Adopted Levels, Gammas

History							
		T	уре	Author	Citation	Literature Cutoff Date	
		Full Evaluation		C. D. Nesaraja	NDS 130, 183 (2015)	30-Sep-2015	
$Q(\beta^{-}) = -233$ $\Delta(Q(\beta^{-})) = -2$	0 <i>SY</i> ; S(n): 200 (syst, 2	=6093.3 <i>21</i> ; S 2012Wa38).	(p)=5097	<i>14</i> ; Q(α)=6185.2	6 2012Wa38		
					²⁴¹ Cm Levels		
				Cross Re	eference (XREF) Flags		
				A 245 B 241	Cf α decay Bk ε decay		
E(level)	J^{π}	T _{1/2}	XREF		Co	mments	
0.0#	1/2+	32.8 d 2	AB	%ε=99.0 l; %α= %α: Iα/(Iα+Iε)= α decay of ²⁴¹ (1960Gl01). T _{1/2} : From least Others: 35 d (J ^π : HF=2.5 <i>3</i> for 1/2[631].	=1.0 <i>I</i> 0.010 <i>I</i> from a measuren Cm (1974Po08). Other: squares decay analyses of 1952Hi11), 37 d (1967Ba α decay to the 1/2 ⁺ 145	then of Ice(145.536 γ) in ²³⁷ Pu following $\%\alpha$ =0.96 9 from absolute counting of the 471.8 keV γ using a Ge(Li) detector. 42). .54 level in ²³⁷ Pu with configuration	
5.5 [#] 57.1 [#] 81?	$(3/2^+)^{\dagger}$ $(5/2^+)^{\dagger}$ $(7/2^+)$		AB AB A	E(level): From α E(level), J ^{π} : Possicont in th	ble 7/2 ⁺ member of the e 245 Cf α decay dataset.	1/2[631] band, but see the evaluator's	
163?	(9/2 ⁺)		Α	E(level), J^{π} : Possic comment in the	ible $9/2^+$ member of the e ²⁴⁵ Cf α decay dataset.	1/2[631] band, but see the evaluator's	
267.8	$(5/2^+)^{\ddagger}$		В	Configuration=5/	²⁺ [622] (2003As01).		
420.2 ≈2300	(7/2+)+	15.3 ns <i>10</i>	В	Configuration=7/ %SF=100 %SF: Only SF di- decay (1972W) E(level): From a MeV 2 (1971H T _{1/2} : measured v (1969Me11); 1 (1971Re11); 1 (1972Ga42); 1 For theoretical ca 1990Bh02. ²³⁹ Pu(a,2nf): fiss configuration a 1975Kh06 for 1974SpZS. (³ He,tF): fission the observed c by 1976Ga11. fission probabi calculated barn ²³⁸ Pu(α ,nF): \Gamma(n 1973Me23.	2^{+} [624] (2003As01). ecay observed. From calc e09) one predicts the ison fit to the ²³⁹ Pu(α,2n) exo 3r39) and 2.6 MeV 2 (19 values and production me 19 ns 8 2^{41} Am(d,n) (1 5.3 ns 10 2^{39} Pu(α,2 n) (0 ns 1 2^{39} Pu(α,2n) (10 alculations of T _{1/2} (SF) se ison fragment angular dist assignments were propose possible spins deduced fit probability was obtained oincidences between fissi Barrier parameters were lity data of 1976Ga11. S ier parameters.)/Γ(f) was deduced, comp	eulations of $T_{1/2}$ for SF and for $T_{1/2}$ for γ neric decay branch to be 1.3×10^{-5} %. Evitation function, reported values are 2.3 72Vy07). 1972We09 calculate 2.11 MeV. thods: 20 ns 239 Pu(α ,2n) 970Po01); 25 ns 15 243 Am(p,3n) 1971Br39); 20 ns 239 Pu(α ,2n) 974SpZS). e, for example, 1978Po09, 1985Lo17, and ributions were measured; spin and d by 1974SpZS, 1974GaZD. See also rom angular-distribution measurements of from measured fission counts (singles) and on fragments; barrier heights were deduced also deduced by 1981Re06 from analysis of ee 1972We09, 1980Ku14 and 1984Ku05 for pared with theory including pairing by	

Adopted Levels, Gammas (continued)

²⁴¹Cm Levels (continued)

[†] The following arguments are based on those given by 1996Ma72 in their ²⁴⁵Cf α decay paper. On the basis of the observation of 56.1 and 50.6 gammas in coincidence with the 7083 α , and the absence of any gammas in coincidence with the 7138 α , the authors propose the existence of excited levels at 5.6 and 56.1. From systematics, the g.s. configuration for ²⁴⁵Cf is expected to be 5/2[622] or 1/2[631]. HF(7138 α)<4 identifies the 7138 α as the favored transition connecting states of the same configuration, and HF(7083 α)=20 suggests that the 7083 α and 7138 α feed members of the same band. If the configuration of ²⁴⁵Cf is 5/2[622], then the 7138 and 7083 α 's must feed the 5/2⁺ and 7/2⁺ members of this band in the daughter ²⁴⁵Cm; however, the deduced rotational parameters do not agree with systematics for this configuration. The evaluator notes that these systematics lead to an expected 7/2 – 5/2 separation of 44 keV rather than 56 keV. On the other hand, if the parent configuration is 1/2[631], then the 7138 α feeds the g.s., and the assumption that the 5.6 and 56.1 levels are the 3/2⁺ and 5/2⁺ members of this band gives rotational parameters consistent with systematics for the 1/2[631] band. The evaluator adopts these assignments.

- [‡] 2003As01 suggest that the ε decay proceeds from the parent 7/2[633] state to the 7/2[624] state in ²⁴¹Cm, expected to lie at \approx 420 keV. They point out that the inverse transition in ²⁴³Pu β^- decay has log *ft*=5.5, and the similar transitions from 5/2[642] to 5/2[633] in ²³²Np, ²³⁵Pu, and ²³⁶Am ε decays have log *ft* values in the range 4.8 to 5.4. For the 420 level, a log *ft* of 5.0 to 5.5 lead to a deduced T_{1/2}(²⁴¹Bk) of 4.4 to 14 minutes, consistent with the measured T_{1/2}. The authors further suggest that the three transitions they observe in ε decay can be assigned as decay from the 7/2[624] level to the 5/2[622] band head, followed by transitions to the 3/2 and 5/2 members of the 1/2[631] g.s. band. The energy of the 3/2⁺ member of the 1/2[631] has been determined in ²⁴⁵Cf α decay.
- [#] Band(A): 1/2⁺[631] band.

γ (²⁴¹Cm)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
57.1	(5/2+)	51.6	5.5 (3/2+)	E_{γ} : From $E_{\gamma}(262.3 \ I)$ -(210.7 2) from the 268 level in ε decay E=50.6 is reported in α decay.
		57.1	0.0 1/2+	E_{γ} : From $E_{\gamma}(262.3 \ I)$ from the 268 level in ε decay and $E(5.5 \text{ level})$ from α decay. E=56.1 is reported in α decay.

Adopted Levels, Gammas

Level Scheme

²⁴¹₉₆Cm₁₄₅

Adopted Levels, Gammas

²⁴¹₉₆Cm₁₄₅