24 Ne β^- decay (3.38 min) 1974Al03,1969Mc12,1968As05

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022

Parent: ²⁴Ne: E=0; $J^{\pi}=0^+$; $T_{1/2}=3.38 \text{ min } 2$; $Q(\beta^-)=2466.3 5$; $\%\beta^-$ decay=100.0

 $^{24}\mbox{Ne-T}_{1/2}\mbox{:}$ From $^{24}\mbox{Ne}$ Adopted Levels.

²⁴Ne-Q(β^{-}): From 2021Wa16.

Other: 1956Dr11.

1974Al03: ²⁴Ne was formed by bombarding a neon target with 3-MeV tritons, ²²Ne(t,p) E=3.2 MeV. Ge(Li)and plastic scintillator detectors were used to detect γ and β rays. Measured E γ , I γ , half-life; deduce β branching, log *ft*. The counting cell internal dimensions of 7.5 cm (diameter) by 2 cm (height).

1969Mc12: The β^- decay of ²⁴Ne was studied by observing the delayed γ -ray spectrum with the aid of a Ge(Li) detector. The parent nucleus, ²⁴Ne was produced by the ²²Ne(t,p) reaction at an incident bombarding energy of 2.5 MeV. 99% enriched target. Measured E γ , I γ .

1968As05: ²⁴Ne was produced from ²²Ne(t,p), E=3 MeV. 3 cc and 9 cc Ge(Li) detectors. Measured E γ and showed that the 1⁺ state at 1347 keV was populated, between the closely spaced level at 1341 keV.

1956Dr11: ²⁴Ne was produced from ²²Ne(t,p), E=1.83 MeV. Detectors: β scintillator of Pilot plastic phosphor and NaI(Tl). Measured E γ , I γ , E β , I β , etc. Deduced log *ft*, T_{1/2}.

²⁴Na Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0 472.2073 <i>14</i>	$\frac{4^{+}}{1^{+}}$	14.956 h 3 20.18 ms 10	$T_{1/2}$: Other: 5 ms < $T_{1/2}$ < 50 ms and a most probable value of 20 ms (1956Dr11), based on deposition of ²⁴ Na ions on electrode, separation of parent, counting, etc.
1346.64 <i>3</i>	1^{+}	4.4 ps 3	

[†] From $E\gamma$.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments		
(1119.7 <i>5</i>) (1994.1 <i>5</i>)	1346.64 472.2073	7.9 <i>2</i> 92.1 <i>2</i>	4.400 <i>12</i> 4.364 <i>3</i>	av E β =434.38 50 av E β =833.46 24		

[†] Absolute intensity per 100 decays.

 $\gamma(^{24}Na)$

E_{γ}^{\ddagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
472.2023 14	100.0 2	472.2073	1+	0	4+	[M3]	4.69×10^{-4}	$\alpha(K)=0.000442\ 7;\ \alpha(L)=2.67\times10^{-5}\ 4;$ $\alpha(M)=5.95\times10^{-7}\ 9$
								E_{γ} : Others: 472.2 2 (1969Mc12), 473 (1968As05). I_{γ} : Uncertainty based on β branch to the g.s.
874.420 30	7.9 2	1346.64	1+	472.2073	1+			\dot{E}_{γ} : Others: 874.35 <i>14</i> (1974A103), 874.3 <i>3</i> (1969Mc12), 873.5 <i>11</i> (1968As05).

[†] From I(874)/I γ (472)=7.9 2 (1974Al03). Other value: I(874)/I γ (472)=8.9 5 (1969Mc12). Reported uncertainty appears to statistical only. A higher systematic uncertainty can be expected due to a bigger sample size, 1974Al03 report the counting cell

Continued on next page (footnotes at end of table)

 24 Ne β^- decay (3.38 min) 1974A103,1969Mc12,1968As05 (continued)

 γ (²⁴Na) (continued)

internal dimensions of 7.5 cm diam by 2 cm high.

[‡] From Adopted Gammas.

Additional information 1.
@ Absolute intensity per 100 decays.

$^{24}{\rm Ne}~\beta^-$ decay (3.38 min) 1974Al03,1969Mc12,1968As05

