$^{240} \mathrm{Np}\,\beta^-$ decay (61.9 min) 1982Pa23

	H	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, E. Browne	NDS 109, 2439 (2008)	31-Jul-2008

Parent: ²⁴⁰Np: E=0.0; $J^{\pi}=(5^+)$; $T_{1/2}=61.9 \text{ min } 2$; $Q(\beta^-)=2188 \ 15$; $\%\beta^- \text{ decay}=100.0$ ²⁴⁰Np-Configuration= $v5/2[622] \otimes \pi 5/2[642], K^{\pi} = 5^+$. 1982Pa23: measured E γ , I γ , $\gamma\gamma$.

Other: 1967Wa27.

²⁴⁰Pu Levels

E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	Comments
0‡	0+		
42.8 [‡] 1	2^{+}		
141.7 [‡] <i>1</i>	4+		
294.34 [‡] <i>13</i>	6+		
648.86 [#] 13	3-		
742.35 [#] 13	5-	<2 ns	$T_{1/2}$: from delayed coincidence (1967Wa27).
958.80 [@] 15	(2 ⁻)		
1001.94 [@] 13	(3 ⁻)		
1030.51 ^{&} 13	(3)+		
1037.51 [@] 13	(4 ⁻)		
1076.23 ^{&} 15	(4 ⁺)		
1115.54 [@] 13	(5 ⁻)		
1161.54 [@] 14	(6 ⁻)		
1177.38 ^{<i>a</i>} 14	(3^+)		
1232.484 15	(4 ⁺)	165 10	
1308.75 12	(5 ⁻)	165 ns 10	$T_{1/2}$: from βγ(t) (196/Wa27). Configuration=π5/2[523]⊗π5/2[642], K^{π} =5 ⁻ .
[†] From 'Ado	pted Le	vels'.	

[‡] Band(A): $K^{\pi}=0^+$, g.s. band.

[#] Band(B): $K^{\pi}=0^{-}$ band.

[@] Band(C): $K^{\pi} = 1^{-}$ band.

& Band(D): $K^{\pi}=3^+$ band. Configuration= $v5/2[622] \otimes v1/2[631]$.

^{*a*} Band(E): $K^{\pi} = 2^+$ band.

β^{-} radiations

The log ft values for 1076, (4^+) and 1308, (5^-) levels are discussed by 2006Sa35 In terms of intrinsic states and K-forbidden transitions.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(879 15)	1308.75	79 12	5.9 1	av $E\beta=276.2 54$ E(decay): 890 20 (1951Or08).
(956 [#] 15)	1232.48	0.3	8.4	av E β =303.7 55
(1011 [#] <i>15</i>)	1177.38	94	7.0	av E β =323.9 56 I β ⁻ : feeding is unrealistic in view of Δ J=2, $\Delta\pi$ =no; and also Δ K=3.

240 Np β^- decay (61.9 min) 1982Pa23 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	Iβ ^{-†‡}	Log ft	Comments
(1026 [#] 15)	1161.54	<5	>7.3	av E β =329.7 56 I β ⁻ : 1 4 from intensity balance.
(1072 [#] 15)	1115.54	<17	>6.8	av E β =346.6 56 I β^- : 7 10 from intensity balance.
(1112 [#] <i>15</i>)	1076.23	0.5	8.4	av Eβ=361.2 56
(1150 [#] <i>15</i>)	1037.51	<10	>7.2	av E β =375.7 57 I β^- : 5 5 from intensity balance.
(1157 [#] <i>15</i>)	1030.51	<5	>7.5	av E β =378.3 57 I β ⁻ : 1 4 from intensity balance.
(1186 [#] 15)	1001.94	1.3	8.7^{1u}	av E β =373.0 52
(1229 [#] 15)	958.80	1.3	8.2	av E β =405.3 57
(1446 [#] <i>15</i>)	742.35	<5	>7.8	av $E\beta$ =488.0 58 I β ⁻ : 1 4 from intensity balance.
(1539 [#] 15)	648.86	1.0	9.4^{1u}	av E β =498.5 55
(1894 [#] <i>15</i>)	294.34	<3	>8.5	av E β =664.1 60 I β ⁻ : from intensity balance but none expected from ΔK =5 involved.

[†] The β feedings are poorly known for most levels since the multipolarities and mixing ratios of γ -ray transitions are not well established, thus all feedings, except that for 1309 keV level are treated as uncertain and given mostly without uncertainties. From K^{π} assignments, only the strong feeding to the topmost level at 1309 keV is definite with $\Delta K=0$. All other feedings are less likely since these involve a high degree of K-forbiddenness with $\Delta K=2$ to 5. Apparent large intensity imbalances for some of the levels suggests that the decay scheme is incomplete.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{240}\text{Pu})$

I γ normalization: 1982Pa23 measure absolute γ -ray intensity of 27.6 *14* for 566 γ . If the g-ray intensities are treated as relative then normalization factor=0.935 *18*, assuming, as expected, no β feeding to the 4⁺ and 6⁺ members of the g.s. band due to large Δ K=5 involved. This normalization factor gives absolute intensity of 25.8 *14* for the 566 γ , in reasonable agreement with 27.6 *14* from 1982Pa23.

Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.	α ^b	Comments
(42.8)	0.12 [@] 4	42.8	2+	0	0+	E2 [‡]	908 17	$ \begin{array}{l} \alpha(\text{L}) = 660 \ 12; \ \alpha(\text{M}) = 184 \ 4; \ \alpha(\text{N}+) = 64.2 \ 12 \\ \alpha(\text{N}) = 50.5 \ 10; \ \alpha(\text{O}) = 11.87 \ 22; \ \alpha(\text{P}) = 1.86 \ 4; \\ \alpha(\text{Q}) = 0.00391 \ 7 \end{array} $
(98.9)	5.24 [@] 22	141.7	4+	42.8	2+	E2 [‡]	16.62	α (L)=12.06 <i>18</i> ; α (M)=3.38 <i>5</i> ; α (N+)=1.182 <i>18</i>
								α (N)=0.929 <i>14</i> ; α (O)=0.219 <i>4</i> ; α (P)=0.0348 6; α (Q)=0.0001221 <i>18</i>
139.9 <i>1</i>	0.26 5	1177.38	(3+)	1037.51	(4 ⁻)	[E1] [#]	0.235	$\begin{aligned} &\alpha(\mathbf{K}) = 0.180 \ 3; \ \alpha(\mathbf{L}) = 0.0418 \ 6; \\ &\alpha(\mathbf{M}) = 0.01024 \ 15; \ \alpha(\mathbf{N}+) = 0.00354 \ 5 \\ &\alpha(\mathbf{N}) = 0.00276 \ 4; \ \alpha(\mathbf{O}) = 0.000664 \ 10; \\ &\alpha(\mathbf{P}) = 0.0001142 \ 17; \ \alpha(\mathbf{Q}) = 4.92 \times 10^{-6} \ 7 \end{aligned}$
147.2 ^{c&} 1	1.28 ^c 14	1177.38	(3+)	1030.51	(3)+	[M1,E2] [†]	63	$\alpha(K)=4 4; \alpha(L)=1.7 3; \alpha(M)=0.44 11; \alpha(N+)=0.16 4$

240 Np β^- decay (61.9 min) 1982Pa23 (continued)

γ ⁽²⁴⁰Pu) (continued) $\alpha^{\pmb{b}}$ Eγ I_{γ}^{a} E_i (level) \mathbf{J}_i^{π} J_{f}^{π} Mult. Comments \mathbf{E}_{f} $\alpha(N)=0.12$ 3; $\alpha(O)=0.029$ 7; $\alpha(P)=0.0051$ 7; α(Q)=0.00016 13 147.2^{c&} 1 1.28^C 14 1308.75 (5^{-}) 1161.54 (6⁻) [M1,E2] 63 $\alpha(K)=4$ 4; $\alpha(L)=1.7$ 3; $\alpha(M)=0.44$ 11; $\alpha(N+..)=0.164$ $\alpha(N)=0.12$ 3; $\alpha(O)=0.029$ 7; $\alpha(P)=0.0051$ 7; α(Q)=0.00016 13 E2[‡] 152.7 1 7.3 4 294.34 6^{+} 141.7 4^{+} 2.48 $\alpha(K)=0.196$ 3; $\alpha(L)=1.661$ 24; $\alpha(M)=0.464$ 7; α(N+..)=0.1626 24 $\alpha(N)=0.1276\ 19;\ \alpha(O)=0.0301\ 5;$ $\alpha(P)=0.00487\ 7;\ \alpha(Q)=2.76\times10^{-5}\ 4$ 175.4^d 1 5.1 3 1177.38 (3^{+}) 1001.94 (3-) [E1][#] 0.1391 $\alpha(K)=0.1076\ 16;\ \alpha(L)=0.0236\ 4;$ α(M)=0.00577 9; α(N+..)=0.00200 3 $\alpha(N)=0.001556\ 22;\ \alpha(O)=0.000376\ 6;$ $\alpha(P)=6.59\times10^{-5}$ 10; $\alpha(Q)=3.02\times10^{-6}$ 5 [M1,E2] $\alpha(K)=1.7 \ 16; \ \alpha(L)=0.62 \ 3; \ \alpha(M)=0.161 \ 5;$ 193.3 *1* 6.1 3 1308.75 (5^{-}) 1115.54 (5⁻) 2.5 16 α (N+..)=0.0566 15 $\alpha(N)=0.0440\ 15;\ \alpha(O)=0.01067\ 16;$ $\alpha(P)=0.00188 \ 14; \ \alpha(Q)=7.E-5 \ 6$ x222.5 3 0.40 5 ^x239.3 1 0.45 6 6.2 3 [M1.E2] 0.97 $\alpha(K)=0.76; \alpha(L)=0.206; \alpha(M)=0.05011;$ 271.3 1 1308.75 (5^{-}) $1037.51 (4^{-})$ $\alpha(N+..)=0.018\ 4$ $\alpha(N)=0.014 \ 3; \ \alpha(O)=0.0033 \ 8;$ $\alpha(P)=0.00061 \ 18; \ \alpha(Q)=2.8\times10^{-5} \ 23$ [M1.E2] $\alpha(K)=0.5$ 5; $\alpha(L)=0.15$ 5; $\alpha(M)=0.038$ 10; 295.2 1 0.48 6 1037.51 (4^{-}) 742.35 5-0.76 α(N+..)=0.013 4 $\alpha(N)=0.010 \ 3; \ \alpha(O)=0.0025 \ 7;$ α (P)=0.00046 15; α (Q)=2.2×10⁻⁵ 18 [E2][†] $\alpha(K)=0.0742$ 11; $\alpha(L)=0.0899$ 13; 306.8 1 0.43 5 1308.75 (5^{-}) 1001.94 (3-) 0.197 α(M)=0.0246 4; α(N+..)=0.00863 13 α (N)=0.00675 *10*; α (O)=0.001608 *23*; α (P)=0.000270 4; α (Q)=4.20×10⁻⁶ 6 [M1,E2] 388.7 1 0.97 7 0.34 25 *α*(K)=0.26 21; *α*(L)=0.06 3; *α*(M)=0.016 6; 1037.51 (4^{-}) 648.86 3- α (N+..)=0.0057 22 $\alpha(N)=0.0044$ 17; $\alpha(O)=0.0011$ 5; α (P)=0.00020 9; α (Q)=1.1×10⁻⁵ 9 419.2 1 0.86 7 1161.54 742.35 5-[M1,E2] 0.28 20 $\alpha(K)=0.21$ 17; $\alpha(L)=0.052$ 23; $\alpha(M)=0.013$ (6^{-}) 6; α(N+..)=0.0046 19 $\alpha(N)=0.0035 \ 14; \ \alpha(O)=0.0009 \ 4;$ $\alpha(P)=0.00016 \ 8; \ \alpha(Q)=9.E-6 \ 7$ [E1]# 448.01 6 13.4 6 742.35 5-294.34 6+ 0.0179 $\alpha(K)=0.01433\ 20;\ \alpha(L)=0.00269\ 4;$ $\alpha(M)=0.000648 9; \alpha(N+..)=0.000227 4$ α (N)=0.0001753 25; α (O)=4.31×10⁻⁵ 6; $\alpha(P)=7.90\times10^{-6}$ 11: $\alpha(O)=4.45\times10^{-7}$ 7 $\alpha(K)=0.0349$ 5; $\alpha(L)=0.0200$ 3; 466.7 1 1.17 6 1115.54 (5^{-}) 648.86 3-[E2] 0.0622 α(M)=0.00533 8; α(N+..)=0.00187 3 α (N)=0.001460 21; α (O)=0.000351 5; $\alpha(P)=6.09\times10^{-5}$ 9; $\alpha(Q)=1.633\times10^{-6}$ 23 507.3 2 1.82 9 648.86 3-141.7 4+ [M1,E2] 566.34 6 27.6 14 (5^{-}) 742.35 5-0.13 9 $\alpha(K)=0.10$ 8; $\alpha(L)=0.022$ 11; $\alpha(M)=0.005$ 1308.75 3; α (N+..)=0.0019 9 $\alpha(N)=0.0015$ 7; $\alpha(O)=0.00036$ 18; $\alpha(P)=7.E-54; \alpha(Q)=4.E-63$

Continued on next page (footnotes at end of table)

				240 Np β	- de	cay (61.9	min) 19	82Pa23 (continued)	
γ ⁽²⁴⁰ Pu) (continued)									
Eγ	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α b	Comments	
^x 583.9 1	0.40 8								
600.57 6	20.0 10	742.35	5-	141.7	4+	[E1] [#]	0.01013	α (K)=0.00818 <i>12</i> ; α (L)=0.001480 <i>21</i> ; α (M)=0.000355 <i>5</i> ; α (N+)=0.0001243 <i>18</i> α (N)=9.60×10 ⁻⁵ <i>14</i> ; α (O)=2.37×10 ⁻⁵ <i>4</i> ; α (P)=4.38×10 ⁻⁶ <i>7</i> ; α (Q)=2.59×10 ⁻⁷ <i>4</i>	
606.1 <i>1</i>	1.77 9	648.86	3-	42.8	2+				
^x 633.5 2	0.22 4								
821.2 <i>1</i>	1.16 9	1115.54	(5 ⁻)	294.34	6+				
867.2 1	8.8 5	1161.54	(6 ⁻)	294.34	6+				
888.8 1	2.5 1	1030.51	$(3)^{+}$	141.7	4+				
895.8 <i>1</i>	14.8 7	1037.51	(4-)	141.7	4+				
916.0 <i>1</i>	1.33 11	958.80	(2^{-})	42.8	2^{+}				
934.5 <i>1</i>	0.36 4	1076.23	(4^{+})	141.7	4+				
938.2 <i>1</i>	0.18 3	1232.48	(4^{+})	294.34	6+				
959.1 <i>1</i>	1.84 <i>13</i>	1001.94	(3-)	42.8	2^{+}				
973.9 <i>1</i>	25.9 13	1115.54	(5 ⁻)	141.7	4+				
987.7 <i>1</i>	7.3 4	1030.51	$(3)^{+}$	42.8	2^{+}				
1014.4 <i>1</i>	0.23 6	1308.75	(5 ⁻)	294.34	6+				
1033.5 2	0.15 4	1076.23	(4^{+})	42.8	2^{+}				
1090.5 2	0.08 3	1232.48	(4^{+})	141.7	4+				

[†] Intensity balance is consistent with mult=E1,E2 or M1. Adopted J^{π} values rule out mult=E1.

 (5^{-}) 141.7 4⁺

[‡] From adopted γ 's.

1167.1 1

4.9*3*

[#] Intensity balance is consistent with mult=E1,E2 or M1. Adopted J^{π} values rule out mult=M1,E2.

[@] Deduced from $I(\gamma+ce)$ intensity balance.

1308.75

[&] Placement from 1177 level proposed by the evaluators to seek some intensity balance at 1030 keV. 1982Pa23 proposed placement from only the 1309 keV level. The Δ K=4 involved for a transition from 1309-keV level to 1161-keV level suggests placement by 1982Pa23 is less likely.

^{*a*} Absolute intensity per 100 decays.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

240 Np β^- decay (61.9 min) 1982Pa23

Decay Scheme

$\frac{240}{100} Np \ \beta^{-} \ decay \ (61.9 \ min) \qquad 1982 Pa 23$

Band(E): $K^{\pi} = 2^+$ band (4⁺) 1232.48

