2 H(23 Al,n γ) **2019Wo01** | History | | | | | | | | | | |-----------------|--|-------------------|------------------------|--|--|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | | | Full Evaluation | M. Shamsuzzoha Basunia, Anagha Chakraborty | NDS 186, 2 (2022) | 31-Mar-2022 | | | | | | | Adapted from XUNDL dataset compiled by J. Chen (NSCL, MSU), July 2, 2019. 2019Wo01: E=48 MeV/nucleon 23 Al secondary beam was produced by projectile fragmentation on a 1904 mg/cm 2 9 Be target with a 170 MeV/nucleon 24 Mg primary beam from the Coupled Cyclotron Facility at NSCL and selected with the A1900 fragment separator. The reaction target was 110(5) mg/cm 2 Cd $_{2}$. γ rays were detected with the GRETINA array of 8 detector modules in one of the hemispheres and low-energy neutrons were detected with the LENDA array of 24 plastic scintillators; reaction residues entering the focal plane of S800 spectrograph were analyzed and identified event by event from energy loss and time of flight. Measured E γ , I γ , $\gamma\gamma$ -coin, n γ -coin, residue- γ -coin, σ (E $_{\rm n}$, θ). Deduced levels, J, π , cross-sections, proton resonance parameters, spectroscopic factors from the analysis using the adiabatic wave approximation (ADWA). Comparisons with theoretical calculations. Discussed implications on astrophysical reaction rates of 23 Al(p, γ) 24 Si. ## ²⁴Si Levels Integral cross section σ =563 μ b 67 at E(beam)=48 MeV/nucleon, obtained from γ -ray intensities by 2019Wo01. Experimental partial σ and spectroscopic factors C²S of different proton orbitals for each level are given under comments. | E(level) [†] | $J^{\pi \ddagger}$ | C^2S | Comments | |-----------------------|--------------------|--------|--| | 0 | 0+# | ≤2.8 | $\sigma \leq 281 \ \mu b$. | | 1874 <i>3</i> | 2+# | | C ² S: For $1d_{5/2}$. σ =0.263 mb 83. | | 3449 <i>5</i> | (2 ⁺) | | C ² S: 0.6 2 for $2s_{1/2}$, 0.07 2 for $1d_{3/2}$, 0.04 <i>I</i> for $1d_{5/2}$. σ =0.078 mb 41. | | 3471 6 | $(4^+,0^+)$ | | C ² S: 0.7 4 for $2s_{1/2}$, 0.002 <i>I</i> for $1d_{3/2}$, 0.3 2 for $1d_{5/2}$. σ =0.054 mb 30. | | 3471 0 | (+ ,0) | | C^2S : 0.07 4 for $1d_{3/2}$ and 0.004 3 for $1d_{5/2}$ if $J=4$; 0.8 4 for $1d_{5/2}$ if $J=0$. | [†] From Eγ. γ (24Si) | E_{γ}^{\dagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | |------------------------|--------------|----------------------|----------------|----------------------| | 1575 [‡] 3 | 3449 | (2+) | 1874 | 2+ | | 1597 [‡] 5 | 3471 | $(4^+,0^+)$ | 1874 | 2+ | | 1874 <i>3</i> | 1874 | 2+ | 0 | 0_{+} | [†] From 2019Wo01. [‡] Proposed by 2019Wo01 (based on shell model calculations, spectroscopic factor and comparison with the states of mirror nuclide ²⁴Ne), except where otherwise noted. [#] From Adopted Levels. [‡] Obtained by fitting a broad structure at 1590 keV (2019Wo01). ## 2 H(23 Al,n γ) **2019Wo01** ## <u>Level Scheme</u>