241 Np β^- decay 1981Pa20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 130, 183 (2015)	30-Sep-2015

Parent: ²⁴¹Np: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=13.9 \text{ min } 2$; $Q(\beta^-)=1.30\times 10^3 7$; $\%\beta^-$ decay=100.0

²⁴¹Np-J^{π}: From Adopted Levels in ²⁴¹Np.

²⁴¹Np-T_{1/2}: From least squares decay analyses of the 175 keV γ .

²⁴¹Np-Q(β^{-}): From 2012Wa38.

1981Pa20: ²⁴¹Np produced via ²³⁸U(α ,p) with E α =32 MeV and ²⁴⁴Pu(n,p3n) with En=30-160 MeV at the Brookhaven MEIN facility. Irradiation were followed by chemical separation. Decay of ²⁴¹Np was studied by γ spectroscopy using a high resolution Ge(Li) detector and by β emission by a 4 π proportional counter. Measured E γ , absolute I γ , and T_{1/2}.

1966Qa02: ²⁴¹Np produced via ²³⁸U(α ,p) at Nuffield Cyclotron at Birmingham University with E α = 40 MeV. Irradiation was followed by chemical separation. A Geiger counter, anthrracene crystal scintillation β spectrometer, Xe proportional counter, NaI(TI) detector, and a ZnS-Ag scintillation α counter were used to measure γ and β radiations. The half life from decay curves for ²⁴¹Np was 16.0 min 2 with an end-point energy of 1.25 MeV. The 3.4 hour activity was not detected.

1959Va32: ²⁴¹Np produced via ²³⁸U(α ,p) at Argonne cyclotron followed by chemical separation and measured with a 2π and end window proportional counters. β and γ spectrum were measured with the anthracene crystal and a NaI(Tl) detectors. The beta spectrum end point energy of the 16 minute component was 1.36 MeV *10* with log*t* of 5.8.

²⁴¹Pu Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments						
0.0	5/2+							
41.97	7/2+							
95.78	9/2+							
161.69	1/2+	E(level): The feeding of this level has not been established. It cannot be directly fed by a β branch, and no transitions feeding the level have been observed.						
175.05	7/2+							
404.45	$(9/2)^{-}$	J^{π} : See comment on $J^{\pi}(404 \text{ level})$ in Adopted Levels.						
518.81	5/2-	-						
561.42	7/2-							
834.84	3/2+,5/2+,7/2+							
929.7 2	3/2,5/2,7/2							

[†] Rounded-off values from Adopted Levels, except for the 930 level, whose de excitation transition is seen only in β decay. [‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments		
$(3.7 \times 10^2 7)$	929.7	0.080 20	7.0 4	av E β =105 22		
$(4.7 \times 10^2 \ 7)$	834.84	≈0.12	≈7.1	av E β =135 23		
$(7.4 \times 10^2 \ 7)$	561.42	0.28 6	7.41 18	av E β =226 25		
$(7.8 \times 10^2 \ 7)$	518.81	0.42 4	7.32 15	av Eβ=241 25		
$(9.0 \times 10^2 \ 7)$	404.45	0.27 3	7	av Eβ=282 26		
$(1.12 \times 10^3 7)$	175.05	30.8 15	6.00 10	av Eβ=366 27		
$(1.26 \times 10^3 7)$	41.97			$I\beta^{-}$: The intensity balance gives $I\beta = -2$ 4.		
1.30×10^3 7	0.0	70 4	5.87 9	av E β =432 27		
				E(decay): From adopted Q(β^{-}). Measured values are 1360 100 (1959Va32) and 1250 (1966Qa02).		

[†] From an intensity balance at each level.

[‡] Absolute intensity per 100 decays.

$\gamma(^{241}\text{Pu})$

Iγ normalization: $I_{\gamma}(133\gamma)=0.865$ per 100 disintegrations (4π proportional counter 1981Pa20).

Ν

E_{γ}^{\dagger}	I_{γ}^{c}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α^{a}	Comments
42.0 1	0.10 3	41.97	7/2+	0.0	5/2+	M1+E2	0.186 4	102.2 22	α (L)=76.0 <i>16</i> ; α (M)=19.4 <i>5</i> α (N)=5.29 <i>12</i> ; α (O)=1.29 <i>3</i> ; α (P)=0.231 <i>5</i> ; α (Q)=0.01087 <i>17</i>
(53.81 [@])	0.020 [#] 6	95.78	9/2+	41.97	7/2+	M1+E2	0.201 8	44.7 11	α (L)=33.3 8; α (M)=8.42 21 α (N)=2.30 6; α (O)=0.563 14; α (P)=0.1021 22; α (Q)=0.00519 8
(79.26 [@])	0.040 4	175.05	7/2+	95.78	9/2+	M1+E2	0.65 +25-22	22 6	α (L)=16 4; α (M)=4.3 12 α (N)=1.2 4; α (O)=0.28 8; α (P)=0.047 11; α (Q)=0.00129 22 I _γ : From I _γ /I _γ (133γ+175γ)=0.010 1 in α decay.
(95.79 [@])	0.003 [#] 1	95.78	9/2+	0.0	5/2+	E2		19.3	$\alpha(L) = 14.00\ 20;\ \alpha(M) = 3.92\ 6$
133.1 <i>1</i>	0.86 5	175.05	7/2+	41.97	7/2+	M1+E2	0.222 9	11.35 <i>17</i>	$\begin{array}{l} \alpha(N)=1.077 \ 15, \ \alpha(O)=0.254 \ 4, \ \alpha(\Gamma)=0.0404 \ 6, \ \alpha(Q)=0.0001575 \ 20 \\ \alpha(K)=8.79 \ 13; \ \alpha(L)=1.92 \ 3; \ \alpha(M)=0.472 \ 7 \\ \alpha(N)=0.1287 \ 19; \ \alpha(O)=0.0319 \ 5; \ \alpha(P)=0.00599 \ 9; \ \alpha(Q)=0.000366 \\ \end{array}$
161.6 2	0.07 1	161.69	1/2+	0.0	5/2+	E2		1.97	$\alpha(K)=0.190 \ 3; \ \alpha(L)=1.292 \ 20; \ \alpha(M)=0.360 \ 6 \ \alpha(N)=0.0991 \ 15; \ \alpha(O)=0.0234 \ 4; \ \alpha(P)=0.00379 \ 6; \ \alpha(Q)=2.22\times10^{-5} \ 4$
175.1 <i>1</i>	3.1 2	175.05	7/2+	0.0	5/2+	M1+E2	0.217 19	5.20	$\alpha(Q)=2.32\times10^{-6} 4$ $\alpha(K)=4.07 7; \ \alpha(L)=0.854 \ 12; \ \alpha(M)=0.209 \ 3$ $\alpha(N)=0.0569 \ 8; \ \alpha(O)=0.01413 \ 20; \ \alpha(P)=0.00267 \ 4;$
308.8 2	0.07 2	404.45	(9/2)-	95.78	9/2+	E1		0.0388	$\alpha(\mathbf{Q})=0.0001673$ $\alpha(\mathbf{K})=0.03075; \ \alpha(\mathbf{L})=0.006109; \ \alpha(\mathbf{M})=0.00147721$ $\alpha(\mathbf{N})=0.0003996; \ \alpha(\mathbf{O})=9.75\times10^{-5}14; \ \alpha(\mathbf{P})=1.761\times10^{-5}25;$ $\alpha(\mathbf{O})=0.22\times10^{-7}12$
362.4 1	0.19 2	404.45	(9/2)-	41.97	7/2+	E1		0.0276	$\alpha(Q) = 9.22 \times 10^{-115}$ $\alpha(K) = 0.0220 \ 3; \ \alpha(L) = 0.00425 \ 6; \ \alpha(M) = 0.001028 \ 15$ $\alpha(N) = 0.000278 \ 4; \ \alpha(O) = 6.81 \times 10^{-5} \ 10; \ \alpha(P) = 1.238 \times 10^{-5} \ 18;$ $\alpha(O) = 6.70 \times 10^{-7} \ 10$
≈405 ^d		404.45	(9/2)-	0.0	5/2+				E_{γ} : Only a slight indication for its existence was found in the γ spectrum. One expects $E\gamma$ =404.453. This transition is not seen in (n, γ). If one assumes that I γ is smaller than that for the adjacent 404.707 and 405.90 γ 's in (n, γ), one can estimate I γ <0.01.
(465.65 [@])	0.064 17	561.42	7/2-	95.78	9/2+	E1+M2	0.088 +21-28	0.024 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.019 \ 3; \ \alpha(\mathrm{L}) = 0.0039 \ 8; \ \alpha(\mathrm{M}) = 0.00097 \ 20 \\ \alpha(\mathrm{N}) = 0.00026 \ 6; \ \alpha(\mathrm{O}) = 6.5 \times 10^{-5} \ 14; \ \alpha(\mathrm{P}) = 1.2 \times 10^{-5} \ 3; \\ \alpha(\mathrm{Q}) = 7.1 \times 10^{-7} \ 16 \end{array} $
476.6 2	0.10 <i>I</i>	518.81	5/2-	41.97	7/2+	E1+M2	0.104 +20-25	0.025 4	I _γ : From Iγ/Iγ(519γ+562γ)=0.321 20 in (n,γ). α (K)=0.020 3; α (L)=0.0042 8; α (M)=0.00104 20 α (N)=0.00028 6; α (O)=7.0×10 ⁻⁵ 14; α (P)=1.3×10 ⁻⁵ 3; α (Q)=7.7×10 ⁻⁷ 16
518.81 ^{&}	0.31 ^{&} 3	518.81	5/2-	0.0	5/2+	E1		0.01340	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.01078 \ 15; \ \alpha(\mathrm{L}) = 0.00198 \ 3; \ \alpha(\mathrm{M}) = 0.000477 \ 7 \\ \alpha(\mathrm{N}) = 0.0001290 \ 18; \ \alpha(\mathrm{O}) = 3.17 \times 10^{-5} \ 5; \ \alpha(\mathrm{P}) = 5.86 \times 10^{-6} \ 9; \\ \alpha(\mathrm{Q}) = 3.38 \times 10^{-7} \ 5 \end{array} $

 $^{241}_{94}Pu_{147}\text{-}2$

						241 Np β^- dec	ay 1981Pa20	(continued)	
$\gamma^{(241}$ Pu) (continued)									
E_{γ}^{\dagger}	I_{γ}^{c}	E_i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α ^{<i>a</i>}	Comments
519.43 ^{&}	0.12 ^{&} 4	561.42	7/2-	41.97	7/2+	E1+M2	0.24 +9-11	0.05 3	α (K)=0.038 22; α (L)=0.009 6; α (M)=0.0023 15 α (N)=0.0006 4; α (O)=0.00016 10; α (P)=2.9×10 ⁻⁵ 19; α (O)=1.8×10 ⁻⁶ 12
561.1 2	0.08 3	561.42	7/2-	0.0	5/2+	(E1+M2)	0.27 4	0.048 11	$\alpha(K)=0.036\ 8;\ \alpha(L)=0.0087\ 21;\ \alpha(M)=0.0022\ 6$ $\alpha(N)=0.00059\ 14;\ \alpha(O)=0.00015\ 4;\ \alpha(P)=2.8\times10^{-5}\ 7;$ $\alpha(Q)=1.7\times10^{-6}\ 4$
834.6 2	0.11 3	834.84	3/2+,5/2+,7/2+	0.0	5/2+	M1+E2	0.94 +25-20	0.048 7	$\alpha(K)=0.037\ 6;\ \alpha(L)=0.0079\ 10;\ \alpha(M)=0.00192\ 22$ $\alpha(N)=0.00052\ 6;\ \alpha(O)=0.000130\ 15;\ \alpha(P)=2.4\times10^{-5}\ 3;$ $\alpha(O)=1.49\times10^{-6}\ 22$
929.7 2	0.08 2	929.7	3/2,5/2,7/2	0.0	5/2+				\sim

[†] From 1981Pa20. Others: 1966Qa02.

[‡] From (n,γ) as given in adopted γ' s.

[#] From an intensity balance at the 96 level and $I\gamma(96\gamma)/I\gamma(54\gamma)=0.15$ 3 from (n, γ).

[@] Rounded-off value from adopted γ 's. Not seen in β decay.

& The authors report E γ =518.8 *I* with I γ =0.44 *3* for a transition doubly placed from the 519 and 561 levels. From I γ /I γ (477 γ)=3.09 *16* for the 519 level, and $I_{\gamma}/I_{\gamma}(561_{\gamma})=1.45$ 13 for the 561 level, both from (n,γ) , one gets $I_{\gamma}=0.31$ 3 and 0.12 4 for these two placements, in agreement with the measured value for the doublet. The energies are rounded-off values from (n,γ) .

ω

^{*a*} Additional information 1. ^{*b*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c Absolute intensity per 100 decays.

^d Placement of transition in the level scheme is uncertain.

²⁴¹Np β^- decay 1981Pa20

