## <sup>242</sup>Pu(d,tγ) **1975Ya03**

| History         |                |                     |                        |  |  |  |  |  |
|-----------------|----------------|---------------------|------------------------|--|--|--|--|--|
| Туре            | Author         | Citation            | Literature Cutoff Date |  |  |  |  |  |
| Full Evaluation | C. D. Nesaraja | NDS 130, 183 (2015) | 30-Sep-2015            |  |  |  |  |  |

1975Ya03: 16 MeV pulsed deuterons beam from the Argonne National Laboratory tandem Van de Graaff bombarded a 0.5 g  $^{242}$ Pu target. Gammas detected with a 11-cm<sup>3</sup> intrinsic Ge detector with FWHM =1.1 keV for 122-keV  $\gamma$  of  $^{57}$ Co. Lifetime of E2 transitions between 1/2<sup>+</sup>[631] and 5/2<sup>+</sup>[622] single particle states measured in  $^{241}$ Pu by pulsed beam technique.

## <sup>241</sup>Pu Levels

The authors calculate B(E2) for the 161.4 level using the 5/2[622] and 1/2[631] Nilsson states as the initial and finals states, respectively. They obtained B(E2)= $0.538 \times 10^{-4} e^2 b^2$ . When they included the pairing corrections the calculations yielded B(E2)(Nilsson + pairing)= $0.075 \times 10^{-4} e^2 b^2$ . The enhancement of the 161.4 E2 transition was explained as due to possible admixtures of collective components in the nuclear wave functions. Second-order Coriolis coupling between the two bands was also considered.

| E(level)       | $J^{\pi}$                                                                                                                                                                                                                                                                        | T <sub>1/2</sub> |                  | Comments |                    |                                                                                                                                                                                  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0.0<br>161.4 2 | .0 $5/2^+$<br>.4 2 $1/2^+$ 0.88 $\mu$ s 5 B(E2) $\uparrow$ =6.57×10 <sup>-5</sup> <i>I</i><br>T <sub>1/2</sub> : From decay curve of the 1/2 <sup>+</sup> [631] state.<br>B(E2) $\uparrow$ : Recalculated by evaluator using authors' T<br>$\underline{\gamma}^{(241}\text{Pu})$ |                  |                  |          |                    | of the 1/2 <sup>+</sup> [631] state.<br>evaluator using authors' T <sub>1/2</sub> and $\alpha$ =1.98 value of BrIcc (2008Ki07).<br>$\underline{\gamma}^{(241}\text{Pu})}$        |  |
| Eγ             | E <sub>i</sub> (level)                                                                                                                                                                                                                                                           | ) $J_i^{\pi}$    | $E_f  J_f^{\pi}$ | Mult.    | $\alpha^{\dagger}$ | Comments                                                                                                                                                                         |  |
| 161.4 2        | 161.4                                                                                                                                                                                                                                                                            | 1/2+             | 0.0 5/2+         | [E2]     | 1.98               | $\alpha$ (K)=0.190 3; $\alpha$ (L)=1.299 20; $\alpha$ (M)=0.362 6<br>$\alpha$ (N)=0.0996 15; $\alpha$ (O)=0.0235 4; $\alpha$ (P)=0.00381 6; $\alpha$ (O)=2.33×10 <sup>-5</sup> 4 |  |

<sup>†</sup> Additional information 1.

## <sup>242</sup>Pu(d,tγ) 1975Ya03

## Level Scheme



<sup>241</sup><sub>94</sub>Pu<sub>147</sub>