²⁴⁴Cm α decay (18.11 y) 2002Da21,1998Ya17,1972Sc01

	H	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, E. Browne	NDS 109, 2439 (2008)	31-Jul-2008

Parent: ²⁴⁴Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=18.11$ y 3; $Q(\alpha)=5901.74$ 5; % α decay=100.0

 244 Cm-T_{1/2}: as recommended in DDEP evaluation (2006BeZL) based on the measurements of 1982Po14, 1972Ke29, 1968Be26, 1961Ca01. Others: 1954St33, 1954Fr19. 1989Ho24 evaluation gives 18.1 y *1* T_{1/2}(SF)=1.32E+7 y 2 (as recommended in the evaluation of 2000Ho27). The DDEP evaluation (2006BeZL) recommended 1.34E+7 y 8 from measurements by 1993Pa29, 1972Ha80, 1970Ba11, 1967Ar09, 1965Me02, 1963Ma56 and 1952Gh27.

²⁴⁴Cm-%α decay: %α=100, %SF=1.37×10⁻⁴ 3 (As recommended by 2003Ak04), %SF=1.36×10⁻⁴ 1 (DDEP evaluation,2006BeZL). The data set is adapted from evaluations by 2006BeZL (also 2006Ch34) and 1998Ak04.

Main references: 2002Da21, 1998Ya17, 1998Ga19, 1997Ka59, 1996Sa24, 1996Bu50, 1987Go21, 1972Sc01, 1971Gr17, 1966Ba07, 1963Bj03, 1963Dz07, 1960As11.

Compilations and evaluations: 2006BeZL (ddep evaluation, also 2006Ch34 by the same author), 2000Ho27, 1998Ak04, 1989Ho24, 1991Ry01 (also 1979Ry03 by the same author), 1986LoZT.

Others: 1995Jo23, 1992Fr04, 1991Sh06, 1991Jo07, 1990Pe03, 1987Ko14, 1986Ag04, 1984Sh32, 1984Hi09, 1984Gl03, 1984BuZJ, 1979Be58, 1974Ah02, 1972Ke29, 1972Ko04, 1971Bb10, 1970To08, 1969ScZZ, 1968Du06, 1968Be26, 1964Ma55, 1962Iv01, 1960Be25, 1958Wh09, 1956Hu96, 1956Sm18.

Additional information 1.

1990Pe03: Measured detailed subshell ce spectrum for 42.8 and 98.8 transitions and deduced conversion coefficients. The γ -ray energies and intensities of five transitions were also measured.

1974Ah02: measured ce data for 42.8 transition.

1972Sc01 (also 1971BeYT, 1969ScZZ): Measured g rays with emphasis on g.s. band transitions.

Measurement of ternary α and triton emission in ²⁴⁴Cm SF decay: Vermote et al., Nucl. Phys. A 806, 1 (2008). Emission probability for long-range α particles (LRA)/SF event=0.00316 9. Emission probability for triton emission per SF event=0.000198

24.

²⁴⁰Pu Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0	0^{+}		
42.824 8	2+	164 ps 5	$T_{1/2}$: from 1970To08. Other: 173 ps 15 (1960Be25).
141.690 <i>15</i>	4+		
294.319 24	6^{+}		
497.52 21	8^{+}		E(level): from 'Adopted Levels'.
597.34 <i>4</i>	1-		
648.85 <i>4</i>	3-		
860.71 7	0^{+}		
900.32 4	2^{+}		
937.6?			Population of this level in ²⁴⁴ Cm α decay is uncertain, thus no attempt has been made by the evaluators to deduce intensity of α feeding and/or γ -ray intensities. It should be mentioned that in earlier evaluations (2006BeZL,2006Ch34,2004Ch64), this level was considered as populated in this decay based primarily on the 894.7 γ quoted in 1978LeZA. But the reported intensity of this γ ray relative to that of the 937.6 γ disagrees by at least a factor of 20 with branching ratio in 'adopted gammas', thus invalidating the assignment of the main intensity of the 894.7 γ to ²⁴⁴ Cm decay.

[†] From 'Adopted Levels'.

²⁴⁴ Cm α decay (18.11 y)	2002Da21,1998Ya17,1972Sc01 (continued)
--	--

α radiations

$\mathrm{E}\alpha^{\dagger}$	E(level)	Ια ^{‡&}	HF [@]	Comments
4920 3	900.32	5.0×10 ⁻⁵ 5	5.7 6	I α : 5.0×10 ⁻⁵ 5 (1960As11), 1.3×10 ⁻⁴ (1966Ba07), 4.9×10 ⁻⁵ 8 (1997Ka59).
4960 <i>3</i>	860.71	1.49×10 ⁻⁴ 16	3.5 4	I α : 1.55×10 ⁻⁴ 16 (1960As11), 3×10 ⁻⁴ (1966Ba07), 1.42×10 ⁻⁴ 16 (1997Ka59).
5166.64 7	648.85	4×10^{-6} 3	$3.3 \times 10^3 25$	I α : from γ -intensity balance; no direct I α measurement available.
5215 3	597.34	5.6×10 ⁻⁵ 5	500 82	I α : deduced from transition-intensity balance. Measured I α : 15×10^{-5} (1960As11), 10×10^{-5} (1966Ba07), 4.2×10^{-5} 9 (1997Ka59) are not in good agreement.
5315	497.52	4×10^{-5}	2847	$E\alpha$: average of 5316 (1960As11) and 5313 (1966Ba07). Iα: from 1966Ba07. Other:≈15×10 ⁻⁵ (1960As11)
5513 <i>3</i>	294.319	0.00352 18	516 27	 Eα: 5515 3 (1998Ga19), 5516.2 (2002Da21). Iα: 0.0036 3 (1960As11); 0.003 I (1963Dz07); 0.0034 (1966Ba07); 0.0035 (1986LoZT), 0.00342 9 (1997Ka59), 0.0038 5 (1998Ga19). Value of 0.012 I (2002Da21) is not used in averaging.
5664 <i>3</i>	141.690	0.0204 15	644 <i>48</i>	 Eα: 5664 2 (1998Ga19). Iα: 0.020 1 (2002Da21), 0.0205 15 (1996Ga19), 0.0135 3 (1996Sa24), 0.0163 7 (1984BuZJ) see 1986LoZT; 0.02 (1966Ba07), 0.021 2 (1963Dz07); 0.023 2 (1960As11); 0.017 3 (1956Hu96).
5762.64 [#] 3	42.824	23.1 1	1.966 <i>10</i>	 Iα: weighted average (using LWM, normalized residuals and Rajeval's technique) of 22.80 5 (2002Da21), 23.34 <i>18</i> (1998Ga19), 23.69 6 (1998Ya17), 23.1 5 (1996Sa24), 23.2 5 (1996Bu50); 23.00 5 (1984BuZJ,1986LoZT); 23.6 (1966Ba07); 23.8 9 (1963Dz07); 23.3 6 (1956Hu96), assuming minimum uncertainty of 0.10. The DDEP evaluation (2006BeZL) gives 23.3 4.
5804.77 [#] 5	0	76.9 1	1.00	 Eα: other: 5803.6 22 (1992Fr04). Iα: weighted average (using LWM, normalized residuals and Rajeval's technique) of 77.16 11 (2002Da21), 76.31 5 (1998Ya17), 76.63 18 (1998Ga19), 76.9 5 (1996Sa24), 76.8 7 (1996Bu50), 76.98 5 (1984BuZJ,1986LoZT); 73.3 (1987Go21); 76.4 (1966Ba07); 76.2 20 (1963Dz07); 76.7 6 (1956Hu96), assuming minimum uncertainty of 0.10. The DDEP evaluation (2006BeZL) gives 76.7 4.

[†] From 1966Ba07, 1963Dz07 and 1960As11, unless otherwise noted. A few values are also given by 1998Ga19, 1992Fr04 and 1971Gr17.

[‡] Unless otherwise stated, the values are from the DDEP evaluation (2006BeZL) based on measurements of 2002Da21, 1998Ya17, 1998Ga19, 1997Ka59, 1996Sa24, 1996Bu50, 1984BuZJ, 1966Ba07, 1963Dz07, 1960As11, 1956Hu96.

[#] From 1971Gr17, with values adjusted as recommended by 1991Ry01 and 1998Ak04.

[@] From 1998Ak04, with $r_0(^{240}Pu)=1.4979$ 7.

[&] Absolute intensity per 100 decays.

$\gamma(^{240}\text{Pu})$

Iy normalization: from measured I α for 860 and 900 levels and corresponding relative γ +ce intensities from these levels.

There seems no detailed γ -ray study published in the open literature. Three main γ rays of 42.8, 98.8 and 152.6 keV were measured precisely by 1972Sc01. Higher energy gamma rays were reported in two separate compilations: 1978LeZA reported results from a 1967 priv. comm. from C.M. Lederer and 1970Sc39 reported gamma-ray data from 1969ScZZ conference paper by

Schmorak et al. Five gamma rays from 42.8 to 554.5 keV were reported by 1990Pe03 with energies and intensities.

916 γ was neither seen by 1969ScZZ nor reported by 1978LeZA. Upper limit of intensity: <0.4 (1969ScZZ).

²⁴⁴ Cm α decay (18.11 y)	2002Da21,1998Ya17,1972Sc01	(continued)
--	----------------------------	-------------

γ ⁽²⁴⁰Pu) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\#a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.&	$\alpha^{\boldsymbol{b}}$	Comments
42.824 [‡] 8	3.1×10 ⁴ 3	42.824	2+	0	0+	E2	906	
98.860 [‡] <i>13</i>	16.7×10 ² 20	141.690	4+	42.824	2+	E2	16.65	$\alpha(L1)\exp\{-3.0; \alpha(L2)\exp\{-6.0.8; \alpha(L3)\exp\{-3.1.7; \alpha(M1)\exp\{-1.0; \alpha(M2)\exp\{-1.8.6} \alpha(M3)\exp\{-1.9; \alpha(\exp)=13.2 \alpha(L)=12.08.17; \alpha(M)=3.38.5; \alpha(N+)=1.185.17$ $\alpha(N)=0.930.13; \alpha(O)=0.219.3; \alpha(P)=0.0349.5; \alpha(Q)=0.0001222.18$ I _y : deduced by the evaluators from %I α , $\alpha(98.8\gamma)$ and γ feeding to 141.7 level from higher level. Other: I $\gamma(98.9\gamma)/I\gamma(42.8\gamma)=0.067.7$ (1972Sc01) compares with 0.054.8 given here. Experimental conversion coefficients given above are from 1990Pe03. Additional information 2.
152.630 [‡] 20	1.24×10 ³ <i>12</i>	294.319	6+	141.690	4+	E2	2.49	α(K)=0.196 3; α(L)=1.665 24; α(M)=0.465 7; α(N+)=0.1629 23 α(N)=0.1278 18; α(O)=0.0302 5; α(P)=0.00488 7; α(Q)=2.76×10-5 4 Iγ: from average of measured 1240 120 (1969ScZZ) and 1237 136 deduced from %Iα, α(152.6γ) and γ feeding from higher levels. Other: measured Iγ(152.6γ)/Iγ(42.8γ)=0.044 1 (1990Pe03) and 0.041 1 (1972Sc01) are consistent with 0.040 4 from intensities given here. 1254 140 deduced from %Iα, α(152.6γ) and γ feeding from higher levels. Mult.: measured Ice(K) and Ice(L)
(203.2)	≈28	497.52	8+	294.319	6+	[E2]	0.805	(1990Pe03) are consistent with E2. $\alpha(K)=0.1470\ 21;\ \alpha(L)=0.479\ 7;$ $\alpha(M)=0.1329\ 19;\ \alpha(N+)=0.0466\ 7$ $\alpha(N)=0.0365\ 6;\ \alpha(O)=0.00865\ 13;$ $\alpha(P)=0.001416\ 20;\ \alpha(Q)=1.199\times10^{-5}\ 17$ I_{γ} : deduced by evaluators from I α and $\alpha(202\ 2x)$
251.20 20	13.1 <i>19</i>	900.32	2+	648.85	3-	[E1]	0.0612	$\alpha(K)=0.0481$ 7; $\alpha(L)=0.00986$ 14; $\alpha(M)=0.00240$ 4; $\alpha(N+)=0.000834$ 12

Continued on next page (footnotes at end of table)

²⁴⁴Cm α decay (18.11 y) 2002Da21,1998Ya17,1972Sc01 (continued)

γ ⁽²⁴⁰Pu) (continued)

E_{γ}^{\dagger}	I_{γ} # <i>a</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{a}$	Comments
					_				α (N)=0.000647 <i>10</i> ; α (O)=0.0001575 <i>23</i> ; α (P)=2.82×10 ⁻⁵ <i>4</i> ; α (Q)=1.409×10 ⁻⁶ <i>20</i> Additional
263.34 15	70 4	860.71	0+	597.34	1-	[E1]	0.0551		information 8. $\alpha(K)=0.0434 \ 6; \ \alpha(L)=0.00882 \ 13;$ $\alpha(M)=0.00214 \ 3; \ \alpha(N+)=0.000746 \ 11$ $\alpha(N)=0.000578 \ 9; \ \alpha(O)=0.0001409 \ 20;$ $\alpha(P)=2.53\times10^{-5} \ 4; \ \alpha(Q)=1.278\times10^{-6}$
302.99 15	21.4 16	900.32	2+	597.34	1-	[E1]	0.0405		Additional information 6. $\alpha(K)=0.0320 5; \alpha(L)=0.00637 9;$ $\alpha(M)=0.001543 22; \alpha(N+)=0.000538$ 8
									$\alpha(N)=0.000417 \ 6; \ \alpha(O)=0.0001018 \ 15; \ \alpha(P)=1.84\times10^{-5} \ 3; \ \alpha(Q)=9.59\times10^{-7} \ 14$ Additional information 9.
506.9 [@] 3	10 3	648.85	3-	141.690	4+	[E1]	0.01402		α (K)=0.01127 <i>16</i> ; α (L)=0.00208 <i>3</i> ; α (M)=0.000501 <i>7</i> ; α (N+)=0.0001751 <i>25</i>
554.5 2	100	597.34	1-	42.824	2+	E1	0.01179		$ \begin{aligned} &\alpha(\mathbf{N}) = 0.0001353 \ 19; \ \alpha(\mathbf{O}) = 3.33 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{P}) = 6.14 \times 10^{-6} \ 9; \ \alpha(\mathbf{Q}) = 3.53 \times 10^{-7} \ 5 \\ &\alpha(\mathbf{K}) = 0.00950 \ 14; \ \alpha(\mathbf{L}) = 0.001734 \ 25; \\ &\alpha(\mathbf{M}) = 0.000417 \ 6; \ \alpha(\mathbf{N}+) = 0.0001458 \\ &21 \end{aligned} $
597.2 2	61 2	597.34	1-	0	0+	E1	0.01024		$\begin{aligned} &\alpha(N) = 0.0001127 \ 16; \ \alpha(O) = 2.77 \times 10^{-5} \ 4; \\ &\alpha(P) = 5.13 \times 10^{-6} \ 8; \ \alpha(Q) = 3.00 \times 10^{-7} \ 5 \end{aligned}$ Additional information 3. $&\alpha(K) = 0.00826 \ 12; \ \alpha(L) = 0.001496 \ 21; \\ &\alpha(M) = 0.000359 \ 5; \ \alpha(N+) = 0.0001257 \ 18 \\ &\alpha(N) = 9.71 \times 10^{-5} \ 14; \ \alpha(O) = 2.39 \times 10^{-5} \ 4; \end{aligned}$
605.8 2	9.3 9	648.85	3-	42.824	2+	[E1]	0.00997		$\alpha(P)=4.43\times10^{-6} 7; \ \alpha(Q)=2.62\times10^{-7} 4$ Additional information 4. $\alpha(K)=0.00805 \ 12; \ \alpha(L)=0.001454 \ 21; \\ \alpha(M)=0.000349 \ 5; \ \alpha(N+)=0.0001222 \ 18$
758.6 2	16.1 <i>11</i>	900.32	2+	141.690	4+	E2	0.0212		$\begin{array}{l} \alpha(\mathrm{N}) = 9.44 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 2.33 \times 10^{-5} \ 4; \\ \alpha(\mathrm{P}) = 4.31 \times 10^{-6} \ 6; \ \alpha(\mathrm{Q}) = 2.55 \times 10^{-7} \ 4 \\ \text{Additional} \\ \text{information 5.} \\ \alpha(\mathrm{K}) = 0.01484 \ 21; \ \alpha(\mathrm{L}) = 0.00474 \ 7; \\ \alpha(\mathrm{M}) = 0.001212 \ 17; \ \alpha(\mathrm{N}+) = 0.000427 \\ 6 \end{array}$
									α (N)=0.000331 5; α (O)=8.06×10 ⁻⁵ 12; α (P)=1.453×10 ⁻⁵ 21; α (Q)=6.09×10 ⁻⁷ 9 Additional information 10
817.8 2	80 7	860.71	0^+	42.824	2+	E2	0.0183		$\alpha(K)=0.01303 \ 19; \ \alpha(L)=0.00389 \ 6;$

Continued on next page (footnotes at end of table)

²⁴⁴Cm α decay (18.11 y) 2002Da21,1998Ya17,1972Sc01 (continued)

γ (²⁴⁰Pu) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{a}$	Comments
			-		-				$\alpha(M)=0.000990 \ 14; \ \alpha(N+)=0.000348 \ 5$ $\alpha(N)=0.000270 \ 4; \ \alpha(O)=6.59\times10^{-5} \ 10; \\ \alpha(P)=1.195\times10^{-5} \ 17; \ \alpha(Q)=5.27\times10^{-7} \ 8$ Additional information 7.
857.5 [@] 2	6.6 4	900.32	2+	42.824	2+	[M1,E2]	0.04 3		$\alpha(\mathbf{K})=0.034\ 22;\ \alpha(\mathbf{L})=0.007\ 4;\alpha(\mathbf{M})=0.0017\ 9;\ \alpha(\mathbf{N}+)=0.0006\ 3\alpha(\mathbf{N})=0.00047\ 24;\ \alpha(\mathbf{O})=0.00012\ 6;\alpha(\mathbf{P})=2.2\times10^{-5}\ 12;\ \alpha(\mathbf{Q})=1.3\times10^{-6}\ 9$
860.7		860.71	0^{+}	0	0^{+}	E0		12 3	I_{γ} . <7.4 (19093CZZ). E _y ,Mult.,I _(y+ce) : from 1963Bj03.
894.7 ^{@c} 5		937.6?		42.824	2+				I_{γ} : 2.1 6 (1978LeZA) is too high by at least a factor of 20 with branching ratio in 'adopted gammas'. In 1969ScZZ, this γ was not seen, the authors quoted an upper limit of $I_{\gamma} < 1.2$.
900.1 [@] 5	1.5 6	900.32	2+	0	0+	[E2]	0.01513		$\begin{aligned} &\alpha(\mathbf{K}) = 0.01103 \ 16; \ \alpha(\mathbf{L}) = 0.00306 \ 5; \\ &\alpha(\mathbf{M}) = 0.000772 \ 11; \ \alpha(\mathbf{N}+) = 0.000272 \ 4 \\ &\alpha(\mathbf{N}) = 0.000210 \ 3; \ \alpha(\mathbf{O}) = 5.15 \times 10^{-5} \ 8; \\ &\alpha(\mathbf{P}) = 9.38 \times 10^{-6} \ 14; \ \alpha(\mathbf{Q}) = 4.39 \times 10^{-7} \ 7 \\ &\mathbf{I}_{\gamma}: \ < 1.7 \ (1969 \text{ScZZ}). \end{aligned}$
937.6 ^{@c} 10	0.5 5	937.6?		0	0^+				I_{γ} : <0.75 (1969ScZZ).

[†] From 1978LeZA compilation (who quoted priv comm from C.M. Lederer In 1967), unless otherwise stated. Others: 1990Pe03, 1969ScZZ (conference paper, results quoted in 1970Sc39 evaluation), 1963Bj03, 1956Sm18, 1956Hu96.

[‡] From 1972Sc01.

[#] From weighted average of values from 1978LeZA and 1969ScZZ, unless otherwise noted.

[@] γ not seen by 1969ScZZ, upper intensity limit given most of the γ rays.

& From 'adopted gammas', unless otherwise noted.

^{*a*} For absolute intensity per 100 decays, multiply by 8.5×10^{-7} 9.

^{*b*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

²⁴⁴Cm α decay (18.11 y) 2002Da21,1998Ya17,1972Sc01

6