpha(\text{Q})=4.5\times10^{-6} \ 8 \\ &\alpha(\text{K})=0.099 \ 19; \ \alpha(\text{L})=0.020 \ 3; \ \alpha(\text{M})=0.0050 \ 7 \\ &\alpha(\text{N})=0.00136 \ 19; \ \alpha(\text{O})=0.00034 \ 5; \ \alpha(\text{P})=6.4\times10^{-5} \ 10; \end{aligned}$       |
| 627.552 5                    | 1.335 25           | 850.5395               | 3/2-                 | 222.9879 5/2      | + E1                  |                                     | 0.00933         | $\alpha(Q)=4.0\times10^{-6} \ 8$<br>$\alpha(K)=0.00754 \ 11; \ \alpha(L)=0.001357 \ 19; \ \alpha(M)=0.000325 \ 5$<br>$\alpha(N)=8.80\times10^{-5} \ 13; \ \alpha(O)=2.17\times10^{-5} \ 3; \ \alpha(P)=4.03\times10^{-6}$<br>$6; \ \alpha(Q)=2.40\times10^{-7} \ 4$<br>Mult.: $\alpha(K)$ exp=0.0110 $\ 17$ compared with 0.0075 (E1) and<br>$0.0206 \ (E2)$ Placement in the level scheme requires |
| 629.539 6                    | 1.49 <i>3</i>      | 800.479                | 5/2+                 | 170.9399 3/2      | + M1+E2               | 0.57 23                             | 0.128 19        | $\Delta \pi$ =yes.<br>$\alpha$ (K)=0.100 <i>16</i> ; $\alpha$ (L)=0.0205 <i>25</i> ; $\alpha$ (M)=0.0050 <i>6</i><br>$\alpha$ (N)=0.00136 <i>16</i> ; $\alpha$ (O)=0.00034 <i>4</i> ; $\alpha$ (P)=6.4×10 <sup>-5</sup> <i>8</i> ;                                                                                                                                                                  |
| <sup>x</sup> 634.193 23      | 0.172 8            |                        |                      |                   | M1+E2                 | 0.67 +23-21                         | 0.117 <i>18</i> | $\alpha(Q)=4.0\times10^{-6} 6$<br>$\alpha(K)=0.092 \ 15; \ \alpha(L)=0.0191 \ 23; \ \alpha(M)=0.0047 \ 6$<br>$\alpha(N)=0.00127 \ 15; \ \alpha(O)=0.00031 \ 4; \ \alpha(P)=5.9\times10^{-5} \ 8;$                                                                                                                                                                                                   |
| 638.757 5                    | 1.079 25           | 800.443                | 3/2+                 | 161.6853 1/2      | + M1+E2               | 0.68 22                             | 0.114 18        | $\alpha(Q)=3.7\times10^{-6} \ 6$<br>$\alpha(K)=0.089 \ 15; \ \alpha(L)=0.0186 \ 23; \ \alpha(M)=0.0046 \ 6$<br>$\alpha(N)=0.00124 \ 15; \ \alpha(O)=0.00031 \ 4; \ \alpha(P)=5.8\times10^{-5} \ 8;$<br>$\alpha(Q)=3.6\times10^{-6} \ 6$                                                                                                                                                             |
| 640.001 <i>6</i>             | 1.10 4             | 810.945                | 5/2-                 | 170.9399 3/2      | + E1                  |                                     | 0.00900         | $\alpha(Q)=3.0\times10^{-6}$<br>$\alpha(K)=0.00727 \ 11; \ \alpha(L)=0.001306 \ 19; \ \alpha(M)=0.000313 \ 5$<br>$\alpha(N)=8.47\times10^{-5} \ 12; \ \alpha(O)=2.09\times10^{-5} \ 3; \ \alpha(P)=3.88\times10^{-6}$<br>$6: \ \alpha(O)=2.31\times10^{-7} \ 4$                                                                                                                                     |
| x642.25 3                    | 0.067 23           |                        |                      |                   | M1(+E2)               | ≤1.1                                | 0.12 4          | $\alpha(K)=0.09 \ 3; \ \alpha(L)=0.019 \ 5; \ \alpha(M)=0.0046 \ 11$<br>$\alpha(N)=0.0013 \ 3; \ \alpha(O)=0.00031 \ 7; \ \alpha(P)=5.9\times10^{-5} \ 14;$<br>$\alpha(O)=3.7\times10^{-6} \ 11$                                                                                                                                                                                                    |
| <sup>x</sup> 652.38 8        | 0.111 <i>11</i>    |                        |                      |                   | E2                    |                                     | 0.0290          | $\alpha(K)=0.0193 \ 3; \ \alpha(L)=0.00717 \ 10; \ \alpha(M)=0.00186 \ 3$<br>$\alpha(N)=0.000507 \ 8; \ \alpha(O)=0.0001231 \ 18; \ \alpha(P)=2.19\times10^{-5} \ 3;$<br>$\alpha(Q)=8.19\times10^{-7} \ 12$                                                                                                                                                                                         |
| x656.035 23                  | 0.141 <i>13</i>    |                        |                      |                   | M1+E2                 | 2.0 +6-3                            | 0.051 9         | Mult.: $\alpha$ (K)exp gives $\delta$ >5.0.<br>$\alpha$ (K)=0.038 7; $\alpha$ (L)=0.0101 11; $\alpha$ (M)=0.0025 3<br>$\alpha$ (N)=0.00069 7; $\alpha$ (O)=0.000169 18; $\alpha$ (P)=3.1×10 <sup>-5</sup> 4;                                                                                                                                                                                        |
| 660.625 <i>13</i>            | 0.59 <i>3</i>      | 831.587                | 5/2+                 | 170.9399 3/2      | + M1+E2               | 0.54 24                             | 0.114 <i>17</i> | $\alpha(Q)=1.5\times10^{-6} 3$<br>$\alpha(K)=0.090 \ 14; \ \alpha(L)=0.0183 \ 23; \ \alpha(M)=0.0045 \ 6$<br>$\alpha(N)=0.00121 \ 15; \ \alpha(O)=0.00030 \ 4; \ \alpha(P)=5.7\times10^{-5} \ 8;$                                                                                                                                                                                                   |
| <sup>x</sup> 663.37 <i>3</i> | 0.08 7             |                        |                      |                   | M1+E2                 | 2.8 +6-3                            | 0.040 4         | $\alpha(Q)=3.6\times10^{-6} 6$<br>$\alpha(K)=0.029 3; \ \alpha(L)=0.0085 5; \ \alpha(M)=0.00215 12$<br>$\alpha(N)=0.00059 4; \ \alpha(O)=0.000144 8; \ \alpha(P)=2.61\times10^{-5} 16;$<br>$\alpha(Q)=1.20\times10^{-6} 12$                                                                                                                                                                         |
| 671.007 9                    | 0.303 14           | 841.9575               | 1/2-                 | 170.9399 3/2      | + E1                  |                                     | 0.00824         | $\alpha(Q)=1.20\times 10^{-12}$<br>$\alpha(K)=0.00667 \ 10; \ \alpha(L)=0.001192 \ 17; \ \alpha(M)=0.000286 \ 4$<br>$\alpha(N)=7.72\times 10^{-5} \ 11; \ \alpha(O)=1.91\times 10^{-5} \ 3; \ \alpha(P)=3.54\times 10^{-6}$<br>$5; \ \alpha(Q)=2.13\times 10^{-7} \ 3$                                                                                                                              |

|                              | <sup>240</sup> Pu(n, $\gamma$ ) E=th:secondary $\gamma$ 's <b>1998Wh01</b> (continued) |                        |                      |                                          |                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------|------------------------|----------------------|------------------------------------------|--------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                              | $\gamma^{(241}$ Pu) (continued)                                                        |                        |                      |                                          |                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| ${\rm E_{\gamma}}^{\dagger}$ | $_{\mathrm{I}_{\gamma}}$ ‡ $f$                                                         | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{e}$ | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 680.274 16                   | 0.376 10                                                                               | 841.9575               | 1/2-                 | 161.6853 1/2+                            | (E1)               |              | 0.00804      | $\alpha(K)=0.00650 \ 10; \ \alpha(L)=0.001161 \ 17; \ \alpha(M)=0.000278 \ 4$<br>$\alpha(N)=7.52\times10^{-5} \ 11; \ \alpha(O)=1.86\times10^{-5} \ 3; \ \alpha(P)=3.45\times10^{-6} \ 5; \ \alpha(Q)=2.08\times10^{-7} \ 3$<br>Mult.: $\alpha(K)\exp=0.0114 \ 4$ compared with 0.0065 (E1) and<br>0.0179 (E2). Placement in the level scheme requires<br>$\Delta \pi = ves$                  |  |  |  |  |
| 688.851 <i>14</i>            | 0.678 24                                                                               | 850.5395               | 3/2-                 | 161.6853 1/2+                            | E1                 |              | 0.00785      | $\alpha(K) = 0.00636 \ 9; \ \alpha(L) = 0.001133 \ 16; \ \alpha(M) = 0.000271 \ 4$<br>$\alpha(N) = 7.34 \times 10^{-5} \ 11; \ \alpha(O) = 1.81 \times 10^{-5} \ 3; \ \alpha(P) = 3.37 \times 10^{-6} \ 5;$<br>$\alpha(O) = 2.03 \times 10^{-7} \ 3$                                                                                                                                          |  |  |  |  |
| <sup>x</sup> 698.661 24      | 0.143 8                                                                                |                        |                      |                                          | M1+E2              | 3.2 +15-7    | 0.034 5      | $\alpha(K) = 0.024 \ 4; \ \alpha(L) = 0.0070 \ 7; \ \alpha(M) = 0.00179 \ 15$<br>$\alpha(N) = 0.00049 \ 4; \ \alpha(O) = 0.000119 \ 11; \ \alpha(P) = 2.17 \times 10^{-5} \ 20;$<br>$\alpha(O) = 9.9 \times 10^{-7} \ 16$                                                                                                                                                                     |  |  |  |  |
| 704.70 14                    | 0.093 25                                                                               | 800.479                | 5/2+                 | 95.7795 9/2+                             | E2                 |              | 0.0247       | $\alpha(K) = 0.01687 \ 24; \ \alpha(L) = 0.00578 \ 8; \ \alpha(M) = 0.001487 \ 21$<br>$\alpha(N) = 0.000406 \ 6; \ \alpha(O) = 9.87 \times 10^{-5} \ 14; \ \alpha(P) = 1.770 \times 10^{-5}$<br>$25; \ \alpha(Q) = 7.03 \times 10^{-7} \ 10$<br>Mult.: $\alpha(K)$ exp gives $\delta > 4.2$ .                                                                                                 |  |  |  |  |
| <sup>x</sup> 708.01 6        | 0.138 23                                                                               |                        |                      |                                          | M1+E2              | 1.2 +5-3     | 0.062 14     | α(K)=0.048 I2;          α(L)=0.0107 I9;          α(M)=0.0026 5         α(N)=0.00072 I2;          α(O)=0.00018 3;          α(P)=3.3×10-5 6;          α(Q)=1.9×10-6 5          Eγ: Placed by the authors from the 869 level; however, that          placement requires ΔJ=2, and          α(K)exp=0.050 II compared          with 0.0167 (E2) and 0.092 (M1) requires an M1          admixture. |  |  |  |  |
| 726.562 22                   | 0.180 8                                                                                | 897.503?               | (5/2 <sup>-</sup> )  | 170.9399 3/2+                            |                    |              |              | Mult.: $\alpha(K)\exp=0.017$ 3 is consistent with mult=E2;<br>however; the authors' suggested $J^{\pi}(897 \text{ level})$ requires<br>$\Delta \pi=\text{yes}$ . Mult=E1+M2 would require $\delta=0.24$ 4. See<br>comment on $J^{\pi}(897 \text{ level})$ in Adopted Levels                                                                                                                   |  |  |  |  |
| <sup>x</sup> 737.922 20      | 0.219 14                                                                               |                        |                      |                                          | M1(+E2)            | ≤0.6         | 0.093 11     | $\alpha(K)=0.074 \ 9; \ \alpha(L)=0.0146 \ 15; \ \alpha(M)=0.0035 \ 4$<br>$\alpha(N)=0.00096 \ 10; \ \alpha(O)=0.000240 \ 24; \ \alpha(P)=4.6\times10^{-5} \ 5;$<br>$\alpha(O)=2.9\times10^{-6} \ 4$                                                                                                                                                                                          |  |  |  |  |
| <sup>x</sup> 742.250 9       | 1.09 4                                                                                 |                        |                      |                                          | M1+E2              | 1.1 +3-2     | 0.058 10     | $\alpha(K) = 0.045 \ 8; \ \alpha(L) = 0.0099 \ 13; \ \alpha(M) = 0.0024 \ 3$<br>$\alpha(N) = 0.00066 \ 8; \ \alpha(O) = 0.000164 \ 20; \ \alpha(P) = 3.1 \times 10^{-5} \ 4;$<br>$\alpha(Q) = 1.8 \times 10^{-6} \ 3$                                                                                                                                                                         |  |  |  |  |
| <sup>x</sup> 749.67 5        | 0.240 25                                                                               |                        |                      |                                          | E2                 |              | 0.0217       | $\alpha(K)=0.01515\ 22;\ \alpha(L)=0.00489\ 7;\ \alpha(M)=0.001252\ 18$<br>$\alpha(N)=0.000342\ 5;\ \alpha(O)=8.32\times10^{-5}\ 12;\ \alpha(P)=1.498\times10^{-5}$<br>$21;\ \alpha(Q)=6.23\times10^{-7}\ 9$<br>Mult: $\alpha(K)$ exp gives $\delta>3.5$ .                                                                                                                                    |  |  |  |  |
| x750.19 4                    | 0.31 4                                                                                 |                        |                      |                                          | M1+E2              | 0.9 +3-2     | 0.065 12     | $\alpha(K)=0.050 \ 10; \ \alpha(L)=0.0107 \ 15; \ \alpha(M)=0.0026 \ 4$<br>$\alpha(N)=0.00071 \ 10; \ \alpha(O)=0.000176 \ 25; \ \alpha(P)=3.3\times10^{-5} \ 5;$<br>$\alpha(O)=2.0\times10^{-6} \ 4$                                                                                                                                                                                         |  |  |  |  |
| <sup>x</sup> 751.16 6        | 0.125 22                                                                               |                        |                      |                                          | M1+E2              | 3.0 +31-8    | 0.029 6      | $\alpha(K)=0.021 \ 5; \ \alpha(L)=0.0059 \ 8; \ \alpha(M)=0.00149 \ 19$<br>$\alpha(N)=0.00041 \ 5; \ \alpha(O)=0.000100 \ 13; \ \alpha(P)=1.82\times10^{-5} \ 25;$<br>$\alpha(Q)=8.7\times10^{-7} \ 19$                                                                                                                                                                                       |  |  |  |  |

|                                          |                         |                        |                      | 24               | <sup>0</sup> Pu(n,   | $\gamma$ ) <b>E=th:se</b> | condary $\gamma$ 's 1 | 998Wh01 (c   | continued)                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------------------------|-------------------------|------------------------|----------------------|------------------|----------------------|---------------------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(241</sup> Pu) (continued) |                         |                        |                      |                  |                      |                           |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $E_{\gamma}^{\dagger}$                   | $I_{\gamma}$ ‡ $f$      | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup>        | $\delta^e$            | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| x751.92 6                                | 0.126 22                |                        |                      |                  |                      | M1+E2                     | 0.9 3                 | 0.064 15     | $\alpha(K)=0.050 \ 12; \ \alpha(L)=0.0106 \ 20; \ \alpha(M)=0.0026 \ 5$<br>$\alpha(N)=0.00071 \ 13; \ \alpha(O)=0.00018 \ 3; \ \alpha(P)=3.3\times10^{-5} \ 6;$<br>$\alpha(O)=2.0\times10^{-6} \ 5$                                                                                                                                                                                              |  |  |
| 755.154 <i>14</i>                        | 0.58 5                  | 755.1743               | 1/2+                 | 0                | 5/2+                 | E2                        |                       | 0.0214       | $\alpha(\mathbf{K}) = 0.01496\ 21;\ \alpha(\mathbf{L}) = 0.00479\ 7;\ \alpha(\mathbf{M}) = 0.001227\ 18$<br>$\alpha(\mathbf{N}) = 0.000335\ 5;\ \alpha(\mathbf{O}) = 8.15 \times 10^{-5}\ 12;\ \alpha(\mathbf{P}) = 1.470 \times 10^{-5}\ 21;$<br>$\alpha(\mathbf{Q}) = 6.14 \times 10^{-7}\ 9$<br>Mult.: $\alpha(\mathbf{K})$ exp gives $\delta > 3.2$ .                                        |  |  |
| 758.494 <mark>8</mark> #                 | ≤0.400 <sup>g#</sup>    | 800.443                | $3/2^{+}$            | 41.9722          | 7/2+                 |                           |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 758.494 <mark>8</mark> #                 | ≤0.400 <mark>8</mark> # | 800.479                | $5/2^{+}$            | 41.9722          | $7/2^{+}$            |                           |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| <sup>x</sup> 760.13 8                    | 0.084 21                |                        |                      |                  | ,                    | M1                        |                       | 0.0960       | $\alpha(K)=0.0763 \ 11; \ \alpha(L)=0.01483 \ 21; \ \alpha(M)=0.00359 \ 5$<br>$\alpha(N)=0.000976 \ 14; \ \alpha(O)=0.000243 \ 4; \ \alpha(P)=4.62\times10^{-5} \ 7;$<br>$\alpha(Q)=3.02\times10^{-6} \ 5$<br>Mult.: The authors suggest an E0 component, but<br>$\alpha(K)$ exp=0.11 $\beta$ overlaps the M1 value of 0.082.                                                                    |  |  |
| 765.23 3                                 | 0.212 16                | 940.311                | 3/2+                 | 175.0523         | 7/2+                 |                           |                       |              | Mult.: $\alpha(\mathbf{K})\exp=0.0090$ 19 compared with 0.0053 (E1) and 0.0146 (E2). The probable $J^{\pi}$ of the 940 level requires $\Delta \pi = no$ . See comment on $J^{\pi}(940$ level) in Adopted Levels                                                                                                                                                                                  |  |  |
| 771.64 4                                 | 0.16 8                  | 942.584                | 3/2+                 | 170.9399         | 3/2+                 | M1+E2                     | 1.5 +52-7             | 0.043 22     | $\alpha(\mathbf{K})=0.033 \ 18; \ \alpha(\mathbf{L})=0.008 \ 3; \ \alpha(\mathbf{M})=0.0019 \ 7$<br>$\alpha(\mathbf{N})=0.00051 \ 19; \ \alpha(\mathbf{O})=0.00013 \ 5; \ \alpha(\mathbf{P})=2.3\times10^{-5} \ 10;$<br>$\alpha(\mathbf{O})=1 \ 3\times10^{-6} \ 7$                                                                                                                              |  |  |
| 772.645 21                               | 0.49 5                  | 995.603                | 3/2-                 | 222.9879         | 5/2+                 | E1                        |                       | 0.00638      | $\alpha(Q)=1.5\times10^{-7}$ (L)=0.000912 13; $\alpha(M)=0.000218$ 3<br>$\alpha(N)=5.90\times10^{-5}$ 9; $\alpha(O)=1.457\times10^{-5}$ 21; $\alpha(P)=2.72\times10^{-6}$ 4;<br>$\alpha(Q)=1.665\times10^{-7}$ 24<br>Mult.: On the authors' level scheme, Fig. 1, the mult for this<br>transition is shown as M1. This is a typo. The mult is given<br>as E1 in table L based on $\alpha(K)$ exp |  |  |
| 773.59 4                                 | 0.197 21                | 869.383                | 7/2+                 | 95.7795          | 9/2+                 | M1+E2                     | 1.2 +4-3              | 0.050 11     | $\alpha(K)=0.038 \ 9; \ \alpha(L)=0.0084 \ 14; \ \alpha(M)=0.0021 \ 4 \ \alpha(N)=0.00057 \ 9; \ \alpha(O)=0.000140 \ 23; \ \alpha(P)=2.6\times10^{-5} \ 5; \ \alpha(O)=1.5\times10^{-6} \ 4$                                                                                                                                                                                                    |  |  |
| 777.89 5                                 | 0.132 13                | 1296.70                | 3/2-                 | 518.8121         | 5/2-                 | M1+E2                     | 0.88 +30-24           | 0.060 11     | $\alpha(Q) = 1.5 \times 10^{-6} \ \alpha(L) = 0.0098 \ 14; \ \alpha(M) = 0.0024 \ 4$<br>$\alpha(N) = 0.00065 \ 9; \ \alpha(O) = 0.000162 \ 23; \ \alpha(P) = 3.0 \times 10^{-5} \ 5;$<br>$\alpha(Q) = 1.9 \times 10^{-6} \ 4$                                                                                                                                                                    |  |  |
| 780.889 8                                | 1.90 3                  | 942.584                | 3/2+                 | 161.6853         | 1/2+                 | M1+E2                     | 0.57 23               | 0.072 10     | $\alpha(Q) = 1.9 \times 10^{-4}  q$<br>$\alpha(K) = 0.057  9;  \alpha(L) = 0.0115  14;  \alpha(M) = 0.0028  4$<br>$\alpha(N) = 0.00076  9;  \alpha(O) = 0.000189  23;  \alpha(P) = 3.6 \times 10^{-5}  5;$<br>$\alpha(Q) = 2.3 \times 10^{-6}  4$                                                                                                                                                |  |  |
| 784.153 <i>16</i>                        | 0.518 <i>16</i>         | 784.1525               | 3/2+                 | 0                | 5/2+                 | E2                        |                       | 0.0198       | $\alpha(K) = 0.01401 \ 20; \ \alpha(L) = 0.00434 \ 6; \ \alpha(M) = 0.001107 \ 16$<br>$\alpha(N) = 0.000302 \ 5; \ \alpha(O) = 7.36 \times 10^{-5} \ 11; \ \alpha(P) = 1.331 \times 10^{-5} \ 19;$<br>$\alpha(Q) = 5.71 \times 10^{-7} \ 8$<br>Mult.: $\alpha(K)$ exp gives $\delta > 3.1$ .                                                                                                     |  |  |
| 786.454 <i>16</i>                        | 0.49 3                  | 1009.438               | 3/2-                 | 222.9879         | 5/2+                 | [E1]                      |                       | 0.00618      | $\alpha(K)=0.00501 \ 7; \ \alpha(L)=0.000882 \ 13; \ \alpha(M)=0.000211 \ 3$<br>$\alpha(N)=5.70\times10^{-5} \ 8; \ \alpha(O)=1.409\times10^{-5} \ 20; \ \alpha(P)=2.63\times10^{-6} \ 4;$<br>$\alpha(Q)=1.614\times10^{-7} \ 23$                                                                                                                                                                |  |  |

From ENSDF

 $^{241}_{94}\mathrm{Pu}_{147}\text{--}13$ 

|                                                |                                             |                        |                                      | $^{240}\mathbf{Pu}(\mathbf{n,}\gamma)$ | E=th:                | secondary                 | γ's <b>1998Wh0</b> | 1 (continued | 1)                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------|---------------------------------------------|------------------------|--------------------------------------|----------------------------------------|----------------------|---------------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                             |                        |                                      |                                        |                      | $\gamma(^{241}\text{Pu})$ | (continued)        |              |                                                                                                                                                                                                                                                                                                                                           |
| ${\rm E_{\gamma}}^{\dagger}$                   | $_{\mathrm{I}_{\gamma}}$ ‡ $f$              | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                   | $E_f$                                  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup>        | $\delta^{e}$       | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                  |
| 789.63 4                                       | 0.218 23                                    | 831.587                | 5/2+                                 | 41.9722                                | 7/2+                 | M1+E2                     | 0.6 3              | 0.069 13     | $\alpha(K)=0.054 \ 10; \ \alpha(L)=0.0110 \ 17; \ \alpha(M)=0.0027 \ 4$<br>$\alpha(N)=0.00073 \ 11; \ \alpha(O)=0.00018 \ 3; \ \alpha(P)=3.4\times10^{-5}$                                                                                                                                                                                |
| 793.95 5                                       | 1.08 8                                      | 964.940                | 1/2-                                 | 170.9399                               | 3/2+                 | [E1]                      |                    | 0.00607      | $\begin{aligned} &\alpha(N) = 0.00015 \ 11, \ \alpha(O) = 0.00016 \ 5, \ \alpha(I) = 5.4\times10^{-6} \ 4 \\ &\alpha(K) = 0.00493 \ 7; \ \alpha(L) = 0.000866 \ 13; \\ &\alpha(M) = 0.000207 \ 3 \\ &\alpha(N) = 5.60\times10^{-5} \ 8; \ \alpha(O) = 1.384\times10^{-5} \ 20; \end{aligned}$                                             |
| <sup>x</sup> 794.27 5                          | 1.13 8                                      |                        |                                      |                                        |                      | M1+E2                     | 0.83 +26-22        | 0.058 9      | $\alpha(P)=2.58\times10^{-6} 4; \ \alpha(Q)=1.588\times10^{-7} 23$<br>$\alpha(K)=0.046 8; \ \alpha(L)=0.0095 13; \ \alpha(M)=0.0023 3$<br>$\alpha(N)=0.00063 8; \ \alpha(O)=0.000157 20;$<br>$\alpha(P)=3.0\times10^{-5} 4; \ \alpha(Q)=1.8\times10^{-6} 3$                                                                               |
| 800.461 <sup>g&amp;</sup>                      | ≤0.767 <sup>g&amp;</sup>                    | 800.443                | 3/2+                                 | 0                                      | 5/2+                 |                           |                    |              |                                                                                                                                                                                                                                                                                                                                           |
| 800.461 <sup>g&amp;</sup><br>803.265 <i>19</i> | ≤0.767 <sup>8&amp;</sup><br>0.583 <i>16</i> | 800.479<br>964.940     | 5/2 <sup>+</sup><br>1/2 <sup>-</sup> | 0<br>161.6853                          | 5/2+<br>1/2+         | E1                        |                    | 0.00595      | $\alpha$ (K)=0.00483 7; $\alpha$ (L)=0.000848 <i>12</i> ;<br>$\alpha$ (M)=0.000203 <i>3</i>                                                                                                                                                                                                                                               |
| <sup>x</sup> 811.982 <i>19</i>                 | 0.480 23                                    |                        |                                      |                                        |                      | M1+E2                     | 1.25 +35-24        | 0.043 7      | $\alpha(N)=5.48\times10^{-5} \ 8; \ \alpha(O)=1.355\times10^{-5} \ 19; \\ \alpha(P)=2.53\times10^{-6} \ 4; \ \alpha(Q)=1.557\times10^{-7} \ 22 \\ \alpha(K)=0.033 \ 6; \ \alpha(L)=0.0073 \ 10; \ \alpha(M)=0.00179 \ 22 \\ \alpha(N)=0.00049 \ 6; \ \alpha(O)=0.000120 \ 15; $                                                           |
| 833.904 <i>13</i>                              | 0.81 3                                      | 995.603                | 3/2-                                 | 161.6853                               | 1/2+                 | E1                        |                    | 0.00557      | $\alpha(P)=2.3\times10^{-3} 3; \ \alpha(Q)=1.31\times10^{-6} 22$<br>$\alpha(K)=0.00452 7; \ \alpha(L)=0.000791 II;$<br>$\alpha(M)=0.000189 3$                                                                                                                                                                                             |
| 834.837 17                                     | 0.51 3                                      | 834.839                | 3/2+,5/2+,7/2+                       | 0                                      | 5/2+                 | M1+E2                     | 0.94 +25-20        | 0.048 7      | $\alpha(N)=5.11\times10^{-5} \ 8; \ \alpha(O)=1.264\times10^{-5} \ 18; \alpha(P)=2.36\times10^{-6} \ 4; \ \alpha(Q)=1.460\times10^{-7} \ 21 \alpha(K)=0.037 \ 6; \ \alpha(L)=0.0079 \ 10; \ \alpha(M)=0.00192 \ 22 \alpha(N)=0.00052 \ 6; \ \alpha(O)=0.000129 \ 15; \alpha(P)=2.4\times10^{-5} \ 3; \ \alpha(O)=1.48\times10^{-6} \ 22 $ |
| <sup>x</sup> 838.646 22                        | 0.449 24                                    |                        |                                      |                                        |                      | E2                        |                    | 0.01736      | $\alpha(\mathbf{F}) = 2.4 \times 10^{-5}$ , $\alpha(\mathbf{Q}) = 1.48 \times 10^{-22}$<br>$\alpha(\mathbf{K}) = 0.01246$ 18; $\alpha(\mathbf{L}) = 0.00365$ 6; $\alpha(\mathbf{M}) = 0.000926$                                                                                                                                           |
|                                                |                                             |                        |                                      |                                        |                      |                           |                    |              | 13<br>$\alpha(N)=0.000253 \ 4; \ \alpha(O)=6.17\times10^{-5} \ 9; \ \alpha(P)=1.119\times10^{-5} \ 16; \ \alpha(Q)=5.02\times10^{-7} \ 7$ Mult : $\alpha(V)$ or $\alpha$ given $\beta > 2.0$                                                                                                                                              |
| <sup>x</sup> 844.200 20                        | 0.31 5                                      |                        |                                      |                                        |                      | M1+E2                     | 1.5 +6-4           | 0.034 8      | $\alpha(K)=0.026\ 7;\ \alpha(L)=0.0059\ 11;\ \alpha(M)=0.0015\ 3$<br>$\alpha(N)=0.0040\ 7;\ \alpha(O)=9.8\times10^{-5}\ 18;$                                                                                                                                                                                                              |
| <sup>x</sup> 845.07 5                          | 0.215 23                                    |                        |                                      |                                        |                      | E1                        |                    | 0.00544      | $\alpha(P)=1.8\times10^{-5} 4; \ \alpha(Q)=1.0\times10^{-6} 3$<br>$\alpha(K)=0.00442 7; \ \alpha(L)=0.000772 11;$<br>$\alpha(M)=0.000184 3$<br>$\alpha(N)=4.99\times10^{-5} 7; \ \alpha(O)=1.233\times10^{-5} 18;$                                                                                                                        |
| <sup>x</sup> 848.12 6<br><sup>x</sup> 853.31 6 | 0.172 22<br>0.106 <i>12</i>                 |                        |                                      |                                        |                      | M1+E2                     | 1.2 +4-3           | 0.039 8      | $\alpha(P)=2.31\times10^{-6} 4; \ \alpha(Q)=1.428\times10^{-7} 20$<br>$\alpha(K)=0.030 7; \ \alpha(L)=0.0065 11; \ \alpha(M)=0.0016 3$<br>$\alpha(N)=0.00044 7; \ \alpha(Q)=0.000108 17;  \alpha(P)=2.0\times10^{-5} 4; \ \alpha(Q)=1.19\times10^{-6} 25$                                                                                 |

 $^{241}_{94}\mathrm{Pu}_{147}\text{-}14$ 

|                                                  |                                | <sup>240</sup> <b>Pu</b> ( $\mathbf{n},\gamma$ ) <b>E=th:secondary</b> $\gamma$ 's |                      |                  |                      |                    |              | 1998Wh01     | (continued)                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------|----------------------|------------------|----------------------|--------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(241</sup> Pu) (continued)         |                                |                                                                                    |                      |                  |                      |                    |              |              |                                                                                                                                                                                                                                                                                                                                                       |  |  |
| ${\rm E_{\gamma}}^{\dagger}$                     | $_{\mathrm{I}_{\gamma}}$ ‡ $f$ | E <sub>i</sub> (level)                                                             | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{e}$ | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                              |  |  |
| <sup>x</sup> 876.58 10                           | 0.28 10                        |                                                                                    |                      |                  |                      | E1,E2              |              |              |                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <sup>x</sup> 892.934 <i>18</i>                   | 0.419 21                       |                                                                                    |                      |                  |                      | M1(+E2)            | ≤0.36        | 0.060 3      | $\begin{aligned} &\alpha(\mathbf{K}) = 0.0475 \ 23; \ \alpha(\mathbf{L}) = 0.0093 \ 4; \ \alpha(\mathbf{M}) = 0.00224 \ 10 \\ &\alpha(\mathbf{N}) = 0.00061 \ 3; \ \alpha(\mathbf{O}) = 0.000152 \ 7; \ \alpha(\mathbf{P}) = 2.88 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{Q}) = 1.87 \times 10^{-6} \ 9 \end{aligned}$                                |  |  |
| <sup>x</sup> 931.667 20                          | 0.74 4                         |                                                                                    |                      |                  |                      | M1+E2              | 1.5 +4-3     | 0.027 5      | $\begin{aligned} &\alpha(\mathbf{K}) = 0.021 \ 4; \ \alpha(\mathbf{L}) = 0.0046 \ 6; \ \alpha(\mathbf{M}) = 0.00113 \ 14 \\ &\alpha(\mathbf{N}) = 0.00031 \ 4; \ \alpha(\mathbf{O}) = 7.6 \times 10^{-5} \ 10; \ \alpha(\mathbf{P}) = 1.42 \times 10^{-5} \ 19; \\ &\alpha(\mathbf{Q}) = 8.2 \times 10^{-7} \ 14 \end{aligned}$                       |  |  |
| 940.315 12                                       | 2.21 9                         | 940.311                                                                            | 3/2+                 | 0                | 5/2+                 | M1+E2              | 1.09 +28-21  | 0.032 5      | $\alpha(K) = 0.025 \ 4; \ \alpha(L) = 0.0053 \ 7; \ \alpha(M) = 0.00130 \ 15 \\ \alpha(N) = 0.00035 \ 4; \ \alpha(O) = 8.8 \times 10^{-5} \ 10; \ \alpha(P) = 1.65 \times 10^{-5} \ 20; \\ \alpha(O) = 1.00 \times 10^{-6} \ 15$                                                                                                                      |  |  |
| x941.12 3                                        | 1.23 6                         |                                                                                    |                      |                  |                      | E2                 |              | 0.01387      | $\begin{aligned} &\alpha(\mathbf{K}) = 0.01020 \ 15; \ \alpha(\mathbf{L}) = 0.00274 \ 4; \ \alpha(\mathbf{M}) = 0.000689 \ 10 \\ &\alpha(\mathbf{N}) = 0.000188 \ 3; \ \alpha(\mathbf{O}) = 4.60 \times 10^{-5} \ 7; \ \alpha(\mathbf{P}) = 8.41 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{Q}) = 4.03 \times 10^{-7} \ 6 \end{aligned}$                 |  |  |
| 942.58 <sup>h</sup> 4                            | 0.49 6                         | 942.584                                                                            | $3/2^{+}$            | 0                | 5/2+                 |                    |              |              | Mult.: $\alpha$ (K)exp=0.0040 8, consistent with the E1 value of                                                                                                                                                                                                                                                                                      |  |  |
| <sup>x</sup> 953.20 4                            | 0.73 5                         |                                                                                    |                      |                  |                      | E2                 |              | 0.01354      | 0.0045; however, placement requires Δπ=no.<br>$\alpha(K)=0.00998$ 14; $\alpha(L)=0.00265$ 4; $\alpha(M)=0.000668$ 10<br>$\alpha(N)=0.000182$ 3; $\alpha(O)=4.46\times10^{-5}$ 7; $\alpha(P)=8.15\times10^{-6}$ 12;<br>$\alpha(Q)=3.93\times10^{-7}$ 6<br>Multi- $\alpha(K)=0$ for a given s $\lesssim 4.1$                                            |  |  |
| x958.30 11                                       | 0.17 4                         |                                                                                    |                      |                  |                      | E2                 |              | 0.01340      | $\begin{aligned} \alpha(\mathbf{K}) &= 0.00989 \ 14; \ \alpha(\mathbf{L}) &= 0.00262 \ 4; \ \alpha(\mathbf{M}) &= 0.000659 \ 10 \\ \alpha(\mathbf{N}) &= 0.000180 \ 3; \ \alpha(\mathbf{O}) &= 4.40 \times 10^{-5} \ 7; \ \alpha(\mathbf{P}) &= 8.05 \times 10^{-6} \ 12; \\ \alpha(\mathbf{Q}) &= 3.89 \times 10^{-7} \ 6 \end{aligned}$             |  |  |
| <sup>x</sup> 965.07 12<br><sup>x</sup> 967 46 13 | 0.15 4                         |                                                                                    |                      |                  |                      |                    |              |              |                                                                                                                                                                                                                                                                                                                                                       |  |  |
| x973.70 10                                       | 0.55 11                        |                                                                                    |                      |                  |                      | M1+E2              | 3 +7-1       | 0.017 4      | $\alpha$ (K)=0.013 3; $\alpha$ (L)=0.0030 6; $\alpha$ (M)=0.00075 13<br>$\alpha$ (N)=0.00021 4; $\alpha$ (O)=5.1×10 <sup>-5</sup> 9; $\alpha$ (P)=9.3×10 <sup>-6</sup> 16;<br>$\alpha$ (O)=5.0×10 <sup>-7</sup> 12                                                                                                                                    |  |  |
| <sup>x</sup> 999.37 <i>15</i>                    | 0.175 24                       |                                                                                    |                      |                  |                      | M1+E2+E0           |              | 0.029 17     | $\alpha(K) = 0.023 \ 14; \ \alpha(L) = 0.0047 \ 24; \ \alpha(M) = 0.0012 \ 6$<br>$\alpha(N) = 0.00031 \ 16; \ \alpha(O) = 8.E - 5 \ 4; \ \alpha(P) = 1.5 \times 10^{-5} \ 8;$<br>$\alpha(Q) = 9.E - 7 \ 6$<br>Mult.: $\alpha(K) = 0.040$ for                                                                                                          |  |  |
| <sup>x</sup> 1003.25 9                           | 0.34 3                         |                                                                                    |                      |                  |                      | E2                 |              | 0.01228      | mult=M1 indicates the presence of an E0 component.<br>$\alpha(K)=0.00913 \ 13; \ \alpha(L)=0.00235 \ 4; \ \alpha(M)=0.000589 \ 9$<br>$\alpha(N)=0.0001604 \ 23; \ \alpha(O)=3.93\times10^{-5} \ 6; \ \alpha(P)=7.21\times10^{-6} \ 11;$<br>$\alpha(Q)=3.57\times10^{-7} \ 5$<br>Mult : $\alpha(K)$ exp gives $\delta > 3.3$                           |  |  |
| <sup>x</sup> 1006.21 <i>13</i>                   | 0.47 15                        |                                                                                    |                      |                  |                      | E1                 |              | 0.00401      | $\begin{aligned} \alpha(\mathbf{K}) &= 0.00326 \ 5; \ \alpha(\mathbf{L}) = 0.000562 \ 8; \ \alpha(\mathbf{M}) = 0.0001341 \ 19 \\ \alpha(\mathbf{N}) &= 3.63 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 8.98 \times 10^{-6} \ 13; \ \alpha(\mathbf{P}) = 1.685 \times 10^{-6} \ 24; \\ \alpha(\mathbf{Q}) &= 1.064 \times 10^{-7} \ 15 \end{aligned}$ |  |  |
| <sup>x</sup> 1006.95 <i>12</i>                   | 0.57 15                        |                                                                                    |                      |                  |                      |                    |              |              |                                                                                                                                                                                                                                                                                                                                                       |  |  |
| ~1009.30 <i>10</i><br>×1020 39 6                 | 0.31 11<br>0.28 7              |                                                                                    |                      |                  |                      | E2                 |              | 0.01189      | $\alpha(K)=0.00887.13$ ; $\alpha(L)=0.00226.4$ ; $\alpha(M)=0.000565.8$                                                                                                                                                                                                                                                                               |  |  |
| 1020.37 0                                        | 0.207                          |                                                                                    |                      |                  |                      |                    |              | 0.01107      | a(ii) 0.00007 15, a(L)=0.00220 7, a(iii)=0.000505 0                                                                                                                                                                                                                                                                                                   |  |  |

 $^{241}_{94}\mathrm{Pu}_{147}\text{-}15$ 

|                                                                                            |                                     |                        |                    | <sup>240</sup> Pu | u(n,γ)               | E=th:secon               | dary $\gamma$ 's <b>19</b> | 98Wh01 (c    | continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------------------------------------------|-------------------------------------|------------------------|--------------------|-------------------|----------------------|--------------------------|----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(241</sup> Pu) (continued)                                                   |                                     |                        |                    |                   |                      |                          |                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ${\rm E_{\gamma}}^{\dagger}$                                                               | $I_{\gamma}$ ‡ $f$                  | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $\mathbf{E}_{f}$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup>       | $\delta^{e}$               | $\alpha^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <sup>x</sup> 1022.95 7                                                                     | 0.28 4                              |                        |                    |                   |                      | E2                       |                            | 0.01183      | $ \begin{array}{l} \alpha(\mathrm{N}) = 0.0001539 \ 22; \ \alpha(\mathrm{O}) = 3.77 \times 10^{-5} \ 6; \ \alpha(\mathrm{P}) = 6.93 \times 10^{-6} \ 10; \\ \alpha(\mathrm{Q}) = 3.46 \times 10^{-7} \ 5 \\ \alpha(\mathrm{K}) = 0.00883 \ 13; \ \alpha(\mathrm{L}) = 0.00224 \ 4; \ \alpha(\mathrm{M}) = 0.000562 \ 8 \\ \alpha(\mathrm{N}) = 0.0001529 \ 22; \ \alpha(\mathrm{O}) = 3.75 \times 10^{-5} \ 6; \ \alpha(\mathrm{P}) = 6.89 \times 10^{-6} \ 10; \\ \alpha(\mathrm{Q}) = 3.44 \times 10^{-7} \ 5 \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^$ |  |
| <sup>x</sup> 1025.98 7                                                                     | 0.29 4                              |                        |                    |                   |                      | E1                       |                            | 0.00387      | Mult.: $\alpha$ (K)exp gives $\delta$ >2.8.<br>$\alpha$ (K)=0.00316 5; $\alpha$ (L)=0.000543 8; $\alpha$ (M)=0.0001295 19<br>$\alpha$ (N)=3.50×10 <sup>-5</sup> 5; $\alpha$ (O)=8.67×10 <sup>-6</sup> 13; $\alpha$ (P)=1.628×10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| <sup>x</sup> 1034.75 <i>18</i>                                                             | 0.26 3                              |                        |                    |                   |                      | E1                       |                            | 0.00382      | 23; $\alpha(Q)=1.030\times10^{-7}$ 15<br>$\alpha(K)=0.00311$ 5; $\alpha(L)=0.000535$ 8; $\alpha(M)=0.0001275$ 18<br>$\alpha(N)=3.45\times10^{-5}$ 5; $\alpha(Q)=8.54\times10^{-6}$ 12; $\alpha(P)=1.604\times10^{-6}$<br>23; $\alpha(Q)=1.015\times10^{-7}$ 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <sup>x</sup> 1037.26 <i>10</i><br><sup>x</sup> 1039.89 <i>13</i>                           | 0.27 <i>4</i><br>0.19 <i>4</i>      |                        |                    |                   |                      | M1(+E2)                  | ≤0.95                      | 0.034 8      | $\alpha$ (K)=0.027 6; $\alpha$ (L)=0.0054 10; $\alpha$ (M)=0.00131 24<br>$\alpha$ (N)=0.00036 7; $\alpha$ (O)=8.8×10 <sup>-5</sup> 17; $\alpha$ (P)=1.7×10 <sup>-5</sup> 4;<br>$\alpha$ (O)=1.07×10 <sup>-6</sup> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| x1045.00 6<br>1052.93 3                                                                    | 0.36 7<br>0.82 <i>4</i>             | 1223.841               | 1/2,3/2            | 170.9399          | 3/2+                 | E1,E2<br>E1 <sup>c</sup> |                            | 0.00370      | $\alpha(Q) = 1.57716 = 26$<br>$\alpha(K) = 0.00302 \ 5; \ \alpha(L) = 0.000519 \ 8; \ \alpha(M) = 0.0001236 \ 18$<br>$\alpha(N) = 3.34 \times 10^{-5} \ 5; \ \alpha(O) = 8.28 \times 10^{-6} \ 12; \ \alpha(P) = 1.555 \times 10^{-6}$<br>$22; \ \alpha(Q) = 9.86 \times 10^{-8} \ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| <sup>x</sup> 1060.64 <i>15</i><br><sup>x</sup> 1062.31 <i>4</i>                            | 0.21 <i>4</i><br>0.81 <i>11</i>     |                        |                    |                   |                      | E1,E2<br>E1              |                            | 0.00365      | $\alpha$ (K)=0.00297 5; $\alpha$ (L)=0.000510 8; $\alpha$ (M)=0.0001216 17<br>$\alpha$ (N)=3.29×10 <sup>-5</sup> 5; $\alpha$ (O)=8.15×10 <sup>-6</sup> 12; $\alpha$ (P)=1.531×10 <sup>-6</sup><br>220×10 <sup>-8</sup> 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| <sup>x</sup> 1064.28 <i>11</i>                                                             | 0.21 4                              |                        |                    |                   |                      | M1+E2                    | 0.9 +5-3                   | 0.027 6      | $\alpha(\mathbf{K})=0.021\ 5;\ \alpha(\mathbf{L})=0.0042\ 9;\ \alpha(\mathbf{M})=0.00103\ 21$<br>$\alpha(\mathbf{N})=0.00028\ 6;\ \alpha(\mathbf{O})=7.0\times10^{-5}\ 14;\ \alpha(\mathbf{P})=1.3\times10^{-5}\ 3;$<br>$\alpha(\mathbf{O})=8.2\times10^{-7}\ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <sup>x</sup> 1073.00 <i>10</i><br><sup>x</sup> 1074.44 <i>11</i><br><sup>x</sup> 1078 15 7 | $0.38\ 5$<br>$0.46\ 5$<br>$0.32\ 7$ |                        |                    |                   |                      | E1,E2                    |                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1082.80 4                                                                                  | 0.62 4                              | 1253.792               | 1/2-,3/2-          | 170.9399          | 3/2+                 | E1                       |                            | 0.00353      | $\alpha$ (K)=0.00288 4; $\alpha$ (L)=0.000493 7; $\alpha$ (M)=0.0001176 17<br>$\alpha$ (N)=3.18×10 <sup>-5</sup> 5; $\alpha$ (O)=7.88×10 <sup>-6</sup> 11; $\alpha$ (P)=1.481×10 <sup>-6</sup><br>21: $\alpha$ (O)=9.42×10 <sup>-8</sup> 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| <sup>x</sup> 1089.94 4                                                                     | 1.06 8                              |                        |                    |                   |                      | E1                       |                            | 0.00349      | $\alpha(K) = 0.00285 \ 4; \ \alpha(L) = 0.000488 \ 7; \ \alpha(M) = 0.0001162 \ 17$<br>$\alpha(N) = 3.14 \times 10^{-5} \ 5; \ \alpha(O) = 7.79 \times 10^{-6} \ 11; \ \alpha(P) = 1.464 \times 10^{-6}$<br>$24; \ \alpha(O) = 0.21 \times 10^{-8} \ 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1092.08 5                                                                                  | 0.88 6                              | 1253.792               | 1/2-,3/2-          | 161.6853          | 1/2+                 | E1                       |                            | 0.00348      | $\alpha(K) = 0.00284 \ 4; \ \alpha(L) = 0.000486 \ 7; \ \alpha(M) = 0.0001158 \ 17$<br>$\alpha(N) = 3.13 \times 10^{-5} \ 5; \ \alpha(O) = 7.76 \times 10^{-6} \ 11; \ \alpha(P) = 1.459 \times 10^{-6} \ 21 \times 10^{-6} \ 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <i>x</i> 1134.44 8                                                                         | 0.53 4                              |                        |                    |                   |                      | E1                       |                            | 0.00326      | $\alpha$ (K)=0.00266 4; $\alpha$ (L)=0.000455 7; $\alpha$ (M)=0.0001082 16<br>$\alpha$ (N)=2.93×10 <sup>-5</sup> 4; $\alpha$ (O)=7.26×10 <sup>-6</sup> 11; $\alpha$ (P)=1.365×10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

l

|                                                   |                                |                        |                    | <sup>240</sup> <b>Pu</b> (1 | $\mathbf{n}, \gamma$ ) E=th:sec | ondary $\gamma$ 's 1998Wh01 (continued)                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------|--------------------------------|------------------------|--------------------|-----------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                |                        |                    |                             | <u> </u>                        | ( <sup>241</sup> Pu) (continued)                                                                                                                                                                                                                                                                                                               |
| $E_{\gamma}^{\dagger}$                            | $_{\mathrm{I}_{\gamma}}$ ‡ $f$ | E <sub>i</sub> (level) | Mult. <sup>a</sup> | $\delta^{e}$                | $\alpha^{d}$                    | Comments                                                                                                                                                                                                                                                                                                                                       |
|                                                   |                                |                        |                    |                             |                                 | 20; $\alpha(Q) = 8.72 \times 10^{-8}$ 13<br>$\alpha(IPF) = 1.669 \times 10^{-6}$ 24                                                                                                                                                                                                                                                            |
| <sup>x</sup> 1146.49 8<br><sup>x</sup> 1155 26 10 | 0.44 4                         |                        | E1,E2              |                             |                                 |                                                                                                                                                                                                                                                                                                                                                |
| x1170.02 6                                        | 0.63 4                         |                        | M1+E2              | 2.2 +9-5                    | 0.0128 19                       | $\alpha$ (K)=0.0099 <i>15</i> ; $\alpha$ (L)=0.0022 <i>3</i> ; $\alpha$ (M)=0.00053 <i>7</i><br>$\alpha$ (N)=0.000145 <i>17</i> ; $\alpha$ (O)=3.6×10 <sup>-5</sup> <i>5</i> ; $\alpha$ (P)=6.7×10 <sup>-6</sup> <i>9</i> ; $\alpha$ (Q)=3.9×10 <sup>-7</sup> <i>6</i> ; $\alpha$ (IPF)=1.76×10 <sup>-6</sup> <i>23</i>                        |
| <sup>x</sup> 1174.00 <i>15</i>                    | 0.23 4                         |                        |                    |                             |                                 |                                                                                                                                                                                                                                                                                                                                                |
| <sup>x</sup> 1177.84 10<br><sup>x</sup> 1180.64 7 | 0.40 4                         |                        | $M1 \pm F2$        | $24 \pm 18 - 6$             | 0.0121.20                       | $\alpha(\mathbf{K}) = 0.0094 \ 16: \ \alpha(\mathbf{I}) = 0.0020 \ 3: \ \alpha(\mathbf{M}) = 0.00050 \ 7$                                                                                                                                                                                                                                      |
| 1100.017                                          | 0.00 0                         |                        | 1011   122         | 2.1 110 0                   | 0.0121 20                       | $\alpha(N)=0.000137 \ 18; \ \alpha(O)=3.4\times10^{-5} \ 5; \ \alpha(P)=6.3\times10^{-6} \ 9; \ \alpha(Q)=3.6\times10^{-7} \ 7; \ \alpha(IPF)=2.3\times10^{-6} \ 4$                                                                                                                                                                            |
| <sup>x</sup> 1196.31 20                           | 0.60 5                         |                        | E1,E2              |                             | 0.04                            |                                                                                                                                                                                                                                                                                                                                                |
| <sup>x</sup> 1200.87 <i>11</i>                    | 0.42 5                         |                        | M1+E2              | 1.6 +7-4                    | 0.014 3                         | $\alpha(K)=0.0112 \ 21; \ \alpha(L)=0.0023 \ 4; \ \alpha(M)=0.00057 \ 9 \\ \alpha(N)=0.000156 \ 24; \ \alpha(O)=3.9\times10^{-5} \ 6; \ \alpha(P)=7.2\times10^{-6} \ 12; \ \alpha(Q)=4.3\times10^{-7} \ 9; \\ \alpha(IPF)=4.6\times10^{-6} \ 8 $                                                                                               |
| <sup>x</sup> 1203.34 8                            | 0.54 5                         |                        | E1,E2              | • • • • •                   |                                 |                                                                                                                                                                                                                                                                                                                                                |
| *1206.57 5                                        | 1.34 7                         |                        | M1+E2              | 2.0 +8-5                    | 0.0126 21                       | $\alpha(\mathbf{K})=0.0098 \ 17; \ \alpha(\mathbf{L})=0.0021 \ 3; \ \alpha(\mathbf{M})=0.00051 \ 8 \\ \alpha(\mathbf{N})=0.000139 \ 20; \ \alpha(\mathbf{O})=3.4\times10^{-5} \ 5; \ \alpha(\mathbf{P})=6.5\times10^{-6} \ 10; \ \alpha(\mathbf{Q})=3.8\times10^{-7} \ 7; \\ \alpha(\mathbf{IPF})=4.6\times10^{-6} \ 7 $                       |
| <sup>x</sup> 1214.65 <i>12</i>                    | 0.48 4                         |                        | E1,E2              |                             |                                 |                                                                                                                                                                                                                                                                                                                                                |
| x1228.02 19                                       | 0.36 7                         |                        | E1,E2              | 10.11.5                     | 0.0100.00                       |                                                                                                                                                                                                                                                                                                                                                |
| ~1235.28 8                                        | 0.57 5                         |                        | MI+E2              | 1.9 +11-5                   | 0.0122 22                       | $\alpha(\mathbf{K})=0.0095 \ 18; \ \alpha(\mathbf{L})=0.0020 \ 4; \ \alpha(\mathbf{M})=0.00049 \ 8 \\ \alpha(\mathbf{N})=0.000134 \ 21; \ \alpha(\mathbf{O})=3.3\times10^{-5} \ 5; \ \alpha(\mathbf{P})=6.2\times10^{-6} \ 10; \ \alpha(\mathbf{Q})=3.7\times10^{-7} \ 7; \\ \alpha(\mathbf{IPF})=8.0\times10^{-6} \ 13$                       |
| <sup>x</sup> 1255.32 <i>11</i>                    | 0.64 4                         |                        | M1(+E2)            | ≤0.67                       | 0.023 3                         | $\alpha(K)=0.0179\ 22;\ \alpha(L)=0.0035\ 4;\ \alpha(M)=0.00084\ 10$                                                                                                                                                                                                                                                                           |
|                                                   |                                |                        |                    |                             |                                 | $\alpha(N)=0.000229\ 25;\ \alpha(O)=5.7\times10^{-5}\ 7;\ \alpha(P)=1.08\times10^{-5}\ 12;\ \alpha(Q)=7.0\times10^{-7}\ 9;$                                                                                                                                                                                                                    |
| <sup>x</sup> 1266.14 11                           | 0.60 7                         |                        | E1                 |                             | 0.00274                         | $\alpha(\Pi \Gamma) = 1.90 \times 10^{-2.5}$<br>$\alpha(K) = 0.00221 \ 3; \ \alpha(L) = 0.000375 \ 6; \ \alpha(M) = 8.93 \times 10^{-5} \ 1.3$                                                                                                                                                                                                 |
|                                                   | 5.00 /                         |                        |                    |                             |                                 | $\alpha(N)=2.41\times10^{-5} 4$ ; $\alpha(O)=5.99\times10^{-6} 9$ ; $\alpha(P)=1.129\times10^{-6} 16$ ; $\alpha(Q)=7.28\times10^{-8} 11$ ;<br>$\alpha(IPF)=3.01\times10^{-5} 5$                                                                                                                                                                |
| <sup>x</sup> 1267.95 10                           | 0.85 11                        |                        | E1                 |                             | 0.00273                         | $\alpha(K)=0.00220 3; \alpha(L)=0.000374 6; \alpha(M)=8.90\times 10^{-5} 13$                                                                                                                                                                                                                                                                   |
|                                                   |                                |                        |                    |                             |                                 | $\alpha$ (N)=2.41×10 <sup>-5</sup> 4; $\alpha$ (O)=5.97×10 <sup>-6</sup> 9; $\alpha$ (P)=1.126×10 <sup>-6</sup> 16; $\alpha$ (Q)=7.26×10 <sup>-8</sup> 11; $\alpha$ (IPF)=3.07×10 <sup>-5</sup> 5                                                                                                                                              |
| x1276.7 12                                        | 0.57 10                        |                        |                    |                             |                                 |                                                                                                                                                                                                                                                                                                                                                |
| <sup>1</sup> 1301.0 14<br>×1303 5 1               | 0.499                          |                        | F1 F2              |                             |                                 |                                                                                                                                                                                                                                                                                                                                                |
| x1315 59 6                                        | 0.50 0                         |                        | E1,E2<br>E1 E2     |                             |                                 |                                                                                                                                                                                                                                                                                                                                                |
| x1332.30 15                                       | 0.85 8                         |                        | E1,E2              |                             |                                 |                                                                                                                                                                                                                                                                                                                                                |
| x1352.64 10                                       | 0.63 14                        |                        | E2                 |                             | 0.00705                         | $ \begin{array}{l} \alpha(\mathrm{K}) = 0.00544 \ 8; \ \alpha(\mathrm{L}) = 0.001196 \ 17; \ \alpha(\mathrm{M}) = 0.000295 \ 5 \\ \alpha(\mathrm{N}) = 8.01 \times 10^{-5} \ 12; \ \alpha(\mathrm{O}) = 1.97 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 3.67 \times 10^{-6} \ 6; \ \alpha(\mathrm{Q}) = 2.05 \times 10^{-7} \ 3; \end{array} $ |

 $^{241}_{94}\mathrm{Pu}_{147}\text{-}17$ 

 $^{241}_{94}\mathrm{Pu}_{147}\text{--}17$ 

From ENSDF

|                                           |                                |                        |                    | <sup>240</sup> <b>Pu</b> | $(\mathbf{n}, \gamma)$ E=th:se | condary $\gamma$ 's <b>1998Wh01</b> (continued)                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------|------------------------|--------------------|--------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\gamma$ ( <sup>241</sup> Pu) (continued) |                                |                        |                    |                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| $E_{\gamma}^{\dagger}$                    | $_{\mathrm{I}_{\gamma}}$ ‡ $f$ | E <sub>i</sub> (level) | Mult. <sup>a</sup> | $\delta^{e}$             | $\alpha^{d}$                   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| x1378.52 22                               | 0.26 4                         |                        | E2                 |                          | 0.00682                        | $\alpha(\text{IPF})=2.10\times10^{-5} 3$ Mult.: $\alpha(\text{K})$ exp gives $\delta > 1.4$ .<br>$\alpha(\text{K})=0.00526 8$ ; $\alpha(\text{L})=0.001148 16$ ; $\alpha(\text{M})=0.000283 4$<br>$\alpha(\text{N})=7.68\times10^{-5} 11$ ; $\alpha(\text{O})=1.89\times10^{-5} 3$ ; $\alpha(\text{P})=3.53\times10^{-6} 5$ ; $\alpha(\text{Q})=1.98\times10^{-7} 3$ ;<br>$\alpha(\text{IPF})=2.60\times10^{-5} 4$ Mult.: $\alpha(\text{K})$ own gives $\delta > 2.1$ |  |  |  |  |  |  |
| <sup>x</sup> 1393.49 <i>10</i>            | 0.77 5                         |                        | M1(+E2)            | ≤0.85                    | 0.017 3                        | Mult. $\alpha(K) \exp gives \delta > 2.1$ .<br>$\alpha(K) = 0.0131 \ 21; \ \alpha(L) = 0.0025 \ 4; \ \alpha(M) = 0.00061 \ 9$<br>$\alpha(N) = 0.000167 \ 25; \ \alpha(O) = 4.2 \times 10^{-5} \ 7; \ \alpha(P) = 7.9 \times 10^{-6} \ 12; \ \alpha(Q) = 5.1 \times 10^{-7} \ 9;$<br>$\alpha(IPF) = 6.9 \times 10^{-5} \ 11$                                                                                                                                           |  |  |  |  |  |  |
| <sup>x</sup> 1423.89 20                   | 0.59 11                        |                        |                    |                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| <sup>x</sup> 1491.35 <i>11</i>            | 0.80 13                        |                        | M1+E2              | 1.0 +7-3                 | 0.0110 25                      | $\alpha(K)=0.0086\ 20;\ \alpha(L)=0.0017\ 4;\ \alpha(M)=0.00041\ 9$<br>$\alpha(N)=0.000112\ 23;\ \alpha(O)=2.8\times10^{-5}\ 6;\ \alpha(P)=5.3\times10^{-6}\ 12;\ \alpha(Q)=3.3\times10^{-7}\ 8;$<br>$\alpha(IPF)=9.7\times10^{-5}\ 22$                                                                                                                                                                                                                               |  |  |  |  |  |  |
| x1502.8 3                                 | 0.48 10                        |                        | E1,E2              |                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| <sup>x</sup> 1512.38 <i>13</i>            | 0.70 7                         |                        | E1                 |                          | 0.00217                        | $ \begin{array}{l} \alpha(\mathrm{K}) = 0.001645 \ 23; \ \alpha(\mathrm{L}) = 0.000277 \ 4; \ \alpha(\mathrm{M}) = 6.58 \times 10^{-5} \ 10 \\ \alpha(\mathrm{N}) = 1.779 \times 10^{-5} \ 25; \ \alpha(\mathrm{O}) = 4.42 \times 10^{-6} \ 7; \ \alpha(\mathrm{P}) = 8.34 \times 10^{-7} \ 12; \ \alpha(\mathrm{Q}) = 5.46 \times 10^{-8} \ 8 \\ \alpha(\mathrm{IPF}) = 0.0001569 \ 22  \end{array} $                                                                |  |  |  |  |  |  |

<sup>†</sup> The uncertainties do not include the calibration uncertainty of 20 ppm. Note that the transitions listed in the authors' table I with energies between the 999.37 and 1052.927 transitions should have the decimal point shifted one place to the right.

<sup>‡</sup> Intensity per 100 neutron captures, obtained by the authors under the assumption that they observe about 95% of the transitions feeding the ground state.

<sup>#</sup> The authors report E=758.494 *15* with I $\gamma$ =0.377 *23* doubly placed from the 800.44 and 800.48 levels. These transitions are not included in the least-squares fit. For these placements, the least-squares fit gives E $\gamma$ =758.470 *6* and E $\gamma$ =758.506 *6*, respectively.  $\alpha$ (K)exp=0.0080 *16* for the doublet, compared with 0.00534 (E1) and 0.0148 (E2). Both placements require  $\Delta \pi$ =no.

<sup>(a)</sup> The authors report E=496.217 4 with I $\gamma$ =0.489 9 doubly placed from the 833 and 1297 levels. This transition is not included in the least-squares fit for the 1297 level. The output yields an expected energy of E $\gamma$ =496.26 5. The 496 $\gamma$  is the only transition shown de-exciting the 833 level. The evaluator adopts E $\gamma$ =496.2 1 for this placement, yielding E(level)=833.3 1.  $\alpha$ (K)exp=0.0140 22 compared with 0.0117 (E1) and 0.0313 (E2) suggests that both components are E1; however,  $\alpha$ (K)exp could be reproduced with a weak E2 component with intensity I $\gamma$ =0.05 5. Placement from the 1297 level requires  $\Delta \pi$ =yes so there is a slight possibility that the component from the 833 level is E2, in which case  $\pi$ (833 level) would be +.

& The authors report E=800.461 11 with I $\gamma$ =0.742 25 doubly placed from the 800.44 and 800.48 levels. These transitions are not included in the least-squares fit. For these placements, the least-squares fit gives E $\gamma$ =800.443 5 and E $\gamma$ =800.478 6, respectively.  $\alpha$ (K)exp gives mult=M1+E2 for the doublet, consistent with both placements requiring  $\Delta \pi$ =no.

<sup>*a*</sup> From conversion coefficient and subshell ratio data of the authors. The conversion coefficients are normalized to values of known E1 and E2 transitions (unspecified). The evaluator has reanalyzed the authors' ce for subshells data using the internal conversion coefficient calculations of 2008Ki07 so the deduced  $\delta$  values are slightly different from those of the authors, who used the calculations of 1968Ha53.

<sup>b</sup> Non-observation of ce lines and the observed I $\gamma$  is consistent only with mult=E1.

<sup>*c*</sup> Refer to Adopted Levels, Gammas for comments on  $J^{\pi}$  and multi.

<sup>d</sup> Additional information 1.

 $\gamma$ <sup>(241</sup>Pu) (continued)</sup>

- <sup>e</sup> If No value given it was assumed  $\delta$ =1.00 for E2/M1,  $\delta$ =1.00 for E3/M2 and  $\delta$ =0.10 for the other multipolarities.
- <sup>f</sup> Intensity per 100 neutron captures.
- <sup>*g*</sup> Multiply placed with undivided intensity.
- <sup>h</sup> Placement of transition in the level scheme is uncertain. <sup>x</sup>  $\gamma$  ray not placed in level scheme.





 $^{241}_{94}\rm{Pu}_{147}$ 





From ENSDF

 $^{241}_{94}$ Pu $_{147}$ -21



 $^{241}_{94}\rm{Pu}_{147}$ 

## $\frac{240}{2} Pu(n,\gamma) E=th:secondary \gamma's \qquad 1998 Wh01$



<sup>241</sup><sub>94</sub>Pu<sub>147</sub>

# <sup>240</sup>Pu(n, $\gamma$ ) E=th:secondary $\gamma$ 's 1998Wh01 (continued)

Band(G): 1/2[501] band

3/2- 995.603

1/2- 964.940

Band(J):  $1/2[620] \otimes 0^- + 1/2[631] \otimes 0^-$ 

 $\underbrace{(5/2^{-})}_{----} \underbrace{897.503}_{-----}$ 



7/2- 561.421

5/2- 518.8121

<sup>241</sup><sub>94</sub>Pu<sub>147</sub>