240 Np β^- decay (7.22 min) 1970Sc12,1981Hs02

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh, E. Browne	NDS 109, 2439 (2008)	31-Jul-2008							

Parent: ²⁴⁰Np: E=0+x; J^{π}=(1⁺); T_{1/2}=7.22 min 2; Q(β ⁻)=2188 15; % β ⁻ decay=99.88 1

²⁴⁰Np-E: X=20 15 (see ²⁴⁰Np 'Adopted Levels').

²⁴⁰Np- $\%\beta^-$ decay: $\%\beta^-=99.88 \ l$ based on %IT=0.12 l (1981Hs02).

 β^- , ce data from 1959Bu20, 1964As11. Other β^- intensities from intensity balance.

1970Sc12, 1970Sc39: $\gamma\gamma(\theta)$ measurements.

E β measurement: 1959Bu20.

²⁴⁰Pu Levels

E(level)	$J^{\pi \dagger}$	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0	0^{+}	958.84 6	(2^{-})	1488.17 7	(1^{-})	1796.16 11	(1)-
42.824 8	2+	1089.45? 10	0^{+}	1525.86 8	(0^+)	1808.02 13	$(1^{-},2^{+})$
141.688 <i>21</i>	4+	1130.95 9	(2^{+})	1539.67 6	(1^{-})	1917.8 <i>3</i>	(1^{-})
294.3 10	6+	1136.97 <i>13</i>	(2^{+})	1558.87 5	(2^+)	1954.51 8	(2^{+})
597.35 <i>3</i>	1-	1222.89 13	(2^{+})	1607.72 <i>13</i>	(1^{-})	1996.42 17	$(1^{-},2^{+})$
648.86 4	3-	1240.8? 3	(2^{-})	1626.77 15	(1^{-})	2117.63 20	$(1,2^+)$
860.71 6	0^{+}	1321.11? 10	$(1,2^+)$	1633.37 7	(1^{-})		
900.32 4	2+	1410.76 11	$0^{(-)}$	1710.43 8	(2^+)		
938.05 <i>3</i>	(1-)	1438.45 8	2 ^{(-)#}	1775.27 15	(1)-		

[†] From 'Adopted Levels'.

[‡] $\gamma\gamma(\theta)$ consistent with J=0 (1970Sc12).

[#] $\gamma\gamma(\theta)$ data are consistent only with J=2 (1970Sc12).

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(70 15)	2117.63	0.0038 7	6.1 4	av Eβ=23.4 58
(192 15)	1996.42	0.008 2	6.9 2	av E β =57.1 62
(233 15)	1954.51	0.055 8	6.3 2	av $E\beta = 69.3 \ 63$
(270 15)	1917.8	0.013 1	7.1 <i>1</i>	av $E\beta = 80.1 \ 64$
(380 15)	1808.02	0.030 5	7.2 1	av $E\beta = 113.9 \ 67$
(392 15)	1796.16	0.041 5	7.1 <i>1</i>	av E β =117.6 68
(413 15)	1775.27	0.005 2	8.1 2	av E β =124.2 68
(478 15)	1710.43	0.084 9	7.1 <i>1</i>	av E β =145.1 70
(555 15)	1633.37	0.26 1	6.8 1	av E β =170.5 71
(580 15)	1607.72	0.07 1	7.4 1	av E β =179.1 72
(629 15)	1558.87	0.31 3	6.9 1	av E β =195.6 73
(648 15)	1539.67	2.3 1	6.07 5	av E β =202.2 73
(662 15)	1525.86	0.16 2	7.3 1	av E β =206.9 73
(700 15)	1488.17	0.58 2	6.78 5	av E β =220.0 74
(750 15)	1438.45	0.36 4	7.1 <i>1</i>	av E β =237.3 75
(777 15)	1410.76	0.20 3	7.4 1	av E β =247.0 75
(867 15)	1321.11?	0.034 5	8.3 1	av E β =278.9 77
(947 15)	1240.8?	0.010 2	9.0 1	av E β =308.0 78
(965 15)	1222.89	0.028 7	8.6 1	av E β =314.5 78
(1051 15)	1136.97	0.014 5	9.0 2	av E β =346.1 79
(1057 15)	1130.95	0.18 1	7.89 4	av E β =348.3 79
(1099 15)	1089.45?	0.10 2	8.2 1	av E β =363.8 80
(1229 15)	958.84	1.26 5	7.27 4	av E β =412.8 81

Continued on next page (footnotes at end of table)

$^{240} \mathrm{Np}\,\beta^-$ decay (7.22 min) 1970Sc12,1981Hs02 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1250 15)	938.05	1.4 1	7.25 4	av Eβ=420.7 81
(1288 15)	900.32	3.8 2	6.86 4	av $E\beta = 435.1 \ 81$
(1327 15)	860.71	2.5 2	7.09 5	av $E\beta = 450.2 \ 82$
(1539 [‡] 15)	648.86	< 0.1	>9.5 ¹ <i>u</i>	av E β =505.8 78
(1591 15)	597.35	31 2	6.27 4	av E β =552.2 84
				$I\beta^-$: from 1959Bu20.
				É(decay): 1600 30 (1959Bu20).
(2046 [‡] 15)	141.688	<1.5	>8.0	av E β =733.2 86
(2145 15)	42.824	≈42	≈6.6	av $E\beta = 772.9 \ 86$
				$I\beta^{-}$: $I\beta(2180)+I\beta(2140)=52\% \ 3 \ (1959Bu20).$
2180 20	0	≈10	≈7.3	av E β =790.2 86
				E(decay): 2180 20 (1959Bu20).

[†] For absolute intensity per 100 decays, multiply by 0.9988 *I*. [‡] Existence of this branch is questionable.

From ENSDF

 $\gamma(^{240}\text{Pu})$

Iγ normalization: Based on absolute intensity I(554.60γ)=20.9 5 per 100 ²⁴⁴Pu α decays (22.4 *11* (1970Sc12), 20.6 5 (1981Hs02)). β^- measurements (1959Bu20) result in a similar normalization.

${\rm E_{\gamma}}^{\#}$	I_{γ} #@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments
42.824 [†] 8	0.074 16	42.824	2+	0	0+	E2	906	α (L)=658 <i>10</i> ; α (M)=183 <i>3</i> ; α (N+)=64.1 <i>9</i> α (N)=50.4 <i>7</i> ; α (O)=11.84 <i>17</i> ; α (P)=1.85 <i>3</i> ; α (Q)=0.00390 <i>6</i>
98.860 [†] 20	0.17 3	141.688	4+	42.824	2+	E2	16.65	α (L)=12.08 <i>17</i> ; α (M)=3.38 <i>5</i> ; α (N+)=1.185 <i>17</i> α (N)=0.930 <i>13</i> ; α (O)=0.219 <i>3</i> ; α (P)=0.0349 <i>5</i> ; α (Q)=0.0001222 <i>18</i>
(152.630 [†])	< 0.02	294.3	6+	141.688	4+	E2	2.49	$\alpha(K)=0.196\ 3;\ \alpha(L)=1.665\ 24;\ \alpha(M)=0.465\ 7;\ \alpha(N+)=0.1629\ 23$
251.47 7	0.86 <i>3</i>	900.32	2+	648.86	3-	[E1]	0.0610	$\alpha(N)=0.1278 \ 78; \ \alpha(O)=0.0302 \ 5; \ \alpha(P)=0.00488 \ 7; \ \alpha(Q)=2.76\times10^{-5} \ 4 \\ \alpha(K)=0.0480 \ 7; \ \alpha(L)=0.00983 \ 14; \ \alpha(M)=0.00239 \ 4; \ \alpha(N+)=0.000832 \ 12 \\ \alpha(N)=0.000645 \ 9; \ \alpha(O)=0.0001571 \ 22; \ \alpha(P)=2.81\times10^{-5} \ 4; \\ \alpha(O)=1.406\times10^{-6} \ 20 $
263.37 7	1.14 2	860.71	0^{+}	597.35	1-	(E1)	0.0550	$\alpha(Q) = 1.400 \times 10^{-2.0} \times 20^{-2.0}$ $\alpha(K) = 0.0433 \ 6; \ \alpha(L) = 0.00881 \ 13; \ \alpha(M) = 0.00214 \ 3; \ \alpha(N+) = 0.000745 \ 11^{-1.0000}$ $\alpha(N) = 0.000578 \ 9; \ \alpha(O) = 0.0001409 \ 20; \ \alpha(P) = 2.52 \times 10^{-5} \ 4; \ \alpha(O) = 1.277 \times 10^{-6} \ 18^{-1.000}$
289.21 10	0.017 4	938.05	(1 ⁻)	648.86	3-	[E2]	0.237	$\alpha(K) = 0.0824 \ I2; \ \alpha(L) = 0.1131 \ I6; \ \alpha(M) = 0.0310 \ 5; \ \alpha(N+) = 0.01088 \ I6$
302.98 7	1.00 4	900.32	2+	597.35	1-	[E1]	0.0405	$\alpha(N)=0.00851 \ I2; \ \alpha(O)=0.00203 \ 3; \ \alpha(P)=0.000339 \ 5; \ \alpha(Q)=4.83\times10^{-6} \ 7$ $\alpha(K)=0.0320 \ 5; \ \alpha(L)=0.00637 \ 9; \ \alpha(M)=0.001543 \ 22; \ \alpha(N+)=0.000538 \ 8$ $\alpha(N)=0.000417 \ 6; \ \alpha(O)=0.0001018 \ I5; \ \alpha(P)=1.84\times10^{-5} \ 3;$ $\alpha(O)=9.59\times10^{-7} \ I4$
309.99 9	0.044 4	958.84	(2 ⁻)	648.86	3-	[M1]	1.093	$\alpha(Q) = 0.35 \times 10^{-14}$ $\alpha(K) = 0.865 \ 13; \ \alpha(L) = 0.1715 \ 24; \ \alpha(M) = 0.0417 \ 6; \ \alpha(N+) = 0.01472 \ 21$ $\alpha(N) = 0.01133 \ 16; \ \alpha(Q) = 0.00282 \ 4; \ \alpha(P) = 0.000536 \ 8; \ \alpha(Q) = 3.50 \times 10^{-5} \ 5$
340.70 1	0.060 6	938.05	(1 ⁻)	597.35	1-	[M1]	0.842	$a(K)=0.00135 \ 10, \alpha(C)=0.00282 \ 4, \alpha(T)=0.000535 \ 6, \alpha(Q)=2.5010 \ 5$ $a(K)=0.667 \ 10; \alpha(L)=0.1320 \ 19; \alpha(M)=0.0321 \ 5; \alpha(N+)=0.01133 \ 16$ $a(K)=0.00272 \ 12; \alpha(D)=0.00217 \ 2; \alpha(D)=0.000413 \ 6; \alpha(Q)=2.60\times 10^{-5} \ 4$
361.55 10	0.036 6	958.84	(2 ⁻)	597.35	1-	[M1]	0.716	$\alpha(N) = 0.00372$ 13, $\alpha(O) = 0.00217$ 3, $\alpha(\Gamma) = 0.000415$ 5, $\alpha(Q) = 2.09\times10^{-4}$ $\alpha(K) = 0.567$ 8; $\alpha(L) = 0.1121$ 16; $\alpha(M) = 0.0272$ 4; $\alpha(N+) = 0.00962$ 14 $\alpha(N) = 0.00740$ 11; $\alpha(O) = 0.00184$ 3; $\alpha(D) = 0.000350$ 5; $\alpha(O) = 2.28\times10^{-5}$ 4
475.0 <i>3</i> 496.7 <i>3</i>	0.011 <i>3</i> 0.010 <i>2</i>	1796.16 1633.37	$(1)^{-}$ (1^{-})	1321.11? 1136.97	$(1,2^+)$ (2^+)			$a(\mathbf{N}) = 0.00740~11, a(\mathbf{O}) = 0.00164~5, a(\mathbf{r}) = 0.000550~5, a(\mathbf{Q}) = 2.28\times10^{-4}$
507.2 1	0.70 9	648.86	3-	141.688	4+	[E1]	0.01401	α (K)=0.01126 <i>16</i> ; α (L)=0.00208 <i>3</i> ; α (M)=0.000500 <i>7</i> ; α (N+)=0.0001749 <i>25</i>
								α (N)=0.0001352 <i>19</i> ; α (O)=3.33×10 ⁻⁵ <i>5</i> ; α (P)=6.13×10 ⁻⁶ <i>9</i> ; α (O)=3.53×10 ⁻⁷ <i>5</i>
518.2 3	0.006 2	1607.72	(1^{-})	1089.45?	0^{+}			
554.60 7	20.9 5	597.35	1-	42.824	2+	E1	0.01179	α (K)=0.00949 <i>14</i> ; α (L)=0.001734 <i>25</i> ; α (M)=0.000417 <i>6</i> ; α (N+)=0.0001458 <i>21</i>
								α (N)=0.0001126 <i>16</i> ; α (O)=2.77×10 ⁻⁵ <i>4</i> ; α (P)=5.13×10 ⁻⁶ <i>8</i> ; α (Q)=2.99×10 ⁻⁷ <i>5</i>
572 40 2	0.0000 2	1710 42	(2^+)	1126.07	(2+)			Mult.: from α (K)exp=0.0092 9, K:L1=5.2 <i>10</i> (1959Bu20).
5/3.4° 2	0.008 2	1/10.43	(2^{+})	1136.97	(2^{+})			

				24	240 Np β^- decay (7.22 min)				1970Sc12,1981Hs02 (continued)				
							$\gamma(^{240}\text{Pu})$	(continued)	<u>)</u>				
${\rm E_{\gamma}}^{\#}$	Ι _γ #@	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α &	$I_{(\gamma+ce)}^{@}$	Comments				
573.4 ^{<i>a</i>} 2	0.008 ^{<i>a</i>} 2	1796.16	(1)-	1222.89	(2^+)								
580.7 2 597.40 7	0.007 2 11.7 3	1539.67 597.35	(1^{-}) 1^{-}	958.84 0	(2^{-}) 0 ⁺	E1	0.01024		α (K)=0.00826 <i>12</i> ; α (L)=0.001495 <i>21</i> ; α (M)=0.000359 <i>5</i> ; α (N+)=0.0001256 <i>18</i>				
									$\alpha(N)=9.70\times10^{-5}$ 14; $\alpha(O)=2.39\times10^{-5}$ 4; $\alpha(P)=4.43\times10^{-6}$ 7; $\alpha(Q)=2.62\times10^{-7}$ 4				
606.10 7	0.67 7	648.86	3-	42.824	2+	[E1]	0.00996		Mult.: from α (K)exp=0.0078 <i>12</i> , K:L1=4.9 <i>20</i> (1959Bu20). α (K)=0.00804 <i>12</i> ; α (L)=0.001453 <i>21</i> ; α (M)=0.000349 <i>5</i> ; α (N+)=0.0001221 <i>17</i>				
									$\alpha(N)=9.43\times10^{-5} \ 14; \ \alpha(O)=2.32\times10^{-5} \ 4; \ \alpha(P)=4.31\times10^{-6} \ 6; \ \alpha(Q)=2.55\times10^{-7} \ 4$				
658.5 ^b 758.61 8	<0.018 1.18 <i>3</i>	1558.87 900.32	(2^+) 2^+	900.32 141.688	$2^+_{4^+}$	E2	0.0212		E_{γ} : assigned as probable sum peak by 1981Hs02. $\alpha(K)=0.01484\ 2I$; $\alpha(L)=0.00474\ 7$; $\alpha(M)=0.001212\ 17$; $\alpha(N+)=0.000427\ 6$				
									α (N)=0.000331 5; α (O)=8.06×10 ⁻⁵ 12; α (P)=1.453×10 ⁻⁵ 21; α (Q)=6.09×10 ⁻⁷ 9				
500 50 10	0.10.2	1 420 45	a (-)	(10.0)	2-				Mult.: from α (K)exp=0.014 5 (1959Bu20).				
789.59 10	0.18 3	1438.45	2(-)	648.86	3-				$(789.6\gamma)(507.1\gamma)(\theta)$: A ₂ =+0.11 5, (789.6\gamma)(606.1\gamma)(\theta): A ₂ =+0.26 13,				
(796.2) 813 41 70	<0.001	938.05	(1)	141.688	4' 1				$(813 \text{ Av})(554 \text{ Gv})(\theta)$, $A_2 = \pm 0.062 \text{ J}_2^2$ (813 $\text{ Av})(597 \text{ Av})(\theta)$.				
015.41 10	0.10 5	1410.70	0	571.55	1				$A_2 = +0.62 \ 15 \ (1970 \text{scl}2).$				
(817.2)	< 0.1	958.84	(2-)	141.688	4+								
817.89 10	1.28 3	860.71	0^{+}	42.824	2+	E2	0.0183		$\alpha(K)=0.01302 \ 19; \ \alpha(L)=0.00389 \ 6; \ \alpha(M)=0.000990 \ 14; \ \alpha(N+)=0.000348 \ 5$				
									α (N)=0.000270 4; α (O)=6.59×10 ⁻⁵ 10; α (P)=1.194×10 ⁻⁵ 17; α (O)=5.27×10 ⁻⁷ 8				
									Mult.: from α (K)exp=0.014 5 (1959Bu20).				
837.6 2	0.008 3	1796.16	$(1)^{-}$	958.84	(2 ⁻)								
841.11 10	0.150 17	1438.45	2(-)	597.35	1-				$(841.1\gamma)(554.6\gamma)(\theta)$: A ₂ =-0.014 24, $(841.1\gamma)(597.4\gamma)(\theta)$: A ₂ =-0.14 24 (1970Sc12).				
857.48 10	0.49 2	900.32	2+	42.824	2+								
860.	< 0.005	860.71	0^{+}	0	0^{+}	E0		0.14 1	$ce(K)/(\gamma+ce)=0.839$ Mult.: from $\alpha(K)exp>0.8$ (1959Bu20).				
^x 867 2 2	0.009.2								$I_{(\gamma+ce)}$: from 1959Bu20, relative to $I_{\gamma}(554\gamma)=21.4$.				
890.6 2	0.017 2	1539.67	(1^{-})	648.86	3-								
895.3 1	0.061 10	938.05	(1^{-})	42.824	2+								
900.37 10	0.16 2	900.32	2^+	0	0^+								
910.1 <i>1</i> 015 08 0	0.14 2	1558.87	(2^{+}) (2^{-})	648.86 42.824	3 2+								
928.55 10	0.15 2	1525.86	(2^{+}) (0^{+})	597.35	1-								

4

From ENSDF

I

$\gamma(^{240}\text{Pu})$ (continued)

${\rm E_{\gamma}}^{\#}$	Ι _γ #@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	${\rm E_{\gamma}}^{\#}$	I_{γ} #@	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
938.02 10	1.21 5	938.05	(1^{-})	0	0^{+}	1488.2 1	0.20 1	1488.17	(1^{-})	0	0^{+}
942.39 10	0.096 9	1539.67	(1-)	597.35	1-	1496.9 <i>1</i>	1.33 <i>3</i>	1539.67	(1-)	42.824	2^{+}
959.0 2	0.0073 20	1607.72	(1^{-})	648.86	3-	1515.9 <i>1</i>	0.015 5	1558.87	(2^{+})	42.824	2^{+}
961.62 10	0.130 7	1558.87	(2^{+})	597.35	1-	1539.62 9	0.84 2	1539.67	(1-)	0	0^{+}
^x 985.7 5	0.015 3					1558.8 <i>1</i>	0.006 2	1558.87	(2^{+})	0	0^{+}
989.2 <i>1</i>	0.081 5	1130.95	(2^{+})	141.688	4^{+}	1568.6 2	0.006 1	1710.43	(2^{+})	141.688	4+
^x 1028.3 5	0.007 1					1584.1 2	0.017 2	1626.77	(1^{-})	42.824	2^{+}
1036.5 <i>3</i>	0.003 2	1633.37	(1^{-})	597.35	1-	1590.5 <i>1</i>	0.097 4	1633.37	(1^{-})	42.824	2^{+}
1046.62 10	0.097 18	1089.45?	0^{+}	42.824	2^{+}	^x 1604.8 3	0.037 5				
1061.6 2	0.029 7	1710.43	(2^{+})	648.86	3-	1607.6 2	0.055 5	1607.72	(1^{-})	0	0^{+}
^x 1072.2 1	0.017 3					1626.6 2	0.005 1	1626.77	(1^{-})	0	0^{+}
1088.3 2	0.032 3	1130.95	(2^{+})	42.824	2^{+}	1633.33 10	0.154 5	1633.37	(1^{-})	0	0^{+}
1094.2 2	0.020 3	1136.97	(2^{+})	42.824	2^{+}	1667.6 <i>1</i>	0.019 3	1710.43	(2^{+})	42.824	2^{+}
1113.2 2	0.018 3	1710.43	(2^{+})	597.35	1-	1711.0 10	0.002 1	1710.43	(2^{+})	0	0^+
1131.0 2	0.062 5	1130.95	(2^{+})	0	0^{+}	1732.4 2	0.002 1	1775.27	$(1)^{-}$	42.824	2^{+}
1137.0 4	0.014 2	1136.97	(2^{+})	0	0^{+}	^x 1737.2 3	0.004 1				
1159.2 2	0.006 2	1808.02	$(1^{-},2^{+})$	648.86	3-	1752.9 2	0.0054 12	1796.16	$(1)^{-}$	42.824	2^{+}
^x 1167.4 2	0.007 2					1765.2 2	0.0070 11	1808.02	$(1^-, 2^+)$	42.824	2^{+}
1180.1 2	0.020 5	1222.89	(2^{+})	42.824	2^{+}	1775.3 2	0.003 1	1775.27	$(1)^{-}$	0	0^+
^x 1182.1 5	0.007 2					1796.2 <i>3</i>	0.003 1	1796.16	$(1)^{-}$	0	0^{+}
1198.0 <i>3</i>	0.009 2	1240.8?	(2^{-})	42.824	2^{+}	1807.9 4	0.002 1	1808.02	$(1^{-},2^{+})$	0	0^+
1210.5 5	0.015 4	1808.02	$(1^{-},2^{+})$	597.35	1-	1812.8 <i>1</i>	0.005 2	1954.51	(2^{+})	141.688	4^{+}
1223.0 2	0.018 3	1222.89	(2^{+})	0	0^+	^x 1844.5 5	0.002 1				
1305.8 2	0.023 6	1954.51	(2^{+})	648.86	3-	^x 1861.1 3	0.004 1				
1321.1 <i>I</i>	0.034 3	1321.11?	$(1,2^+)$	0	0^{+}	1874.9 <i>3</i>	0.012 1	1917.8	(1^{-})	42.824	2+
^x 1328.9 2	0.009 2					1911.4 <i>3</i>	0.014 <i>1</i>	1954.51	(2^{+})	42.824	2^{+}
x1340.0 10	0.006 2					1918.0 <i>10</i>	0.0008 4	1917.8	(1^{-})	0	0^{+}
1357.2 2	0.013 3	1954.51	(2^{+})	597.35	1-	1953.6 2	0.0023 5	1996.42	$(1^{-},2^{+})$	42.824	2^{+}
1398.5 5	0.005 2	1996.42	$(1^{-},2^{+})$	597.35	1-	^x 1978.0 10	0.0004 2				
1417.2 <i>1</i>	0.023 5	1558.87	(2^{+})	141.688	4^{+}	1996.7 <i>4</i>	0.0010 4	1996.42	$(1^{-},2^{+})$	0	0^{+}
^x 1428.3 <i>1</i>	0.028 4					^x 2041.7 2	0.006 1				
(1438.5)	< 0.001	1438.45	$2^{(-)}$	0	0^{+}	2074.8 2	0.0031 5	2117.63	$(1,2^{+})$	42.824	2^{+}
1445.3 <i>1</i>	0.38 1	1488.17	(1^{-})	42.824	2^{+}	^x 2086.7 2	0.0008 4				
^x 1455.1 5	0.004 1					2117.5 10	0.0007 4	2117.63	$(1,2^{+})$	0	0^+
1483.0 <i>1</i>	0.027 4	1525.86	(0^{+})	42.824	2^{+}						

[†] From ²⁴⁴Cm α decay (1972Sc01).
[‡] From adopted γ's, unless otherwise noted.
[#] Weighted average of 1970Sc12, 1981Hs02, unless otherwise noted.
[@] For absolute intensity per 100 decays, multiply by 0.9988 *1*.

²⁴⁰Np β^- decay (7.22 min) 1970Sc12,1981Hs02 (continued)

 γ (²⁴⁰Pu) (continued)

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

6

²⁴⁰Np β^- decay (7.22 min) 1970Sc12,1981Hs02

²⁴⁰₉₄Pu₁₄₆

240 Np β^- decay (7.22 min) 1970Sc12,1981Hs02

²⁴⁰Np β^- decay (7.22 min) 1970Sc12,1981Hs02

