Adopted Levels, Gammas

	H	listory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, E. Browne	NDS 109,2439 (2008)	31-Jul-2008

 $Q(\beta^{-})=-3.94\times10^{3}$ syst; $S(n)=7.49\times10^{3}$ 6; S(p)=4955.6 24; $Q(\alpha)=6397.8$ 6 2012Wa38 Note: Current evaluation has used the following Q record \$ -3940 syst 7540 syst 4955.5 24 6397.8 6 2003Au03. $\Delta Q(\beta^{-})=150, \Delta S(n)=100$ (syst,2003Au03).

Additional information 1.

2004Na01: Measured yields of fission fragments and deduced charge distribution.

²⁴⁰Cm Levels

Cross Reference (XREF) Flags

A 240 Bk ε decay (4.8 min)

B ²⁴⁴Cf α decay (19.4 min)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	0+	27 d <i>I</i>	AB	$\% \alpha > 99.5; \% \varepsilon < 0.5; \% SF = 3.9 \times 10^{-6} 8$ % $\varepsilon < 0.5$ since no ²⁴⁰ Am detected (1952Hi11). T _{1/2} : average of 26.8 d (1949Se01) and 28 d (1967Ba42). T _{1/2} (SF)=1.9×10 ⁶ y 4 (1952Gh27) and recommended by 2000Ho27.
38 5	(2+)	132 ps 9	В	J ^{π} : systematics of even-even nuclides. T _{1/2} : the value is as quoted by 2001Ra27 evaluation, based on recoil-distance method (1978Ul01) in ²³⁹ Pu(α ,3n) E=27, 33 MeV, where Q ₀ =12.0 <i>5</i> was deduced from measured percentage of highly charged ²⁴⁰ Cm recoil ions as a function of the distance between target and a carbon catcher foil. From Q ₀ , 1978Ul01 deduced half-lives of 154 ps for 2 ⁺ , 71 ps for 4 ⁺ and 41 ps for 6 ⁺ members of the ground-state band with an estimated feeding lifetime of 32 ps from higher members of the rotational band. The spectroscopic details of the work by 1978Ul01 are not available.
≈2000		10 ps 3		$\%$ SF \leq 100
≈3000		55 ns <i>12</i>		T _{1/2} : institute (1976S101); tentative assignment in ²³⁸ Pu(α ,2n). %SF \approx 100 T _{1/2} : fission isomer (1976S101); tentative assignment in ²³⁸ Pu(α ,2n). Others: 10 ns-100 ns (1978U101), 1970Po01.
				(240 Cm)

γ ⁽²⁴⁰Cm)

E _i (level)	\mathbf{J}_i^{π}	Eγ	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
38	(2+)	(38 5)	0 0+	[E2]	2.4×10 ³ 14	$ \begin{array}{l} \hline \alpha(\text{L}) = 1.7 \times 10^3 \ 10; \ \alpha(\text{M}) = 4.9 \times 10^2 \ 28; \ \alpha(\text{N}) = 1.4 \times 10^2 \ 8; \ \alpha(\text{O}) = 33 \ 19; \\ \alpha(\text{P}) = 5 \ 3; \ \alpha(\text{Q}) = 0.010 \ 9 \\ \text{B}(\text{E2})(\text{W.u.}) = 2.5 \times 10^2 \ 23 \end{array} $

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

---- γ Decay (Uncertain)

Legend

