		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 130,183 (2015)	30-Sep-2015

 $Q(\beta^{-}) = -767.4 \ 12$; $S(n) = 6647 \ 14$; $S(p) = 4479.96 \ 13$; $Q(\alpha) = 5637.82 \ 12$ 2012Wa38 Experimental Studies.

2011He12: Determined beta shape function and activity of ²⁴¹Pu β decay. Resolved the difference between efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method using a shape function derived from experimental data.

Theoretical/Systematical Studies:

2015Er03: Calculation of fission probabilities with a dynamic statistical approach.

2013Zd01: T_{1/2} for α decay calculated with phenomenological model based on Gamow theory with WKB approximation for Coulomb barrier penetration.

2013Af01: Calculated pairing and rotational properties in the density functional framework.

2013Ni13: Study of α decay of g.s Bk to rotational bands using the multichannel cluster model (MCCM).

2013Ta07: Partial $T_{1/2}$ for cluster decay of ²⁴¹Am using semi-empirical model.

2013Zd02: Coupled-channel calculation to describe α transition to several rotational bands in ²⁴¹Am.

2012Ba35, 2011Sh13: Calculated T_{1/2} of cluster decay for ²⁴¹Am using a generalized liquid-drop model.

2012Ni16: α decay branching ratio and T_{1/2} for transitions from ground state to favored rotational bands using Multichannel Cluster Model.

2012Sa05, 2012Sa31: Calculated cluster decay half-lives using the Coulomb and Proximity Potential Model (CPPM).

2012Ta10: Partial $T_{1/2}$, $Q(\beta^{-})$ values, branching ratios using a semi-empirical with the one-parameter model dependence on cluster radius.

2011He12: Compilation of longest lived known in nuclides with $Z \ge 82$ with half-life, spin, excitation energy, and primary reference. 1990Bh02: Calculated $T_{1/2}(SF)$.

1982Li02: Calculated energy band heads, magnetic moments, B(E2) and B(M1) using the rotor plus quasiparticle approximation. 1992Gu10, 1990Sh01, 1989Ba20, 1989Si13, 1989Sh37, 1989Ma43, 1988Bl11, 1986Po15, 1987GrZO, 1987Po08, 1987Sh04,

1988Ba01: Theoretical calculations and discussions on decays by heavy ions such as ³⁴Si, ²⁸Si, and neon isotopes.

1988Io05: Decay by ion emission was considered and compared with SF decay.

1983Penetration parameters for the 32.639- and 41.176-keV transitions have been calculated by 1983Bh10 as a function of nuclear deformation.

1977Ch27: Calculated Proton occupation probabilities for various Nilsson states.

1976Ch22, 1971Ga20: Calculations of excited-state energies and configurations.

241 Am Levels

Cross Reference (XREF) Flags

A	245 Bk α decay	D	241 Cm ε decay
В	²⁴¹ Pu β^- decay	Е	²⁴³ Am(p,t)
C	241 Am(209 Bi, 209 Bi' γ)	F	240 Pu(α ,t)

E(level)	$J^{\pi \uparrow}$	T _{1/2}	XREF	Comments
0.0 [‡]	5/2-	432.6 y 6	ABCDE	$\label{eq:second} \begin{split} & \% \alpha = 100; \ \% SF = 3.6 \times 10^{-10} \ 9 \\ & \mu = +1.58 \ 1; \ Q = +4.34 \ 5 \\ & \% SF \ is \ obtained \ from \ adopted \ T_{1/2} \ and \ T_{1/2}(SF) \ values. \\ & T_{1/2}: \ From \ evaluated \ t_{1/2} \ as \ recommended \ by \ 2004 ChZX. \\ & T_{1/2}: \ Measured \ values \ 432.7 \ y \ 7 \ by \ calorimetry \ (1967 Oe01) \ 433 \ y \ 7 \ by \ specific \ activity \ (1968 St02) \ 426.3 \ y \ 21 \ by \ calorimetry \ (1972 Jo07) \ 432.8 \ y \ 16 \ by \ specific \ activity \ (1968 St02) \ 426.3 \ y \ 21 \ by \ calorimetry \ (1972 Jo07) \ 432.8 \ y \ 16 \ by \ specific \ activity \ (1974 Po16) \ 432.5 \ y \ 7 \ by \ calorimetry \ (1974 StYG) \ 432.0 \ y \ 2 \ by \ calorimetry \ (1975 Ra35). \\ & 1989 Ho24 \ recommend \ T_{1/2} = 432.7 \ y \ 6, \ 1991 BaZS \ recommend \ 432.2 \ y \ 7, \ 2004 ChZX \ recommend \ 432.6 \ y \ 6, \ 2004 Wo02 \ recommend \ 433.1 \ 11 \ Earlier \ t_{1/2} \ measurements \ prior \ to \ 1967: \ 470 \ +6-10 \ y \ (1952 Ha68), \ 458.1 \ y \ 5 \ (1957 Ha10), \ 457.7 \ y \ 18 \ (1958 Wa69). \end{split}$

Continued on next page (footnotes at end of table)

²⁴¹Am Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
			These measurements have been excluded from 2004ChZX's evaluation due to large systematic uncertainties
			$T_{1/2}(SF)$: Measured values 2.3×10 ¹⁴ y 8 (1961Dr03) 0.90×10 ¹⁴ y 4 (1970Ga27) 1.147×10 ¹⁴ y 24 (1970Go06) 1.8×10 ¹⁴ y 4 (1986Pa17) 1.2×10 ¹⁴ y 6 (1993Ku16) 1.2×10 ¹⁴ y 3 Adopted as recommended by 2000Ho27.
			No ³⁴ Si decav was observed:
			$^{34}\text{Si}/\alpha < 3.0 \times 10^{-12} \text{ (1985Ho21), } < 4.2 \times 10^{-13} \text{ (1986Pa17), } < 8.7 \times 10^{-15} \text{ (1985TrZY), } < 7.4 \times 10^{-16} \text{ (1987Mo28).}$
			No other cluster emission was observed: $cluster/\alpha < 5.0 \times 10^{-15}$ (1986Tr10). See also 1995Ar33. μ measured by atomic beam with laser fluorescent spectroscopy (1990Iz01). Compiled by 2014StZZ, others:+1.61 3 (1966Ar04).
			Q measured by Muonic X-ray hyperfine structure method (1985Jo04) (1990Iz01) and recommended by 2013StZZ. Compiled by 2014StZZ, others: +3.8 12 (1989DrE26), +3.14 5 (1990Iz01) + 4.2 13 (1988Ba30)
			J^{π} : J from optical spectroscopy (1953Fr01 and 1956Th18) and atomic beam (1960Ma30). Configuration 5/2[523] Nilsson-state assignment is from the measured magnetic moment.
41.176 [#] 3	$7/2^{-}$	A CDE	J^{π} : M1+E2 γ to 5/2 ⁻ . Reaction data.
93.70 [‡] 10	9/2-	A CDEF	J^{π} : Energy fit to a band. Reaction data.
157.50 [#] 18	$11/2^{-}$	A C EF	J^{π} : Energy fit to a band. Reaction data.
205.883 [@] 10	5/2+	A CD	J^{π} : E1 γ to 5/2 ⁻ . γ to 7/2 ⁻ . Reaction data.
233.68 [‡] 20	13/2-	CE	J^{π} : γ to $9/2^{-}$. Energy fit to a band.
235.2 ^{&} 5	$7/2^{+}$	A F	J^{π} : Fit to a band.
239?		A	
270?	0.12+	A	
2/3.2° 5	9/21	ACF	J": Reaction data. Fit to a band.
319.8 ^{cc} 10	11/21	ACF	
319.82" 23	15/2	C	
381.1 5	13/2	ACF	
418.18# 23	17/2	C	
453.1°° 9 4592	15/21	د ۸	
471.810 ^{<i>a</i>} 9 495	3/2-	A CD F A	J^{π} : α hindrance factor is 1.8 from $3/2^-$.
504.449 ^b 9	5/2-	A CD F	J^{π} : M1+E2 γ to 3/2 ⁻ . Anomalous M1+E2 γ to 7/2 ⁻ .
525.67 [#] 25	$\frac{1}{19/2^{-}}$	с	
530.9 [@] 4	$17/2^{+}$	с	
543?		Α	
550.4 ^a 4	7/2-	AC F	
623.10 ^c 4	$(1/2^+)$	DF	J^{n} : E2 γ to 5/2 ⁺ . log ft=8.2 from 1/2 ⁺ . Likely configuration 1/2[400].
625.2° 5	9/2-	C	
629.8 [°] 7	19/2+	C	
636.861 ^{<i>u</i>} 10	3/2-	D	J^{π} : M1+E2 γ 's to 3/2 ⁻ and 5/2 ⁻ . log <i>ft</i> =6.25 from 1/2 ⁺ .
645.0+ 3	21/2-	C	
652.089 ^{<i>a</i>} 10	(1/2)-	D	J [*] : M1+E2 γ to 3/2 ⁻ . log <i>ft</i> =6.32 from 1/2 ⁺ rules out 5/2 ⁻ . In ε decay, 1974Po08 suggest that the 652 level is the bandhead of the 1/2[530] band with the 3/2 ⁻ member at 637 keV.
653.23 ^c 4 670.24 8	$3/2^+$ $3/2^+$	D F D	J^{π} : M1+E2 γ to 5/2 ⁺ . log <i>ft</i> =8.2 from 1/2 ⁺ rules out 5/2 ⁺ and 7/2 ⁺ . J^{π} : M1+E2 γ to 5/2 ⁺ . log <i>ft</i> =7.7 from 1/2 ⁺ rules out 5/2 ⁺ and 7/2 ⁺ .
682.1 ^{<i>a</i>} 6	$11/2^{-}$	C F	Configuration $3/2[031]$.

²⁴¹Am Levels (continued)

E(level)	J^{π}	T _{1/2}	XREF	Comments
723.9 [@] 4 732 4	$21/2^+$ (11/2 ⁺)		C F	J ^{π} : 1975Er01 propose an 11/2 ⁺ ,7/2[633] assignment on the basis of their (α ,t) work
773.8 [#] 3	$23/2^{-}$		с	WORK.
787.2 ^b 6	$13/2^{-}$		С	
822 4	$(13/2^+)$		F	J ^{π} : 1975Er01 propose a 13/2 ⁺ ,7/2[633] assignment based on their (α ,t) work.
851.3 ^{&} 5	$23/2^+$		C	
863.84 7	$15/2^{-}$		C F	
$912.7^{\ddagger}.3$	25/2-		C I	
952 1	5/2-		E	J^{π} : L=0 in ²⁴³ Am(p,t) with target $J^{\pi}=5/2^{-}$. 1974Fr01 interpret this level as a pairing excitation.
959.4 [@] 4	$25/2^+$		С	
982 2			E	
989.1 ⁰ 7 1020 4	17/2-		C F	
10207 1061.7 [#] 4	$27/2^{-}$		c	
1064 4			F	
1084.6 ^{<i>a</i>} 7	19/2-		C	
11004	27/2+		r C	
1117.6 5	21/2		F	
1136 3			Е	
1163 3			F	J ^{π} : 1975Er01 propose a tentative assignment of 9/2 ⁻ ,7/2[514] on the basis of their (α ,t) work.
1219.2 [‡] 4	29/2-		C _	
122/3	21/2-		F	
1230.9° 8	21/2 20/2+		C	
1233.9° 3 1345.0 ^{<i>a</i>} 8	29/2 23/2-		c	
1387.5 [#] 4	31/2-		С	
1426.4 <mark>&</mark> 6	$31/2^{+}$		С	
1510.2 ^b 8	$25/2^{-}$		С	
1550 4	(5/2-)		E	J^{π} : L=(0) in ²⁴³ Am(p,t) with target $J^{\pi}=5/2^{-}$.
1551.2 ^w 6	$33/2^{+}$		С	
$1562.6^{+} 4$	33/2-		C	
1042.7 9 $1749.4^{\#}.5$	21/2		C	
$1775.2^{\&}7$	$35/2^+$		c	
1826.9^{b} 9	$29/2^{-}$		c	
1903.5 [@] 7	$37/2^+$		С	
1940.6 [‡] 5	37/2-		С	
1975.8 ^a 9	31/2-		С	
2145.4 [#] 5	39/2-		С	
2161.6 7	39/2+		С	
2178.0 ⁰ 10	33/2-	1 2 2	C	% SE-100
~2200		1.2 µ8 J		Additional information 1.

²⁴¹Am Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
			Assignment: ²⁴² Pu(p,2n) excit (1969La14); ²⁴¹ Pu(13-MeV d,2n) (1969La14);
			241 Am(14.7-MeV n,n') (1973Be04).
			E(level): Threshold energy of (p,2n) reaction, obtained by 1969La14 yielded E=2500 100; from fit to excitation function for (p,2n) reaction of 1969La14 E(level)=2200 200 obtained by
			1971Br39, 1972Br35. For calculated isomeric level energy, see, for example, 1970Ja16,
			1972We09, 1987Gu03.
			Only SF decay was observed. $\Gamma(\alpha)/\Gamma(SF) < 1$ from absence of 472 α (1076Ba55)
			1972 We09 calculated $T_{1/2}(\gamma)/T_{1/2}(SF)=2.7\times10^{-3}/0.45\times10^{-6}$
			$T_{1/2}$: Unweighted average of 1.5 μ s 6 (1969La14) and 0.9 μ s 3 (1993Ku16).
			For calculated $T_{1/2}(SF)$, see 1990Bh02, for example.
			Fission-barrier parameters were deduced from fission probability measured in ²⁴⁰ Pu(³ He,d) reaction (1974Ba73,1976Ga11). 1981Re06 deduced barrier heights from fission probability data of 1976Ga11. See 1980Ku14, 1984Ku05, 1987Gu03, 1989Bh01, 1990Bh02, 1992Gr10 for calculated barrier parameters
2289.7 [@] 9	$41/2^{+}$	с	
2343.9 ^{<i>a</i>} 10	35/2-	C	
2352.2 [‡] 6	$41/2^{-}$	С	
2561.5 ^b 11	$37/2^{-}$	С	
2574.6 [#] 8	$43/2^{-}$	С	
2582.7 ^{&} 9	$43/2^{+}$	С	
2708.0 ^{^w} 10	$45/2^+$	C	
$2/43.8^{\text{t}}$ 11	39/2 45/2-	C	
2/94.778	45/2	C	
$2977.2^{\circ} 12$	41/2	C	
$3035.1 \ 9$ $3036.3 \ 10$	47/2 17/2+	C	
$31567^{@}11$	47/2 40/2 ⁺	C	
3174.7 ^{<i>a</i>} 12	$\frac{43}{2^{-}}$	c	
3266.9 [‡] 9	49/2-	С	
3424.3 ^b 13	45/2-	С	
3520.8 ^{&} 12	$51/2^{+}$	С	
3525.1 [#] 10	51/2-	С	
3633.5 [@] 13	$53/2^{+}$	С	
3635.1 ^{<i>a</i>} 13	47/2-	С	
3767.74 11	53/2-	C	
3903.0 ⁰ 14	(49/2 ⁻)	C	
4034.4 ^{c} 13	55/2+	C	
$4043.2^{\#}$ 12 $4122.5^{\texttt{a}}$ 14	55/2 ⁻	C	
4122.5 14 $1137.6^{(0)}$ 14	57/2 ⁺	C	
4294 9 12	57/2-	C	
4575.6 [#] 13	59/2-	c	
4577.5 ^{&} 14	$(59/2^+)$	c	
4669.4 [@] 14	$61/2^+$	c	
4845.9 [‡] 13	$61/2^{-}$	С	
5117.2 [#] 14	63/2-	С	

²⁴¹Am Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF		
5228.9 [@] 15	65/2+	С		
5407.9 [‡] 14	65/2-	С		
5816.8 [@] 16	$(69/2^+)$	С		
5980.9 [‡] 14	$(69/2^{-})$	С		

[†] The argument "Reaction data" includes assignments from ²⁴⁰Pu(α ,t) that are based on a comparison of the observed spectroscopic factors with calculated values, and assignments from ²⁴³Am(p,t) that are based on angular distributions. Assignments for higher band members, given with no argument are from 2004Ab16 from their ²⁴¹Am(²⁰⁹Bi,²⁰⁹Bi' γ) work and are based on observation of these bands individually in triple coincidence runs gated on multiplicity and sum energy.

[‡] Band(A): 5/2[523] band, $\alpha = +1/2$.

[#] Band(B): 5/2[523] band, $\alpha = -1/2$.

[@] Band(C): 5/2[642] band, $\alpha = +1/2$.

[&] Band(D): 5/2[642] band, $\alpha = -1/2$.

^{*a*} Band(E): 3/2[521] band, $\alpha = -1/2$.

^b Band(E): 3/2[521] band, $\alpha = 1/2$.

^c Band(G): 1/2[400] band.

 d Band(H): 1/2[530] band.

						Adopted	Levels, Gan	nmas (continue	d)		
	γ ⁽²⁴¹ Am)										
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ} #	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{e}	α^{d}	$I_{(\gamma+ce)}^{b}$	Comments	
41.176	7/2-	41.176 3		0.0	5/2-	M1+E2	0.486 23	295 17		$ \begin{array}{l} \alpha(\text{L}) = 216 \ 13; \ \alpha(\text{M}) = 59 \ 4 \\ \alpha(\text{N}) = 16.2 \ 10; \ \alpha(\text{O}) = 3.90 \ 23; \ \alpha(\text{P}) = 0.64 \ 4; \\ \alpha(\text{Q}) = 0.01151 \ 20 \end{array} $	
157.50 205.883	11/2 ⁻ 5/2 ⁺	116.4 2 164.8 2	16 <i>3</i>	41.176 41.176	7/2 ⁻ 7/2 ⁻	[E1]		0.1635		$\begin{aligned} &\alpha(\mathbf{K}) = 0.1255 \ 18; \ \alpha(\mathbf{L}) = 0.0285 \ 4; \ \alpha(\mathbf{M}) = 0.00699 \\ &10 \\ &\alpha(\mathbf{N}) = 0.00189 \ 3; \ \alpha(\mathbf{O}) = 0.000463 \ 7; \\ &\alpha(\mathbf{P}) = 8.08 \times 10^{-5} \ 12; \ \alpha(\mathbf{Q}) = 3.52 \times 10^{-6} \ 5 \\ &\mathbf{E}_{\gamma}: \ \mathbf{E}_{\gamma} = 165.1 \ 2 \ \text{in} \ ^{241} \mathrm{Am}(^{209} \mathrm{Bi};^{209} \mathrm{Bi}' \gamma). \end{aligned}$	
		205.879 <i>13</i>	100 6	0.0	5/2-	E1		0.0980		I _γ : I _γ =21 6 in α decay. α (K)=0.0761 11; α(L)=0.01647 23; α (M)=0.00402 6 α (N)=0.001091 16; α(O)=0.000268 4; α (P)=4.75×10 ⁻⁵ 7; α(Q)=2.19×10 ⁻⁶ 3	
233.68 235.2	13/2 ⁻ 7/2 ⁺	139.9 2 194.0 5	100 100	93.70 41.176	9/2 ⁻ 7/2 ⁻	[E1]		0.1123 17		α (K)=0.0870 <i>14</i> ; α (L)=0.0190 <i>3</i> ; α (M)=0.00466 <i>8</i> α (N)=0.001262 <i>20</i> ; α (O)=0.000309 <i>5</i> ; α (P)=5.46×10 ⁻⁵ 9; α (Q)=2.48×10 ⁻⁶ 4	
273.2 319.82	9/2 ⁺ 15/2 ⁻	179.5 <i>5</i> 162.4 <i>2</i>	100 100	93.70 157.50	9/2 ⁻ 11/2 ⁻					$u(1)=5.10\times10^{-5}, u(Q)=2.10\times10^{-7}$	
381.1	13/2+	108.0 ^f 5 147.6 5	100 100	273.2 233.68	9/2 ⁺ 13/2 ⁻						
418.18	17/2-	98.0 5 184.4 2	4.6 [@] 23 100 43	319.82 233.68	15/2 ⁻ 13/2 ⁻						
453.1 471.810	15/2 ⁺ 3/2 ⁻	133.3 <i>5</i> 265.922 <i>12</i>	0.56 6	319.8 205.883	11/2 ⁺ 5/2 ⁺	[E1] ^{<i>a</i>}		0.0552	3.0 ^c 2	$ce(K)/(\gamma+ce)=0.0410 \ 6; \ ce(L)/(\gamma+ce)=0.00847$ 12; ce(M)/($\gamma+ce$)=0.00206 3 ce(N)/($\gamma+ce$)=0.000560 8; ce(O)/($\gamma+ce$)=0.0001380 20; ce(P)/($\gamma+ce$)=2.48×10 ⁻⁵ 4; ce(Q)/($\gamma+ce$)=1.217×10 ⁻⁶ 17 α (K)=0.0433 6; α (L)=0.00894 13; α (M)=0.00218 3 α (N)=0.000590 9; α (O)=0.0001456 21; α (P)=2.62×10 ⁻⁵ 4; α (O)=1.284×10 ⁻⁶ 18	
		430.634 20	5.7 3	41.176	7/2-	E2		0.0805	5.1 <i>3</i>	$ce(K)/(\gamma+ce)=0.0385 6; ce(L)/(\gamma+ce)=0.0264 4; ce(M)/(\gamma+ce)=0.00710 10 ce(N)/(\gamma+ce)=0.00196 3; ce(O)/(\gamma+ce)=0.000475$	

6

 $^{241}_{95}\mathrm{Am}_{146}\text{-}6$

							γ (²⁴¹ Am	n) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{e}	α^{d}	$I_{(\gamma+ce)}^{b}$	Comments
471.810	3/2-	471.805 20	100 4	0.0	5/2-	M1+E2 ^{<i>a</i>}		0.22 16	100 ^c 4	7; ce(P)/(γ +ce)=8.22×10 ⁻⁵ 12; ce(Q)/(γ +ce)=1.92×10 ⁻⁶ 3 α (K)=0.0416 6; α (L)=0.0285 4; α (M)=0.00767 11 α (N)=0.00211 3; α (O)=0.000514 8; α (P)=8.88×10 ⁻⁵ 13; α (Q)=2.08×10 ⁻⁶ 3 ce(K)/(γ +ce)=0.14 10; ce(L)/(γ +ce)=0.033 16; ce(M)/(γ +ce)=0.008 4 ce(N)/(γ +ce)=0.0023 11; ce(O)/(γ +ce)=0.0006 3; ce(P)/(γ +ce)=0.00010 6; ce(Q)/(γ +ce)=6
504.449	5/2-	32.639 <i>3</i>	16.5 6	471.810	3/2-	M1+E2	0.124 4	220 5	100 3	$\alpha(K)=0.17 14; \ \alpha(L)=0.040 \ 20; \ \alpha(M)=0.010 \ 5$ $\alpha(N)=0.0028 \ 12; \ \alpha(O)=0.0007 \ 4; \ \alpha(P)=0.00013 \ 7; \ \alpha(Q)=7$ $ce(L)/(\gamma+ce)=0.741 \ 12; \ ce(M)/(\gamma+ce)=0.188 \ 6$ $ce(N)/(\gamma+ce)=0.0515 \ 16; \ ce(O)/(\gamma+ce)=0.0128 \ 4; \ ce(P)/(\gamma+ce)=0.00233 \ 7; \ ce(Q)/(\gamma+ce)=0.000116 \ 3$
		298.57 5	6.4 <i>16</i>	205.883	5/2+	[E1] ^a		0.0429	0.29 ^c 7	$\begin{aligned} &\alpha(L) = 163 \ 4; \ \alpha(M) = 41.4 \ 10 \\ &\alpha(N) = 11.4 \ 3; \ \alpha(O) = 2.82 \ 6; \ \alpha(P) = 0.513 \ 11; \\ &\alpha(Q) = 0.0257 \ 4 \\ &\text{ce}(K)/(\gamma + \text{ce}) = 0.0324 \ 5; \ \text{ce}(L)/(\gamma + \text{ce}) = 0.00655 \ 10; \\ &\text{ce}(M)/(\gamma + \text{ce}) = 0.001594 \ 23 \\ &\text{ce}(N)/(\gamma + \text{ce}) = 0.000433 \ 6; \ \text{ce}(O)/(\gamma + \text{ce}) = 0.0001068 \end{aligned}$
		410.8 <i>I</i>	7.0 7	93.70	9/2-	[E2]		0.0910	2.11 22	<i>15</i> ; ce(P)/(γ +ce)=1.93×10 ⁻⁵ <i>3</i> ; ce(Q)/(γ +ce)=9.73×10 ⁻⁷ <i>14</i> α (K)=0.0338 <i>5</i> ; α (L)=0.00684 <i>10</i> ; α (M)=0.001662 <i>24</i> α (N)=0.000451 <i>7</i> ; α (O)=0.0001114 <i>16</i> ; α (P)=2.02×10 ⁻⁵ <i>3</i> ; α (Q)=1.015×10 ⁻⁶ <i>15</i> ce(K)/(γ +ce)=0.0414 <i>6</i> ; ce(L)/(γ +ce)=0.0307 <i>5</i> ; ce(M)/(γ +ce)=0.00239 <i>4</i> ; ce(O)/(γ +ce)=0.000555 <i>8</i> ;
		463.273 20	100 7	41.176	7/2-	M1+E2 ^{<i>a</i>}		0.23 17	3.38 ^c 18	$\begin{array}{l} ce({\rm P})/(\gamma+ce)=9.57\times10^{-5}\ I4;\\ ce({\rm Q})/(\gamma+ce)=2.11\times10^{-6}\ 3\\ \alpha({\rm K})=0.0452\ 7;\ \alpha({\rm L})=0.0335\ 5;\ \alpha({\rm M})=0.00905\ I3\\ \alpha({\rm N})=0.00249\ 4;\ \alpha({\rm O})=0.000606\ 9;\ \alpha({\rm P})=0.0001044\\ I5;\ \alpha({\rm Q})=2.31\times10^{-6}\ 4\\ ce({\rm K})/(\gamma+ce)=0.14\ I0;\ ce({\rm L})/(\gamma+ce)=0.034\ I7;\\ ce({\rm M})/(\gamma+ce)=0.0024\ I1;\ ce({\rm O})/(\gamma+ce)=0.0006\ 3; \end{array}$
		504.45 <i>3</i>	48 <i>3</i>	0.0	5/2-	M1+E2 ^a		0.18 <i>13</i>	1.49 ^c 9	$\begin{array}{l} ce(P)/(\gamma+ce)=0.00011\ 6;\ ce(Q)/(\gamma+ce)=6\\ \alpha(K)=0.18\ 14;\ \alpha(L)=0.042\ 21;\ \alpha(M)=0.011\ 5\\ \alpha(N)=0.0029\ 13;\ \alpha(O)=0.0007\ 4;\ \alpha(P)=0.00013\ 7;\\ \alpha(Q)=7\\ ce(K)/(\gamma+ce)=0.12\ 9;\ ce(L)/(\gamma+ce)=0.028\ 14; \end{array}$

7

	Adopted Levels, Gammas (continued)											
							γ ⁽²⁴¹ Am) (conti	nued)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{e}	α^{d}	$I_{(\gamma+ce)}^{b}$	Comments		
										$\begin{array}{c} ce(M)/(\gamma+ce)=0.007 \ 4\\ ce(N)/(\gamma+ce)=0.0019 \ 9; \ ce(O)/(\gamma+ce)=0.00048\\ 23; \ ce(P)/(\gamma+ce)=9; \ ce(Q)/(\gamma+ce)=5\\ \alpha(K)=0.14 \ 11; \ \alpha(L)=0.033 \ 17; \ \alpha(M)=0.008 \ 4\\ \alpha(N)=0.0023 \ 11; \ \alpha(O)=0.0006 \ 3; \ \alpha(P)=0.00011\\ 6; \ \alpha(Q)=6 \end{array}$		
525.67	19/2-	107.2 <i>2</i> 206.0 <i>2</i>	13 [@] 5 100	418.18 319.82	17/2 ⁻ 15/2 ⁻							
530.9	17/2+	149.9 5 211.0 5	100 <i>50</i> 10 <i>5</i>	381.1 319.82	13/2 ⁺ 15/2 ⁻							
550.4	7/2-	77.0 ^{<i>f</i>} 5 455.9 5 510.0 5		471.810 93.70 41.176	3/2 ⁻ 9/2 ⁻ 7/2 ⁻							
623.10	$(1/2^+)$	151.4 <i>4</i>	≈3	471.810	3/2-	[E1]		0.199		α (K)=0.1519 24; α (L)=0.0353 6; α (M)=0.00866		
		417.24 <i>4</i>	100 6	205.883	5/2+	E2		0.0874		$\alpha(N)=0.00234 \ 4; \ \alpha(O)=0.000572 \ 9; \ \alpha(P)=9.92\times10^{-5} \ 16; \ \alpha(Q)=4.22\times10^{-6} \ 7 \ \alpha(K)=0.0440 \ 7; \ \alpha(L)=0.0318 \ 5; \ \alpha(M)=0.00857 \ 12$		
		623.1 <i>3</i>	1.8 5	0.0	5/2-	[M2]		0.433		$\alpha(N)=0.00236 4; \alpha(O)=0.000573 8;$ $\alpha(P)=9.89\times10^{-5} 14; \alpha(Q)=2.23\times10^{-6} 4$ $\alpha(K)=0.322 5; \alpha(L)=0.0821 12; \alpha(M)=0.0207 3$ $\alpha(N)=0.00571 8; \alpha(O)=0.001435 21;$ $\alpha(P)=0.000272 4; \alpha(Q)=1.650\times10^{-5} 24$		
625.2 629.8	$9/2^{-}$ 19/2 ⁺	120.8 <i>5</i> 176 7 5		504.449 453 1	$5/2^{-}$ 15/2 ⁺					<i>a</i> (1)=0.000272 +, <i>a</i> (q)=1.050×10 - 2+		
636.861	3/2-	132.413 7	100 5	504.449	5/2-	M1+E2 ^{<i>a</i>}	0.061 +13-17	12.94	100 ^C 4	ce(K)/(γ +ce)=0.728 7; ce(L)/(γ +ce)=0.151 3; ce(M)/(γ +ce)=0.0368 7 ce(N)/(γ +ce)=0.01005 20; ce(O)/(γ +ce)=0.00253 5; ce(P)/(γ +ce)=0.000483 10; ce(Q)/(γ +ce)=3.06×10 ⁻⁵ 6 α (K)=10.15 15; α (L)=2.10 3; α (M)=0.512 8 α (N)=0.1401 20; α (O)=0.0353 5; α (P)=0.00674 10; α (O)=0.000427 6		
		165.049 8	77 5	471.810	3/2-	M1+E2 ^{<i>a</i>}	0.22 3	6.73 12	44.9 ^c 18	ce(K)/(γ +ce)=0.677 7; ce(L)/(γ +ce)=0.145 3; ce(M)/(γ +ce)=0.0357 8 ce(N)/(γ +ce)=0.00976 21; ce(O)/(γ +ce)=0.00245 5; ce(P)/(γ +ce)=0.000465 10; ce(Q)/(γ +ce)=2.82×10 ⁻⁵ 7 α (K)=5.24 10; α (L)=1.123 16; α (M)=0.276 4		

 ∞

	Adopted Levels, Gammas (continued)											
	γ ⁽²⁴¹ Am) (continued)											
E _i (level)	J_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{e}	α^{d}	$I_{(\gamma+ce)}^{b}$	Comments		
636.861	3/2-	430 1	≈1.0	205.883	5/2+	[E1]		0.0200	≈0.09	$\begin{aligned} &\alpha(\text{N})=0.0755 \ 11; \ \alpha(\text{O})=0.0189 \ 3; \ \alpha(\text{P})=0.00359 \ 5; \\ &\alpha(\text{Q})=0.000218 \ 4 \\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.01567 \ 23; \ \text{ce}(\text{L})/(\gamma+\text{ce})=0.00300 \\ &5; \ \text{ce}(\text{M})/(\gamma+\text{ce})=0.000725 \ 11 \\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.000197 \ 3; \\ &\text{ce}(\text{O})/(\gamma+\text{ce})=4.89\times10^{-5} \ 8; \\ &\text{ce}(\text{P})/(\gamma+\text{ce})=8.99\times10^{-6} \ 14; \\ &\text{ce}(\text{Q})/(\gamma+\text{ce})=4.87\times10^{-7} \ 8 \\ &\alpha(\text{K})=0.01598 \ 24; \ \alpha(\text{L})=0.00306 \ 5; \end{aligned}$		
		595.8 <i>3</i>	0.38 8	41.176	7/2-	[E2]		0.0373	0.036 7	$\begin{aligned} &\alpha(M) = 0.000739 \ 11 \\ &\alpha(N) = 0.000201 \ 3; \ \alpha(O) = 4.99 \times 10^{-5} \ 8; \\ &\alpha(P) = 9.17 \times 10^{-6} \ 14; \ \alpha(Q) = 4.97 \times 10^{-7} \ 8 \\ &\text{ce}(K)/(\gamma + \text{ce}) = 0.0227 \ 4; \ \text{ce}(L)/(\gamma + \text{ce}) = 0.00974 \ 14; \\ &\text{ce}(M)/(\gamma + \text{ce}) = 0.00255 \ 4 \\ &\text{ce}(N)/(\gamma + \text{ce}) = 0.000702 \ 10; \\ &\text{ce}(O)/(\gamma + \text{ce}) = 0.0001721 \ 25; \\ &\text{ce}(P)/(\gamma + \text{ce}) = 3.06 \times 10^{-5} \ 5; \end{aligned}$		
		636.88 <i>3</i>	40 3	0.0 5	5/2-	M1+E2	0.59 18	0.133 <i>16</i>	3.9 <i>3</i>	$\begin{array}{l} \mathrm{ce}(\mathrm{Q})/(\gamma+\mathrm{ce})=1.012\times10^{-6}\ 15\\ \alpha(\mathrm{K})=0.0236\ 4;\ \alpha(\mathrm{L})=0.01010\ 15;\ \alpha(\mathrm{M})=0.00265\ 4\\ \alpha(\mathrm{N})=0.000728\ 11;\ \alpha(\mathrm{O})=0.000178\ 3;\\ \alpha(\mathrm{P})=3.17\times10^{-5}\ 5;\ \alpha(\mathrm{Q})=1.050\times10^{-6}\ 15\\ \mathrm{ce}(\mathrm{K})/(\gamma+\mathrm{ce})=0.092\ 11;\ \mathrm{ce}(\mathrm{L})/(\gamma+\mathrm{ce})=0.0191\ 19;\\ \mathrm{ce}(\mathrm{M})/(\gamma+\mathrm{ce})=0.0047\ 5\\ \mathrm{ce}(\mathrm{N})/(\gamma+\mathrm{ce})=0.00128\ 12;\ \mathrm{ce}(\mathrm{O})/(\gamma+\mathrm{ce})=0.00032\\ 3;\ \mathrm{ce}(\mathrm{P})/(\gamma+\mathrm{ce})=6.1\times10^{-5}\ 6;\\ \mathrm{ce}(\mathrm{Q})/(\gamma+\mathrm{ce})=3.7\times10^{-6}\ 5\\ \alpha(\mathrm{K})=0.104\ 13;\ \alpha(\mathrm{L})=0.0217\ 21;\ \alpha(\mathrm{M})=0.0053\ 5\\ \alpha(\mathrm{N})=0.00145\ 14;\ \alpha(\mathrm{O})=0.00036\ 4;\\ \alpha(\mathrm{P})=6.9\times10^{-5}\ 7;\ \alpha(\mathrm{Q})=4.2\times10^{-6}\ 5\\ \end{array}$		
645.0	$21/2^{-}$	120.3 5	4.1 [@] 13	525.67 418 18	19/2 ⁻ 17/2 ⁻							
652.089	(1/2)-	15.228 2	11.4 5	636.861	3/2-	M1+E2	0.0302 14	437 8		α (M)=322 6 α (N)=88.3 15; α (O)=22.1 4; α (P)=4.16 7;		
		29.02 5	6.3 13	623.10	(1/2 ⁺)	[E1]		3.42		$\alpha(Q)=0.249 \ 4$ $\alpha(L)=2.54 \ 4; \ \alpha(M)=0.663 \ 10$ $\alpha(N)=0.177 \ 3; \ \alpha(Q)=0.0404 \ 6; \ \alpha(P)=0.00542 \ 8;$		
		147.67 3	2.75 23	504.449	5/2-	[E2]		3.08		$\begin{array}{l} \alpha(\mathrm{Q}) = 0.0001288 \ 19 \\ \alpha(\mathrm{K}) = 0.185 \ 3; \ \alpha(\mathrm{L}) = 2.10 \ 3; \ \alpha(\mathrm{M}) = 0.589 \ 9 \\ \alpha(\mathrm{N}) = 0.1629 \ 23; \ \alpha(\mathrm{O}) = 0.0390 \ 6; \ \alpha(\mathrm{P}) = 0.00631 \ 9; \\ \alpha(\mathrm{Q}) = 3.40 \times 10^{-5} \ 5 \end{array}$		

9

Adopted Levels, Gammas (continued)												
	γ ⁽²⁴¹ Am) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{e}	α^{d}	Comments			
652.089	(1/2)-	180.277 8	100 9	471.810	3/2-	M1(+E2)	<0.25	5.31 14	$\alpha(K)=4.15 \ 14; \ \alpha(L)=0.868 \ 13; \ \alpha(M)=0.212 \ 4 \\ \alpha(N)=0.0581 \ 9; \ \alpha(O)=0.01460 \ 21; \ \alpha(P)=0.00278 \ 4; \\ \alpha(N)=0.00172 \ \alpha(P)=0.00278 \ 4; \\ \alpha(N)=0.000172 \ \alpha(P)=0.000172 \ 4; \\ \alpha(N)=0.000172 \ 4; \\ \alpha(N)=0.$			
		652.1 4	8.3 21	0.0	5/2-	[E2]		0.0306	$\alpha(Q)=0.000172 \ \delta$ $\alpha(K)=0.0201 \ 3; \ \alpha(L)=0.00777 \ 11; \ \alpha(M)=0.00202 \ 3$ $\alpha(N)=0.000555 \ 8; \ \alpha(O)=0.0001364 \ 20; \ \alpha(P)=2.44\times10^{-5} \ 4; \ \alpha(O)=8.76\times10^{-7} \ 13$			
653.23	3/2+	447.35 4	80 10	205.883	5/2+	M1+E2	<0.77	0.37 7	$\alpha(\mathbf{X})=0.70\times10^{-1}15^{-1}$ $\alpha(\mathbf{K})=0.29\ 6;\ \alpha(\mathbf{L})=0.061\ 9;\ \alpha(\mathbf{M})=0.0149\ 19$ $\alpha(\mathbf{N})=0.0041\ 6;\ \alpha(\mathbf{O})=0.00102\ 14;\ \alpha(\mathbf{P})=0.00019\ 3;$ $\alpha(\mathbf{O})=1\ 17\times10^{-5}\ 23$			
		653.2 2	100 7	0.0	5/2-	[E1]		0.00898	$\alpha(\mathbf{Q}) = 1.17 \times 10^{-5} 22^{\circ}$ $\alpha(\mathbf{K}) = 0.00724 11; \ \alpha(\mathbf{L}) = 0.001313 19; \ \alpha(\mathbf{M}) = 0.000316 5$ $\alpha(\mathbf{N}) = 8.57 \times 10^{-5} 12; \ \alpha(\mathbf{O}) = 2.14 \times 10^{-5} 3; \ \alpha(\mathbf{P}) = 3.99 \times 10^{-6} 6;$ $\alpha(\mathbf{O}) = 2.32 \times 10^{-7} 4$			
670.24	3/2+	464.36 8	14.8 <i>24</i>	205.883	5/2+	M1+E2	1.5 +17-5	0.17 8	$\begin{array}{l} \alpha(\mathbb{Q}) = 10.2 \ (\alpha(\mathbb{L}) = 0.034 \ 9; \ \alpha(\mathbb{M}) = 0.0088 \ 2I \\ \alpha(\mathbb{N}) = 0.0024 \ 6; \ \alpha(\mathbb{O}) = 0.00059 \ I5; \ \alpha(\mathbb{P}) = 0.00011 \ 3; \\ \alpha(\mathbb{O}) = 5 \ 1 \times 10^{-6} \ 24 \end{array}$			
		670.2 2	100 7	0.0	5/2-	[E1]		0.00856	$\alpha(\mathbf{K}) = 0.00691 \ 10; \ \alpha(\mathbf{L}) = 0.001250 \ 18; \ \alpha(\mathbf{M}) = 0.000300 \ 5$ $\alpha(\mathbf{N}) = 8.16 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 2.04 \times 10^{-5} \ 3; \ \alpha(\mathbf{P}) = 3.80 \times 10^{-6} \ 6;$ $\alpha(\mathbf{O}) = 2.22 \times 10^{-7} \ 4$			
682.1	$11/2^{-}$	131.7 5		550.4	7/2-							
723.9	$21/2^{+}$	193.0 5	100	530.9	$17/2^{+}$							
773.8	23/2-	198.0 5 129.1 2 247.0 2	10 ^{^w} 7 45 25	525.67 645.0 525.67	$19/2^{-}$ $21/2^{-}$ $10/2^{-}$							
787 2	13/2-	$106.2 \int_{-100}^{-100} 5$	10.9	682 1	19/2 $11/2^{-}$							
101.2	15/2	162.0 5	100 90	625.2	$9/2^{-}$							
851.3	$23/2^+$	127.3 5	29 14	723.9	$21/2^+$							
863.8	$15/2^{-}$	221.5 5	100 43	629.8 682.1	$19/2^{-1}$							
912.7	$\frac{15}{2}^{-}$	139.1 5	16 [@] 6	773.8	$23/2^{-}$							
	,	267.8 2	100	645.0	21/2-							
959.4	$25/2^+$	108.1 5	10 [@] 5	851.3	$23/2^+$							
		185.6 5	10 [@] 5	773.8	23/2-							
080 1	17/2-	235.5 5	100 50	723.9	$21/2^+$ $15/2^-$							
707.1	1//2	201.9 5	100 92	787.2	$13/2^{-1}$							
1061.7	$27/2^{-}$	149.6 5	36 13	912.7	25/2-							
		287.8 2	100	773.8	$23/2^{-}$							
1084.6	19/2-	91.3 ^J 5	10 ^w 14	989.1	17/2-				E_{γ} : The energy fit is poor. The least-squares adjustment gives 95.5 5.			

From ENSDF

 γ (²⁴¹Am) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
1084.6	$19/2^{-}$	221.5 5	100	863.8 15/2-
1117.6	$27/2^{+}$	158.2 5	100	959.4 25/2+
		266.3 5	31 22	851.3 23/2+
1219.2	29/2-	157.3 5	30 12	1061.7 27/2-
		306.6 2	100	912.7 25/2-
1230.9	$21/2^{-}$	147.2 5	10 [@] 12	1084.6 19/2-
		241.0 5	100	989.1 17/2-
1235.9	$29/2^+$	118.3 5	10 [@] 5	1117.6 27/2+
		174.3 5	$10^{@} 5$	1061.7 27/2-
		276.5 5	100 43	959.4 25/2+
1345.0	$23/2^{-}$	113.7 <mark>5</mark> 5	10 [@] 13	1230.9 21/2-
	,	260.3 5	100	1084.6 19/2-
1387.5	$31/2^{-}$	168.6 5	19 7	1219.2 29/2-
		325.8 5	100	1061.7 27/2-
1426.4	$31/2^{+}$	190.5 5	100	1235.9 29/2+
		308.8 5	97 64	1117.6 27/2+
1510.2	$25/2^{-}$	164.9 5	10 [@] 12	1345.0 23/2-
		279.5 5	100	1230.9 21/2-
1551.2	$33/2^{+}$	124.8 5	10 [@] 6	1426.4 31/2+
		315.3 5	100	1235.9 29/2+
1562.6	33/2-	175.1 5	22 7	1387.5 31/2-
		343.3 2	100	1219.2 29/2-
1642.7	$27/2^{-}$	132.9 5	$10^{@} 7$	1510.2 25/2-
		297.8 5	100	1345.0 23/2-
1749.4	$35/2^{-}$	186.6 5	17 8	1562.6 33/2-
		361.9 2	100	1387.5 31/2-
1775.2	35/2+	224.0 5	21 40	1551.2 33/2+
		348.8 5	100	1426.4 31/2
1826.9	29/2-	184.5 5	10 9	1642.7 27/2-
	2 7 12 1	316.1 5	100	1510.2 25/2-
1903.5	37/2+	352.3 5	15 6	1551.2 33/2+
1940.6	31/2	191.1.5	15.0	1/49.4 35/2
		378.02	100	1302.0 33/2
1975.8	$31/2^{-}$	148.2 5	10 7	1826.9 29/2-
		333.6 5	100	1642.7 27/2-
2145.4	39/2-	204.9 5	18 ^w 9	1940.6 37/2-
	a o /a '	396.3 5	100	1749.4 35/2-
2161.6	39/2+	258.1 5	41 41	1903.5 37/2+
		386.4 5	100	17/5.2 35/2*

 $^{241}_{95}\mathrm{Am}_{146}\text{--}11$

11

γ ⁽²⁴¹Am) (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2178.0	$33/2^{-}$	351.3 5		1826.9	$29/2^{-}$	3525.1	$51/2^{-}$	490.0 5	3035.1	47/2-
2289.7	$41/2^{+}$	386.2 5		1903.5	37/2+	3633.5	$53/2^{+}$	476.8 5	3156.7	49/2+
2343.9	$35/2^{-}$	166.2 5	10 [@] 6	2178.0	$33/2^{-}$	3635.1	$47/2^{-}$	460.4 5	3174.7	$43/2^{-}$
		367.8 5	100	1975.8	31/2-	3767.7	53/2-	500.8 5	3266.9	49/2-
2352.2	$41/2^{-}$	207.1 5	16 [@] 7	2145.4	39/2-	3903.0	$(49/2^{-})$	479.3 5	3424.3	$45/2^{-}$
		411.2 5	100	1940.6	$37/2^{-}$	4034.4	$55/2^{+}$	513.6 5	3520.8	$51/2^{+}$
2561.5	$37/2^{-}$	383.5 5		2178.0	33/2-	4043.2	$55/2^{-}$	518.1 5	3525.1	$51/2^{-}$
2574.6	$43/2^{-}$	429.2 5		2145.4	39/2-	4122.5	$51/2^{-}$	487.4 5	3635.1	$47/2^{-}$
2582.7	$43/2^{+}$	421.1 5		2161.6	39/2+	4137.6	$57/2^{+}$	504.1 5	3633.5	$53/2^{+}$
2708.0	$45/2^{+}$	418.3 5		2289.7	$41/2^{+}$	4294.9	$57/2^{-}$	527.2 5	3767.7	$53/2^{-}$
2743.8	39/2-	399.9 5		2343.9	35/2-	4575.6	59/2-	532.4 5	4043.2	$55/2^{-}$
2794.7	$45/2^{-}$	442.5 5		2352.2	$41/2^{-}$	4577.5	$(59/2^+)$	542.8 [‡] 5	4034.4	$55/2^{+}$
2977.2	$41/2^{-}$	415.7 5		2561.5	$37/2^{-}$	4669.4	$61/2^+$	531.8 <i>5</i>	4137.6	$57/2^{+}$
3035.1	$47/2^{-}$	460.5 5		2574.6	$43/2^{-}$	4845.9	$61/2^{-}$	551.0 5	4294.9	$57/2^{-}$
3036.3	$47/2^{+}$	453.6 5		2582.7	$43/2^{+}$	5117.2	$63/2^{-}$	541.6 5	4575.6	59/2-
3156.7	$49/2^{+}$	448.7 5		2708.0	$45/2^{+}$	5228.9	$65/2^+$	559.5 <i>5</i>	4669.4	$61/2^+$
3174.7	$43/2^{-}$	430.9 5		2743.8	39/2-	5407.9	$65/2^{-}$	562.0 5	4845.9	$61/2^{-}$
3266.9	49/2-	472.2 5		2794.7	$45/2^{-}$	5816.8	$(69/2^+)$	587.6 [‡] <i>f</i> 5	5228.9	$65/2^+$
3424.3	$45/2^{-}$	447.1 5		2977.2	41/2-	5980.9	(69/2-)	573.0 [‡] <i>f</i> 5	5407.9	65/2-
3520.8	$51/2^{+}$	484.5 5		3036.3	$47/2^{+}$					

[†] From ²⁴¹Cm ε decay where available. Others are from (²⁰⁹Bi,²⁰⁹Bi' γ).

[‡] The tentative placement assigned to this transition results from the observation of a weak transition at this energy in sums of coincidence spectra double gated on transitions between high-spin levels in the g.s. band.

[#] Relative photon branching from each level taken from ²⁴¹Cm ε decay where available. Others are from (²⁰⁹Bi,²⁰⁹Bi' γ).

[@] Value given is an upper limit.

[&] From ²⁴¹Cm ε decay.

12

^{*a*} Probable anomalous conversion. See 1974Po08 in ε decay for calculations of penetration effects.

^b Relative $I\gamma$ +Ice from each level, given for levels for which one or more of the deexciting transitions exhibits anomalous conversion.

^c From sum of I γ and Ice. Given where internal conversion is anomalous.

^{*d*} Additional information 2.

^e If no value given it was assumed δ =1.00 for E2/M1,

^f Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) ----. 523.0 (69/2-) 5980.9 · 582 $(69/2^+)$ 5816.8 1 Je? 0 65/2-5407.9 , ⁵⁵9, 65/2+ 5228.9 5.41 63/2-5117.2 551.0 61/2 4845.9 , 331,8 $\frac{61/2^+}{(59/2^+)}$ S. 4669.4 4577.5 59/2 4575.6 5.55 2.52 57/2 4294.9 504, $\frac{57/2^+}{51/2^-}$ 4 4137.6 4122.5 <u>55/2</u> 55/2⁺ 4043.2 4034.4 479.3 $(49/2^{-})$ 3903.0 \$.00° 53/2-3767.7 -0° \$20.8 47/2 3635.1 $\frac{53/2^+}{51/2^-}$ 3633.5 S 484 3525.1 3520.8 44 45/2 3424.3 422 6. 0. 49/2-3266.9 $\frac{43/2^{-}}{49/2^{+}}$ 3174.7 280 ¥ 3156.7 \$ 60°. 47/2+ 3036.3 3035.1 2977.2 47/2-315 41/2 2794.7 45/2-39/2 2743.8 $45/2^{+}$ 2708.0 2582.7 43/2+ 43/2 2574.6 2561.5 37/2 5/2-

0.0 432.6 y 6

 $^{241}_{95} \mathrm{Am}_{146}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{241}_{95} \mathrm{Am}_{146}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

 $^{241}_{95}{\rm Am}_{146}$

Legend

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $\left| \begin{array}{c} \frac{21_{i,0}}{10} \\ \frac{20_{i,0}}{10} \\ \frac{20_{i,0}}{10} \\ \frac{10_{i,2}}{10} \\ \frac{10_{i,2}}{10} \end{array} \right|$ 0.36 $\frac{17/2^+}{19/2^-}$ 530.9 525.67 504.449 5/2-3/2-471.810 001 - 15 001 - 100-80 0.80 - 80 $15/2^{+}$ 453.1 00| 00|00 10^{8:0}|00 17/2-418.18 13/2+ + 162.4 100 381.1 $\frac{15/2^{-}}{11/2^{+}}$ 319.82 319.8 1 120 100 1 | 10'1'31 0'10' | 8 9/2+ E1/0 E1/10 273.2 $\frac{7/2^+}{13/2^-}$ 235.2 233.68 5/2+ 205.883 116.4 11/2 157.50 1 41,176 41,422 9/2-93.70 7/2-41.176 5/2-0.0 432.6 y 6

 $^{241}_{95}{\rm Am}_{146}$

17

 $^{241}_{95} \mathrm{Am}_{146}$

