2 H(23 Al,n γ) **2019Wo01**

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022						

Adapted from XUNDL dataset compiled by J. Chen (NSCL, MSU), July 2, 2019.

2019Wo01: E=48 MeV/nucleon 23 Al secondary beam was produced by projectile fragmentation on a 1904 mg/cm 2 9 Be target with a 170 MeV/nucleon 24 Mg primary beam from the Coupled Cyclotron Facility at NSCL and selected with the A1900 fragment separator. The reaction target was 110(5) mg/cm 2 Cd $_{2}$. γ rays were detected with the GRETINA array of 8 detector modules in one of the hemispheres and low-energy neutrons were detected with the LENDA array of 24 plastic scintillators; reaction residues entering the focal plane of S800 spectrograph were analyzed and identified event by event from energy loss and time of flight. Measured E γ , I γ , $\gamma\gamma$ -coin, n γ -coin, residue- γ -coin, σ (E $_{\rm n}$, θ). Deduced levels, J, π , cross-sections, proton resonance parameters, spectroscopic factors from the analysis using the adiabatic wave approximation (ADWA). Comparisons with theoretical calculations. Discussed implications on astrophysical reaction rates of 23 Al(p, γ) 24 Si.

²⁴Si Levels

Integral cross section σ =563 μ b 67 at E(beam)=48 MeV/nucleon, obtained from γ -ray intensities by 2019Wo01. Experimental partial σ and spectroscopic factors C²S of different proton orbitals for each level are given under comments.

E(level) [†]	$J^{\pi \ddagger}$	C^2S	Comments
0	0+#	≤2.8	$\sigma \leq 281 \ \mu b$.
1874 <i>3</i>	2+#		C ² S: For $1d_{5/2}$. σ =0.263 mb 83.
3449 <i>5</i>	(2 ⁺)		C ² S: 0.6 2 for $2s_{1/2}$, 0.07 2 for $1d_{3/2}$, 0.04 <i>I</i> for $1d_{5/2}$. σ =0.078 mb 41.
3471 6	$(4^+,0^+)$		C ² S: 0.7 4 for $2s_{1/2}$, 0.002 <i>I</i> for $1d_{3/2}$, 0.3 2 for $1d_{5/2}$. σ =0.054 mb 30.
3471 0	(+ ,0)		C^2S : 0.07 4 for $1d_{3/2}$ and 0.004 3 for $1d_{5/2}$ if $J=4$; 0.8 4 for $1d_{5/2}$ if $J=0$.

[†] From Eγ.

 γ (24Si)

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
1575 [‡] 3	3449	(2+)	1874	2+
1597 [‡] 5	3471	$(4^+,0^+)$	1874	2+
1874 <i>3</i>	1874	2+	0	0_{+}

[†] From 2019Wo01.

[‡] Proposed by 2019Wo01 (based on shell model calculations, spectroscopic factor and comparison with the states of mirror nuclide ²⁴Ne), except where otherwise noted.

[#] From Adopted Levels.

[‡] Obtained by fitting a broad structure at 1590 keV (2019Wo01).

2 H(23 Al,n γ) **2019Wo01**

<u>Level Scheme</u>

