Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. D. Nesaraja	NDS 130, 183 (2015)	30-Sep-2015		

 $Q(\beta^{-})=1300\ 70;\ S(n)=6130\ 70;\ S(p)=5740\ 70;\ Q(\alpha)=4310\ 70$ 2012Wa38

Experimental Studies:

1981Pa20: ²⁴¹Np produced via ²³⁸U(α,p) with Eα=32 MeV and ²⁴⁴Pu(n,p3n) with En=30-160 MeV at the Brookhaven MEIN facility. Irradiation was followed by chemical separation. Decay of ²⁴¹Np was studied by γ spectroscopy, using a high resolution Ge(Li) detector, and by β emission by a 4π proportional counter. Measured T_{1/2} for ²⁴¹Np from least squares decay analyses.
1966Qa02: ²⁴¹Np produced via ²³⁸U(α,p) at Nuffield Cyclotron at Birmingham University with Eα=40 MeV. Irradiation was followed by chemical separation. A Geiger counter, anthrracene crystal scintillation β spectrometer, Xe proportional counter, NaI(TI) detector, and a ZnS-Ag scintillation α counter were used to measure γ and β radiations. The half-life from decay curves for ²⁴¹Np was 16.0 min 2 with an end-point energy of 1.25 MeV. The 3.4 hour activity reported by 1960Le03 was not detected.
1960Le03:²⁴¹Np produced via ²³⁸U(α,p) at Crocker Laboratory cyclotron with Eα=35 MeV and 48 MeV. Irradiation was followed by chemical and time of flight separation. *γγ* and *βγ* coincidences measured with NaI detector. Decay curves identified

the 16 min half-life with strong evidence for an isomer with 3.4 hour half-life. 1959Va32: ²⁴¹Np produced via ²³⁸U(α ,p) at Argonne cyclotron followed by chemical separation and measured with a 2 π and

end-window proportional counters. β and γ spectrum were measured with the anthracene crystal and a NaI(Tl) detectors. The beta spectrum end- point energy of the 16 minute component was 1.36 MeV *10* with log*ft* of 5.8.

Theoretical/Systematical Studies:

2004Pa40: Calculated deformation parameters and the proton one quasiparticle states of heaviest nuclei using the macroscopic-microscopic approach. Systematics as function of of neutron number for odd A isotopes in Np were also calculated.

²⁴¹Np Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	$\frac{J^{*}}{5/2^{+}}$	$\frac{1_{1/2}}{13.9 \text{ min } 2}$	$%β^-=100$ %α<1×10 ⁻⁶ given by 1966Qa02, however no α branch was observed in their study. Using the ALPHAD program, evaluator estimated %α <1.7×10 ⁻¹⁴ with the assumption HF ≥4 for a non-favored transition. T _{1/2} : From 1981Pa20. Others: 16.0 min 2 (1966Qa02), 16 min (1960Le03,1959Va32).
			J [*] : ²⁵⁵ Np, ²⁵⁷ Np, and ²⁵⁷ Np have the ground-state configuration $5/2[642]$. The only other orbital lying within 100 keV of the g.s. configuration for these nuclides is the $5/2[523]$ orbital, which is the probable configuration for the ²⁴³ Np g.s. Log <i>ft</i> =5.87 9 for the branch to the $5/2[622]$ ²⁴¹ Pu g.s. rules out the negative-parity alternative.