	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022

 $Q(\beta^-)=5515.677\ 21;\ S(n)=6959.365\ 17;\ S(p)=10552.83\ 11\ 2021Wa16$ $Q(\alpha)=-10825.35\ 3,\ S(2n)=19379.15\ 13,\ S(2p)=25789\ 12\ (2021Wa16).$

Other reactions:

1988Ja04: ²⁴Mg(n,p), neutron from D-T reaction with E_d =0.44 to 1.8 MeV. Pure metallic ²⁴Mg and ²⁷Al targets. NaI(Tl) detector. Measured cross-section by activation technique.

1971Ki09: ²⁵Mg(p,2p): Thin and high purity (99.5% enrichment) target. Recoil catcher. Measured recoil spectra at 60° and 90° for an incident beam energy of 300 MeV. All the spectra exhibited two distinct peaks.

²⁴Na Levels

Note: π =N stands for natural, U for unnatural.

Cross Reference (XREF) Flags

		A ${}^{24}\text{Ne}\beta^{-}$ B ${}^{24}\text{Na}\text{IT}\alpha$ C ${}^{10}\text{B}({}^{16}\text{O},$ D ${}^{22}\text{Ne}({}^{3}\text{He}$ E ${}^{22}\text{Ne}(\alpha,\text{d})$	decay (3.38 min) decay (20.18 ms) 2pγ) e,p),(³ He,pγ)	F G H I J	${}^{23}Na(n,\gamma)$ E=thermal ${}^{23}Na(n,\gamma)$ E=10-80 keV ${}^{23}Na(n,\gamma)$ E=53 keV ${}^{23}Na(d,p)$ ${}^{23}Na(d,p\gamma)$	K L M N O	²³ Na(pol d,p) ²⁴ Mg(d, ² He) ²⁴ Mg(t, ³ He) ²⁵ Mg(d, ³ He),(¹¹ B, ¹² C) ²⁶ Mg(d, $\alpha\gamma$),(pol d, α)
E(level) [†]	J ^π @	$T_{1/2}^{\&}$	XREF	_			Comments
0.0	4+	14.956 ^{<i>a</i>} h <i>3</i>	ABCDEFG IJK N	0	%β ⁻ =100 μ =+1.6903 8 <r<sup>2>^{1/2}(²⁴Na)=2.974 fm <i>I</i> J^π: Atomic beam laser spec π=+ level. T_{1/2}: Weighted average of superseded 14.955 h 7 (<i>I</i> 32 (2004Un01), 14.951 H all from same lab], 14.95 14.9575 h 28 (1983Wa20 uncertainty=8, this value 10 [1980RuZY,1982RuZ also another value 14.955 no details for this better from this group with cau (1974Ch25), 14.953 h <i>I</i> 14.90 h 5 (1955To07), 1- (1949Wi15). Other value duration 1.5 half-life), 15 (1980Ho17 – poor docum 6 (1976Ge06), 15.030 h (1961Wy01)], 15.04 h 5 (1950Co69), 15.16 h 5 (footnote. μ: From 1966Ch15, 1973C</r<sup>	7 (cha 14.95 2014U 1 3 (2 59 h 5 5), 14 2 super V, 198 9 h 1 precis tion], 3 (196 4.97 h 5.027 menta 3 [19 (1962 1969F 0ZG,	arge radius) (2013An02). opy (1978Hu12), 1514.7γ M1+E2 from 1 h 3 [Erratum of 2014Un01 – Jn01), 14.951 h 3 (2012Fi12), 14.9512 h 002Un02), 14.9512 h 32 (1992Un01) – 0 (2005Li66), 14.90 h 2 (1991Bo34), 956 h 3 [in 1982La25 with 3 σ rseded 15.00 h 2 (1968La10)], 14.965 h 32HoZJ using 4 π proportional counter – was reported using ioniation chamber – sion was noted. One value is considered 14.964 h <i>I</i> 5 (1980Mu11), 14.969 h <i>I</i> 2 00W007), 14.959 h <i>I</i> 0 (1958Ca20), h 2 (1953Lo09), and 14.90 h 2 .86 h <i>I</i> 2 (1994Mi03 – measurement h 2 (1989Ab05), 14.9590 h <i>I</i> 2 tion), 15.010 h 28 (1978Da21), 15.09 h 72Em01 – superseded 15.05 h 2 Mo21 – also 15.05 h 5), 15.10 h 4 Ke14), and 15.04 h 6 (1950So55). See 2019StZV (Atomic beam magnetic
472.2071 <i>14</i>	1+	20.18 ms 10	ABCDEFGHIJKLMN	0	%IT≈99.95; % β^{-} ≈0.05 μ =−1.931 <i>3</i> % β^{-} : Estimated value in 1°	956D1	:11, 1980He08.

²⁴Na Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\&}$	XREF	Comments
				J ^π : log <i>ft</i> =4.4, from 0 ⁺ level. For a millisecond range isomer, 472γ transition of Δ J=3 to 4 ⁺ g.s. is expected (1956Dr11 – ²⁴ Ne β ⁻ decay). Unnatural parity (pol d,α).
				$1_{1/2}$: Weighted average of 19.9 ms 3 (1961SC09), 20.1 ms 2 (1970Ch37), 20.21 ms 14 (1972Br53) and 20.22 ms 10 (1980Jo11) – All in ²⁴ Na IT decay (20.18 ms). Other: 5 ms <
				$T_{1/2} < 50$ ms and a most probable value of 20 ms (1956Dr11 – ²⁴ Ne β^- decay (3.38 min)). μ : From 1980He08, 2019StZV (β -nuclear magnetic resonance)
563.1993 20	2+	35 ps 5	CD FGHIJK NO	J^{π} : L=0(+2) in (d,p), γ to 4 ⁺ and RUL. T _{1/2} : weighted average of 32 ps 4 from (¹⁶ O,2p γ) and 43 ps 6
1341.438 14	2+	50 fs 13	d FGH JK nO	from $(d,\alpha\gamma)$. J ^{π} : L=0+2 in (pol d,p) for triplet, γ 's to 1 ⁺ and 4 ⁺ levels, π =N
				(pol d, α). T _{1/2} : weighted average of 97 fs 35 from (³ He,p) and 46 fs 10 from (d,p).
1344.648 10	3(+)	26 fs 8	d FGH J nO	J^{π} : D+Q [listed as (M1+E2) in the dataset for transition strength calculations] γ 's to 2 ⁺ and 4 ⁺ , parity from L=0+2 in (pol d,p) for triplet. Also spin 3 from shell model calculations (1984Tio1)
1346.635 11	1+	4.4 ps 3	A d FGH JKLMnO	J^{π} : log ft=4.40 from 0 ⁺ .
1513.7 3	5+	27 fs 6	DEFG JK NO	J ^{π} : L=2 in (d, ³ He), L=4 in (³ He,p), π =U in (pol d, α) gives 3 ⁺ ,5 ⁺ . 3 ⁺ excluded based on missing population by primary γ in (n, γ) from the 1 ⁺ ,2 ⁺ capture state. Also spin 5 from shell model calculations (1984Ti01).
				$T_{1/2}$: weighted average of 26 fs 8 from (d,p) and 28 fs 6 from (³ He,p γ).
1846.026 <i>10</i>	2+	171 fs 35	D FGHIJK NO	J ^{π} : L=0(+2) in (d,p), L=2 in (³ He,p), π =N in (pol d, α). T _{1/2} : weighted average of 215 fs 49 from (³ He,p γ), 180 fs 35 and 139 fs 35 – both from (d,p γ). Uncertainty is the lower input
1885.537 12	3+	26 fs 6	DEFG IJKL NO	J ^{π} : L=2 in (α ,d), γ to 4 ⁺ , π =U in (pol d, α). T _{1/2} : weighted average of 28 fs 7 from (³ He,p γ) and 25 fs 6
2513 37 4	3+	10 fs 5	DEECHTIK NO	From (d, p γ). Uncertainty lower input value. I ^{π} : I = 2 in (α d) α to 4 ⁺ π =U in (pol d α)
2563.06 21	4+	<17 fs	D FG IJK NO	J^{π} : L=2 in (d,p), π =N (pol d, α), γ to 5 ⁺ level. Also spin 4 from shell model calculations (1984Ti01).
2903.935 22	3+	35 ^b fs 8	DEFGH JK NO	J ^{π} : L=0 in (d, ³ He) and L=2 in (α ,d), M1(+E2) γ to 4 ⁺ , γ to 1 ⁺ .
2977.776 18	2+	<17 fs	D F HIJK NO	J^{π} : L=0+2 in (pol d,p), L=2 in (d, ³ He), γ 's to 1 ⁺ and 4 ⁺ levels. Also spin 2 from shell model calculations (1984Ti01).
3216.08 19	(4)+	15 fs 6	D FG IJK NO	J ^{<i>n</i>} : L=2 in (d, ³ He), π =N in (pol d, α), large value of δ for J=3 assignment (1974Ke12) gives 4 ⁺ ,2 ⁺ . Spin 4 from shell model calculations (1984Ti01).
3371.830 22	2-	13 fs 3	D FGHIJK NO	J ^{π} : L=1 in (pol d,p) and vector analyzing power, π =U in (pol d, α), and γ to 3 ⁺ .
3413.278 23	1+	<14 ^b fs	D FGHIJKL NO	J ^{π} : L=0 in (³ He,p), π =U (pol d, α).
3589.31 <i>3</i>	1+	<6 ^b fs	DEFGHIJKL O	XREF: E(3600). J ^{π} : L=0(+2) in (d,p), L=2 in (α ,d), 0+2 in (³ He,p), and π =U in (pol d, α).
3628.18 7 3655.84 5	3^+ (2 ⁺ ,1 ⁺ ,3 ⁺)	<14 ^b fs <14 fs	D FGHIJK MNO FGHIJK N	J ^{π} : L=2 in (d,p), π =U in (pol d, α), γ to 4 ⁺ and 1 ⁺ levels. J ^{π} : L=2 in (d,p). γ 's to 3 ⁺ and 1 ⁺ levels. 2 from shell model calculations (1984Ti01).
3681.78 5 3737.62? 22	0+ 2+,3+,4+	<14 ^b fs	DFJKO K	J^{π} : L=0 in (³ He,p), π =N in (pol d, α). J^{π} : L=2+4 in (pol d,p).

²⁴Na Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\&}$	XREF	Comments
3745.04 <i>4</i> 3865.69 <i>10</i>	3-	<17 fs	D FG IJK NO D F	J ^{π} : L=3 in (d,p) and (³ He,p), π =N in (pol d, α), γ to 4 ⁺ and 2 ⁻ .
3884.85 [‡] <i>32</i>			K N	
3898			ЕН	E(level): Average of 3900 (α ,d) and 3996.1 (n, γ) E=53 KeV.
3933.58 6	(1+,2+,3)	<17 ^b fs	D FGHiJKL N	XREF: G(3928.0). J^{π} : γ to 2 ⁺ and 3 ⁺ ; weak primary γ from 1 ⁺ ,2 ⁺ capture state (n, γ). L = 1+3 in (d p) and L = 2 in (pol d p) are inconsistent
3943.66 7	(2+)	<14 fs	FGHiJK	J^{π} : L=2 in (pol d,p) and γ to 1 ⁺ and 4 ⁺ suggest spin 2 ⁺ ,3 ⁺ ; γ from (1 ⁻). But L=1+3 in (d,p) suggest π =
3977.33 <i>3</i>	1-	<14 ^b fs	D F HiJK NO	J^{π} : L=1 in (d,p), π =N in (pol d, α), γ to 1 ⁺ , 3 ⁻ ruled out by RUL. L=(0+2) in (³ He,p).
4048.83 14	(0,1,2) ⁻		F K	J^{π} : L=1 in (pol d,p), γ to 1 ⁺ , weaker population from 1 ⁺ ,2 ⁺ capture state in (n, γ). 2014Fi01 (n, γ) noted to reexamine the 0 ⁺ assignment proposed in earlier evaluations (1990En08, 2007Fi02).
4143.21 16	(4 ⁺)	<21 fs	DEF IJK NO	J ^{π} : L=4 in (³ He,p), γ to 2 ⁺ , and no primary feeding from 1 ⁺ ,2 ⁺ capture state in (n, γ) thermal (2014Fi01). L=5 in (α ,d) presumably erroneous. Tentative π =(U) in (pol d, α) supports a (3 ⁺), but not supported by primary γ in (n, γ) thermal (2014Fi01).
4185.7 4	$(1,3)^+$	<14 fs	d F IJK o	J^{π} : L=2 in (pol d,p) and π =(U) in (pol d, α) at 4190 probably for doublet.
4196.18 7	(2)-	<17 fs	d FG IJK No	J ^π : L=1+3 based on measured $d\sigma/d\Omega$ (10° to 90°) and DWBA in (d,p) 1963Da06; γ to 3 ⁺ ; π=(U) (pol d,α) at 4190 – probably for doublet – the evaluators assume π=(U) (pol d,α) at 4190 is applicable for one of the doublets and it has been used for the J ^π of 4185.7 keV level. 1 ⁻ ,2 ⁻ from L=1 based on measured $d\sigma/d\Omega$ (12° to 50°) in (pol d,p) (2004To03 – not shown in Fig.). The parity for J ^π =(2 ⁺) from weaker primary γ feeding from 1 ⁺ ,2 ⁺ capture state in (n,γ) (2014Fi01) is not consistent for L=1+3. The reason is not clear
4207.143 16	(2)-	<35 fs	F JK o	J ^{π} : L=1+3 in (d,p); γ to 3 ⁺ ; L=1 in (pol d,p). strong primary γ feeding from 1 ⁺ ,2 ⁺ capture state in (n, γ); π =N (pol d, α) – probably for a doublet.
4220.6 8			Jo	
4441.641 <i>18</i> 4468 8	2-		DFIK NO O	J^{π} : L=1 in (pol d,p); π =U in (pol d, α); L=1+3 in (d,p).
4526.87 [‡] 24	3-		D HIK NO	E(level): Other: 4525.9 (n, γ) E=53 keV. J ^{π} : L=3 in (³ He,p), π =N in (pol d, α).
4561.95 <i>3</i>	2-		DEFGHI K O	J^{π} : L=3 in (α, d) ; L=1+3 in (d, p) ; proposed 2 ⁻ in 2014Fi01 (n, γ) based on primary γ feeding. π =N in (pol d, α) indicates 3 ⁻ , evaluators do not consider it as an unpublished work.
4621.14 20	(2 ⁻ ,1 ⁺)		DFIK NO	J^{π} : L=1+3 in (d,p) and L=0 in (³ He,p) are conflicting; γ to 1 ⁺ and 2 ⁺ and 3 ⁺ ; π =N in (pol d, α) (unpublished data). (2) ⁺ in (n, γ) E=th and no argument is provided.
4692.06 22	(3-)		D FGHI K NO	J^{π} : L=1+3 in (d,p) and in (n, γ) E=th from the 1 ⁺ ,2 ⁺ capture state. L=4 in (³ He,p) is conflicting.
4751.027 <i>17</i> 4772 7	(2 ⁻)		FIKN O	J^{π} : L=1+3 in (d,p), γ to 3 ⁺ and 1 ⁺ levels. J^{π} : π (pol d, α)=U.
4891.35 8	(4)-		F K NO	J ^{π} : L=5 in (pol d,P); γ to 4 ⁺ ; π (pol d, α)=U (appears to be from private communications).
4908.6 4	(3)+		FG K N	J^{π} : L=4 in (pol d,p); γ to 3 ⁺ and 4 ⁺ and 5 ⁺ ; weaker population by primary γ from 1 ⁺ ,2 ⁺ in (n, γ) thermal.
4939.60 8	(1)-		F HI K NO	J ^{π} : L=1+3 in (d,p),(d,p γ), π =N in (pol d, α), γ to 1 ⁺ and 3 ⁺ . 1984TiO1 (n, γ) proposed 1 ⁻ based on the primary γ feeding from 1 ⁺ ,2 ⁺ capture state. L=2 in (d, ³ He) (1971KrO4 – from a comparison

Adopted Levels, Gammas (continued)

²⁴Na Levels (continued)

E(level) [†]	Jπ@	XREF	Comments
			with typical angular distributions from the ${}^{24}Mg(d,{}^{3}He){}^{23}Na$ reaction) – may be considered with caution.
4973.83 [‡] <i>12</i>		HIK NO	E(level): Others: 4970 20 in (d,p), 4973 5 in (d, ³ He), 4980 7 in (d, $\alpha\gamma$), and 4980.8 in (n, γ) E=53 keV.
5030.62 <i>15</i> 5045 031 <i>21</i>	$(2,3,4)^+$	F i K N FF i K	J^{π} : L=4 in (pol d,p), γ to 2 ⁺ . XREF: F(5040)
5050 620 22	$(2)^{-}$		J^{π} : L=1+3 in (d,p), γ to 1 ⁺ , 3 ⁺ . L=6 in (α ,d) probably erroneous.
5059.029 22 5117.40 9	(3)	FG I K NO	J^{*} : L=1+5 in (d,p), γ to 4*. J^{π} : 1+3 in (d,p), γ to 3 ⁺ and 1 ⁺ , stronger primary γ from 1 ⁺ ,2 ⁺ capture state (2014Fi01 – (n, γ)). Negative parity is in conflict with in L=0 from measured $d\sigma/d\Omega$ (12° to 50°) in (pol d,p) (2004To03 – not shown in Fig.) and π (pol d, α)=N – was not considered – unpublished work.
5160 8		Gi O	
5180.55 <i>13</i> 5192.34 <i>11</i>	(3 ⁻)	K F K NO	J^{π} : π =N in (pol d, α), γ to 2 ⁺ and 4 ⁺ . L=1+3 in (d,p) at 5180 20 overlaps three
5050 16 10	1-		levels.
5252.16 13	1	EF IK NO	XREF: E(5220). J^{π} : L=1+3 in (pol d.p), π =N in (pol d. α), γ to 0 ⁺ .
5308.95 13	(2+)	F K	J^{π} : 2 ⁺ from weaker population from 1 ⁺ ,2 ⁺ capture state (n, γ) 2014Fi01. \neq 1 ⁻ or 3 ⁻ (pol d,p) from γ to (3) ⁺ and 1 ⁺ . Positive parity in conflict with L=1+3 in (pol d,p)
5339.10 5	2-	F I K NO	J^{π} : L=1+3 in (d,p), π =U in (pol d, α).
5397.33 16	(3 ⁻)	F i K nO	XREF: K(?). J^{π} : L=1+3 in (d,p) for doublet, γ to 4 ⁺ .
5408.29 [‡] 24 5432 8	1+,2+	iKn O	J^{π} : from L=0 in (pol d,p).
5454.56 13	1-,2-	F K N	J^{π} : L=1 in (d, ³ He), γ to 1 ⁺ and 2 ⁺ levels and stronger population from 1 ⁺ ,2 ⁺ capture state (n, γ) (2014Fi01).
5477 2	(1,2,3)+	D k	J^{π} : L=2 in (³ He,p).
5478.99 6	(1,2) ⁻	F I k N	J^{π} : L=1+3 in (d,p), γ to 1 ⁺ level.
5571.66 # 9 5585 8	2+,3+,4+	FiK i O	J^{π} : From L(pol d,p)=2+4.
5629.3 [‡] 7	1-,2-,3-	IK N	J^{π} : From L(pol d,p)=1+3.
5674.46 [‡] 27	$1^+, 2^+$	IK N	J^{π} : From L(pol d,p)=0.
5737.15 [‡] 16 5775.7 3	$1^{-},2^{-},3^{-}$ $(2^{+},3^{+})$	IK N DF iK N	J ^{π} : From L(pol d,p)=1+3. J ^{π} : (2 ⁺) or (3 ⁺) based on weaker population by primary γ from 1+2 ⁺ capture
			state in (n,γ) thermal. L=1+3 in (pol d,p) yields negative parity, however, the L value based on measured $d\sigma/d\Omega$ (12° to 50°) (2004To03 – not shown in Fig.) and evaluators consider with cautions.
5789.4? 9	2-	iK	
5809.48 3	2	FIK	J [*] : L=1+3 in (pol d,p), γ to 1 ⁺ and 3 ⁺ levels and stronger population from 1 ⁺ ,2 ⁺ capture state (n, γ) (2014Fi01).
5850.65 [‡] 16	1-,2-,3-	FiKN	J^{π} : From L(pol d,p)=1+3.
5863.13 20	(2)	FN	J^{π} : L=1 in (d, ³ He), γ to 3 ⁻ . (2 ⁺) based on weaker population from 1 ⁺ , 2 ⁺ capture state (n, γ) (2014Fi01).
5896.69 ⁴ 9	$\langle 0 \rangle$	IK	$I_{\pi} = 2^{+} (1^{+})^{+} = 200 4 T_{\pi} = 02 (1^{-})^{+} = 1 (2^{-})^{+} = 201 4 T_{\pi}^{-} (01^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{-})^{+} (1^{-})^{+} (1^{-})^{+} = 1^{-} (1^{-})^{+} (1^{$
3918.20 3	(2)	er K	primary γ feeding from 1 ⁺ ,2 ⁺ capture state. L=5 in (α ,d) is not consistent with (1 ⁻).
5953.33 14	(1 ⁻)	eF	J ^{π} : From stronger population by primary γ feeding (n,γ) and γ to 0 ⁺ level. L=5 (α,d) is not consistent with (1^{-}) .
5966.24 17	(0 ⁺)	D F	T=2 I^{π} : I =0 in (³ He p) (see note in the dataset)
6072.75 5	(2)	FIK	J^{π} : 2 ⁺ ,(3 ⁺) in 2004To03 (n, γ) and (2 ⁻) in 2014Fi01 (n, γ), based on the stronger

²⁴Na Levels (continued)

E(level) [†]	J ^π @	XREF	Comments
			primary γ feeding from 1 ⁺ ,2 ⁺ capture state.
6088.2? 5		K	
6111.56 18	$(2^+, 3^+)$	F	J^{π} : γ to 1^+ and 4^+ .
6176.65 16	$(1^{-},2^{-})$	FIK	XREF: K(?).
(192 19 7		17	J^{π} : L=1+3 in (pol d,p), γ to 1 ⁺ .
0183.17 /		K	$\mathbf{X}\mathbf{E}\mathbf{F}^{\prime}, \mathbf{K}(2).$
6199.11? 24	(1+2+)	K K	$\mathbf{X}\mathbf{K}\mathbf{E}\mathbf{F}^{*}\mathbf{K}(2).$
0222.34 4	$(1^{+},2^{+})$	FIKN	AKEF: $\mathbf{K}(2)$.
6247 40 5	(2+2+)	E IN	J [*] : Based on primary γ feeding from 1 ⁺ , 2 ⁺ capture state (n, γ) (2014F101).
0247.49 J	$(2^{+}, 5^{+})$		J^{*} ; γ s to 1° and 4° and 2°.
0231.10 12	(2)	er K	AKEF: $K(0247.07)$. E(level): In (nod d n) (2004TeO2), reported avaited level energy from (n a)
			E(level). In (pol d,p) (20041005), reported excited level energy from (π,γ) .
			L=1+3 in (poi d,p) FWHM=5 keV to 8 keV possibly related with this level.
			J ^{**} Based on primary γ leeding from 1 [*] , 2 [*] capture state (n, γ) (2014F101).
6256 00 22	1-		L=1+5 III (poi d,p). IT I = 1+2 in (poi d,p) with 0^+ and 1^+ I = (4.5) in (a, d) is not consistent with
0230.90 22	1	erik	J : L=1+3 III (pol d,p), γ to 0 and 1 . L=(4,5) III (α ,d) is not consistent with 1 ⁻
6305.9.5	$2^+.3^+.4^+$	K	$I^{\pi}: L(\text{nol } d, p) = 2 + 4$
6407.03 11	(2^{-})	F	J^{π} : Based on primary γ feeding from 1 ⁺ .2 ⁺ capture state (n. γ) (2014Fi01).
6448.31 18	< /	F	
6490 20		Т	
6550 20		Ť	
6580 20		Ť	
6640		F	
6715 5	(1^+)	- T I N	XREF: I(6690)
0715 5	(1)	1 2 4	I^{π} : on the basis of the angular distribution data from (d ² He) and the DWBA
			calculation (2002Ra12)
6787 5		ти	XREF: I(6810)
6846 5		I N	AND . 1(0010).
6905 5	-	ETN	XREF (6880)
0705 5			$F(level)$ I^{π} : From (d ³ He) and $I(d^{3}He) = 1$ respectively
7084 5	_	N	π $I (d^{3} \mu_{a})) = 1$
7084 5		N	J : E(u, HC)) = 1.
7200	(1^{+})	EI	π , on the basis of the angular distribution data from (d^2H_0) and the DWPA
7200	(1)	E L	calculation (2002Ra12)
7246.5		N	
7313 5		N	
7510	$(2.3.4)^{-}$	E	$I^{\pi}: L(\alpha, d) = 3$
7890	$(3^+, 4^+, 5^+)$	E	$I^{\pi}: L(\alpha, d) = (4).$
8080	(- , - , -)	E	
8390	1+	Е	J^{π} : L(α .d)=0.
8610		Е	
8860	$(4^{-},5^{-},6^{-})$	Е	J^{π} : L(α .d)=(5).
9280	$(4^{-}, 5^{-}, 6^{-})$	Е	J^{π} : L(α ,d)=(5).
9630	$(5^+, 6^+, 7^+)$	Е	J^{π} : L(α ,d)=(6).
10790	(7 ⁺)	E	J^{π} : L=6 in (α ,d).
11190	. /	E	
11610		E	
11900		E	
12190		E	
12540	$(4^-, 5^-, 6^-)$	E	$\mathbf{J}^{\pi}: \mathbf{L}(\alpha, \mathbf{d}) = (5).$

[†] From a least-squares fit to $E\gamma$, except where otherwise noted. Assumed $\Delta E=1$ keV, when not available. Uncertainties were doubled for 2565.2 γ , 1143.09 γ , and 3866.2 γ from 2562.99, 3655.8, and 3865.7 keV levels, respectively, and tripled for 2016.3 γ

²⁴Na Levels (continued)

from 5953.3 keV level. $\chi^2 = 1.98$ vs. $\chi^2_{crit} = 1.2$ was obtained. Without the increase of uncertainty, χ^2 was 2.4, and all these γ differed by more than 4 standard deviation compared to the fitted values.

- [‡] From (pol d,p).
- [#] From (n,γ) E=Thermal.
- ^(a) Natural (N) or unnatural parity (U) from (pol d, α) are listed in J^{π} arguments should be considered with caution, not published appears to be from private communications.
- [&] From (d,pγ), except where otherwise noted. Doppler Shift Attenuation (DSA) method.
- ^{*a*} Many ²⁴Na g.s. half-life values are available in the literature as listed in the comments section. The central value of these data mainly clusters into two groups, one at about 14.9 h and another one at about 15.0 h. Some studies reported results with higher precision without detailed documentation. Since 1980, several targeted ²⁴Na g.s. half-life measurements were carried out for better accuracy and precision, as reported in 1980Mu11, 1983Wa26, and measurements at NIST (2014Un01 and others). These latter studies support only one cluster of the data and conclude that some measurements might affected by impurity or other contributions.

^{*b*} From $({}^{3}\text{He},p\gamma)$ – Doppler Shift Attenuation (DSA) method.

					A	dopted Leve	ls, Gamma	s (continued)	
							γ ⁽²⁴ Na)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
472.2071	1 ⁺	472.2023 14	100	0.0	4+	[M3]		4.69×10^{-4}	$B(M3)(W.u.) = 5.3 \ 36$ $\alpha(K) = 0.000442 \ 7: \ \alpha(L) = 2.67 \times 10^{-5} \ 4: \ \alpha(M) = 5.05 \times 10^{-7}$
									$\frac{a(\mathbf{R}) - 0.000 + 27}{9}, \frac{a(\mathbf{L}) - 2.07 \times 10}{9}, \frac{a(\mathbf{R}) - 5.95 \times 10}{9}$
563.1993	2+	90.9922 14	100.0 5	472.2071	1+				I _{γ} : weighted average of 100.0 <i>11</i> from (n, γ) E=thermal and 100.0 <i>5</i> from (d,p γ).
1341.438	2+	563.188 <i>13</i> 778.23 <i>4</i> 869 225 23	3.74 2 5.47 6 100 0 8	0.0 563.1993 472 2071	4^+ 2^+ 1^+	[E2]			B(E2)(W.u.)=2.50 + 42 - 32
		1340.98 22	0.087 14	0.0	4 ⁺	[E2]			B(E2)(W.u.)=0.52 + 20 - 14
1344.648	3(+)	781.444 <i>4</i> 8	80.5 8	563.1993	2+	(M1+E2)			Mult.: D+Q from $\gamma(\theta)$, (M1+E2) is listed based on level scheme for transition strength calculation. δ : +0.08 3 or -6.3 +12-33 (1971Bu21) for 3 to 2 ⁺ transition = 20 Mg(d en) (red d r)
		1344.604 10	100 1	0.0	4+	(M1+E2)			Mult.: D+Q from $\gamma(\theta)$, (M1+E2) is listed based on level scheme for transition strength calculation. δ : +0.00 4 or -7.1 +15-25 (1971Bu21) for 3 to 4 ⁺
1046 605	1+	702 40 22	0.72.5	562 1002	2+				transition $-{}^{26}Mg(d,\alpha\gamma)$,(pol d, α).
1340.035	1	783.40 22 874 420 30	0.73 5	203.1993	2 · 1+				
1513.7	5+	1514.7 <i>4</i>	100	0.0	4+	M1+E2	-0.16 4	7.29×10 ⁻⁵ 11	$\begin{aligned} &\alpha = 7.29 \times 10^{-5} \ 11; \ \alpha(\mathrm{K}) = 4.77 \times 10^{-6} \ 7; \ \alpha(\mathrm{L}) = 2.86 \times 10^{-7} \\ &4; \ \alpha(\mathrm{M}) = 6.40 \times 10^{-9} \ 10 \\ &\alpha(\mathrm{IPF}) = 6.79 \times 10^{-5} \ 11 \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.23 \ +7-4; \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 16 \ +11-7 \end{aligned}$
1846.026	21	499.384 7	100.0 15	1346.635	$\frac{1}{2(+)}$				L = Other = 28.5 (d m)
		501.45 9 504 59 4	21.5 /	1344.048	2+				I_{γ} . Other: 28 5 (a,p γ).
		1282.812 <i>13</i>	37.5 3	563.1993	2+				I _{γ} : Others: 39.5 23 (d,p γ) and 24 6 (d, $\alpha\gamma$). Weighted average of all gives the same value with higher uncertainty. In (n, γ) E=10-30 keV only two depopulating gammas and vield 100 35.
		1373.56 11	56.0 7	472.2071	1+	M1+E2	+0.18 7	3.94×10 ⁻⁵ 8	$\alpha = 3.94 \times 10^{-5} \ 8; \ \alpha(\text{K}) = 5.66 \times 10^{-6} \ 9; \ \alpha(\text{L}) = 3.39 \times 10^{-7} \ 6; \ \alpha(\text{M}) = 7.59 \times 10^{-9} \ 12 \ \alpha(\text{IPF}) = 3.34 \times 10^{-5} \ 7 \ \text{B}(\text{M1})(\text{W.u.}) = 0.0120 \ +30 - 21; \ \text{B}(\text{E2})(\text{W.u.}) = 1.3 \ +12 - 8 \ \text{I}_{\gamma}: \ \text{Others:} \ 65.1 \ 23 \ (\text{d},\text{p}\gamma), \ 73 \ 6 \ (\text{d},\alpha\gamma), \ \text{and} \ 26 \ 13 \ \text{if} \ \text{Ig}(1282.8) = 37.5 \ \text{instead} \ of \ 100 \ \text{in} \ (n,\gamma) \ \text{E} = 10 - 30 \ \text{keV}.$ The unwarished wide $55 \ 10 \ \text{Discrement} \ \text{det} \ 51 \ \text{ct}$
1885.537	3+	1322.329 14	100.0 8	563.1993	2+	(M1+E2)		2.99×10 ⁻⁵ 5	The unweighted yields 55 10. Discrepant data set. $\alpha = 2.99 \times 10^{-5} 5; \alpha(K) = 5.99 \times 10^{-6} 9; \alpha(L) = 3.59 \times 10^{-7} 5;$ $\alpha(M) = 8.04 \times 10^{-9} 12$ $\alpha(IPF) = 2.35 \times 10^{-5} 4$ $\delta: +0.02 2 \text{ or } -4.7 4 (1971Bu21) \text{ for } 3^+ \text{ to } 2^+ \text{ transition}$ $- {}^{26}Mg(d, \alpha \gamma), (\text{pol } d, \alpha).$

7

L

 $^{24}_{11}$ Na₁₃-7

						Adopted Lev	vels, Gamr	nas (continue	bd)
						$\gamma(^2$	⁴ Na) (cont	inued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
1885.537	3+	1412.4 8 1885.44 <i>5</i>	1.2 <i>3</i> 53 <i>4</i>	472.2071 0.0	$\frac{1^{+}}{4^{+}}$	[E2] (M1+E2)			B(E2)(W.u.)=7.3 +30-22 I _γ : unweighted average of 56.9 23 from (n,γ) E=thermal, 56.3 31 from (d,pγ), and 45 4 from (d,αγ). $\delta: -0.07$ 2 or -5.4 4 (1971Bu21) for 3 ⁺ to 4 ⁺ transition - ²⁶ Mg(d,αγ) (pol d, α)
2513.37	3+	1172.1 4	1.65 24	1341.438	2^{+}				
l		1950.22 12	100.0 10	563.1993	2+				I _{γ} : weighted average of 100.0 <i>14</i> from (n, γ) E=thermal and 100.0 <i>11</i> from (d,p γ).
		2513.5 4	4.6 12	0.0	4+				I _{γ} : weighted average of 8.4 <i>34</i> from (n, γ) E=thermal and 4.2 <i>11</i> from (d,p γ).
2563.06	4+	1050.4 5	28 4	1513.7	5+				I _{γ} : weighted average of 29 4 from (d,p γ) and 23 9 if I γ (1218)=100 from (d, $\alpha\gamma$). Other: 23 8 in (n, γ) E=thermal from literature (ealier evaluation), not considered.
		1217.66 24	100 4	1344.648	3(+)				I_{γ} : weighted average of 100 15 from (n,γ) E=thermal, and 100 4 from $(d,p\gamma)$. Other: 91 17 in $(d,\alpha\gamma)$.
		2565.2 5	63 4	0.0	4+				I _{γ} : From (d,py). Others: 110 <i>17</i> if I _{γ} (1218)=100 (d, $\alpha\gamma$), 5.8 23 in (n, γ) E=thermal.
2903.935	3+	390.51 15	1.6 2	2513.37	3+				
		1018.3 5	2.7 4	1885.537	3+				
		1057.9 <i>3</i>	6.3 17	1846.026	2+				I _{γ} : weighted average of 9 4 from (n, γ) E=thermal and 5.7 19 from (d,p γ). Other: 5.5 36 if I γ (1564)=100 (actually <100) in (d, $\alpha\gamma$).
		1559.28 7	55.1 10	1344.648	$3^{(+)}$				
		1562.462 29	100 10	1341.438	2+				
		2341.1 6	4.6 12	563.1993	2+				I _{γ} : weighted average of 5.1 <i>16</i> from (n, γ) E=thermal and 3.8 <i>19</i> from (d, $p\gamma$). Other: 9.1 <i>55</i> if I γ (1564)=100 (actually <100) in (d, $\alpha\gamma$).
		2431.9 4	20.0 14	472.2071	1^{+}	[E2]			B(E2)(W.u.)=4.3 + 14-9
		2903.70 4	23.5 21	0.0	4+	(M1(+E2))	<+0.14	6.21×10 ⁻⁴	α (K)=1.703×10 ⁻⁶ 24; α (L)=1.020×10 ⁻⁷ 15; α (M)=2.29×10 ⁻⁹ 4 α (IPF)=0.000619 9 B(M1)(W.u.)=0.0028 +15-9 I _{γ} : Weighted average of 23.7 24 from (n, γ) E=thermal and 23 4 from (d,p γ). Other: 27 9 if I γ (1564)=100 (actually <100) (d, $\alpha\gamma$).
2977.776	2+	1092.21 3 1131.31 12 1631.04 15 1633.41 16 1636.34 6 2414.43 4 2505.49 6	6.41 8 0.60 8 3.28 23 23.8 3 97.5 10 100.0 14 66.4 6	1885.537 1846.026 1346.635 1344.648 1341.438 563.1993 472.2071	3^+ 2^+ 1^+ $3^{(+)}$ 2^+ 2^+ 1^+ 4^+				
3216.08	$(4)^{+}$	1330.52 19	2.2 1	1885.537	4 3 ⁺				E_{γ} : Placement in 2014Fi01 (n, γ) based on the energy sum and

 ∞

$^{24}_{11}$ Na $_{13}$ -8

						Ad	opted Lev	els, Gammas (continued)
							γ ²⁴	⁴ Na) (continued)
	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
	3216.08 3371.830	(4) ⁺ 2 ⁻	1874 857.0 <i>4</i> 1486.20 <i>6</i> 1526.1 <i>6</i> 2025.13 <i>5</i> 2027.18 <i>11</i>	0.25 <i>10</i> 3.72 <i>5</i> 0.27 <i>8</i> 100.0 <i>8</i> 12.2 <i>3</i>	1341.438 2513.37 1885.537 1846.026 1346.635 1344.648	2^+ 3^+ 2^+ 1^+ $3^{(+)}$	(E1) (E1) (E1) (E1) (E1)	consistency with the level scheme, however, did not place the other 1872γ (d,p),(d,p γ) or 1875γ (d, $\alpha\gamma$),(pol d, α) from this level. A comparable 1875.6γ placed from 6072.76 keV level. E_{γ} : Average of 1872 (d,p),(d,p γ) and 1876 (d, $\alpha\gamma$),(pol d, α). B(E1)(W.u.)= 1.1×10^{-4} + $6-5$ B(E1)(W.u.)= 3.1×10^{-4} + $9-6$ B(E1)(W.u.)= 2.1×10^{-5} + $9-7$ B(E1)(W.u.)= 0.0033 + $10-6$ B(E1)(W.u.)= 0.00040 + $11-8$
			2030.26 7 2808.45 6	64.9 8 48.8 <i>6</i>	1341.438 563.1993	2+ 2+	[E1] [E1]	B(E1)(W.u.)=0.0021 +6-4 B(E1)(W.u.)=0.00060 +17-11 I_{γ} : weighted average of 48.8 6 from (n, γ) E=thermal and 45 7 from (d,p γ).
	3413.278	1+	2898.9 6 1567.18 8 2066.55 10 2071.69 10	0.57 <i>11</i> 8.8 <i>3</i> 21.3 <i>4</i> 100 <i>4</i>	472.2071 1846.026 1346.635 1341.438	1^+ 2^+ 1^+ 2^+	[E1]	$B(E1)(W.u.) = 6.3 \times 10^{-6} + 23 - 17$
9	3589.31	1+	2850.04 11 2940.85 9 685.54 12 1743.25 16 2242.44 20	24.7 14 56.2 6 2.4 2 4.6 2 8.2 11	563.1993 472.2071 2903.935 1846.026 1346.635	2^{+} 1^{+} 3^{+} 2^{+} 1^{+}		I_{γ} : weighted average of 24.4 13 from (n,γ) E=thermal and 32 / from $(d,p\gamma)$. I_{γ} : weighted average of 56.0 6 from (n,γ) E=thermal and 90 7 from $(d,p\gamma)$.
	3628.18	3+	2247.84 <i>15</i> 3025.69 <i>8</i> 3116.86 <i>6</i> 2283.0 <i>4</i>	6.0 5 100 4 53 2 55 6	1341.438 563.1993 472.2071 1344.648	2^+ 2^+ 1^+ $3^{(+)}$		I _{γ} : Other: 80 4 (d,p γ). I _{γ} : Other: 100 4 (d,p γ).
	3655.84	(2+,1+,3+)	2286.58 8 3628.11 <i>17</i> 242.30 9	100 4 94 3 14.3 14 34 4	1341.438 0.0 3413.278 2513.37	2+ 4+ 1+ 3+		I _{γ} : weighted average of 89.9 32 from (n, γ) E=thermal and 100 4 from (d,p γ).
			1770.25 <i>16</i> 1809.8 <i>4</i> 2310.2 <i>4</i>	33 <i>11</i> 19 7 12 4	1885.537 1846.026 1344.648	3 ⁺ 2 ⁺ 3 ⁽⁺⁾		I _{γ} : unweighted average of 44.3 <i>14</i> from (n, γ) E=thermal and 22 7 from (d,p γ). I _{γ} : unweighted average of 25.7 <i>22</i> from (n, γ) E=thermal and 12.1 <i>35</i> from (d,p γ). I _{γ} : From (d,p γ). Other: 24 5 (n, γ) E=Thermal for multiple placement and undivided intensity
	2601 70	0+	2314.3 <i>3</i> 3093.08 <i>31</i> 3184.1 <i>6</i>	17 5 100 5 37 5	1341.438 563.1993 472.2071	2+ 2+ 1+		I_{γ} : unweighted average of 21.4 9 from (n,γ) E=thermal and 12.1 35 from $(d,p\gamma)$. I_{γ} : From $(d,p\gamma)$. I_{γ} : unweighted average of 39 4 from (n,γ) E=thermal and 26 10 from $(d,p\gamma)$.
	3681.78 3745.04	0 ⁺ 3 ⁻	2334.9 6 3209.32 5 373.11 15	3.4 4 100.0 <i>11</i> 1.75 <i>13</i>	1346.635 472.2071 3371.830	1^+ 1^+ 2^-		
			1231.5 <i>4</i> 1859.4 <i>3</i> 1899.10 <i>10</i> 2400.29 <i>18</i>	9 5 13 4 100 5 30.0 10	2513.37 1885.537 1846.026 1344.648	3 ⁺ 3 ⁺ 2 ⁺ 3 ⁽⁺⁾		I _{γ} : unweighted average of 4.5 5 from (n, γ) E=thermal and 14.3 24 from (d,p γ). I _{γ} : unweighted average of 8.4 8 from (n, γ) E=thermal and 16.7 24 from (d,p γ). I _{γ} : From (d,p γ). I _{γ} : Other: 50 10 (d,p γ).

L

$\gamma(^{24}$ Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
3745.04	3-	2403.63 10	35.4 8	1341.438 2 ⁺ 563 1993 2 ⁺	I_{γ} : weighted average of 35.5 8 from (n,γ) E=thermal and 26 10 from $(d,p\gamma)$.
		3744.30 15	4.38.25	$0.0 4^+$	I_{γ} : weighted average of 4.38 25 from (n, γ) E=thermal and 4.8 12 from $(d, p\gamma)$.
3865.69		2019.60 14	100 24	1846.026 2+	
		2523.88 14	59 <i>4</i>	1341.438 2+	
		3866.20 14	35.3 18	$0.0 4^+$	
3933.58	$(1^+, 2^+, 3)$	1420.00 18	6.2 8	2513.37 3+	
		2087.48 14	36.9 9	1846.026 2+	
		2588.72 13	73 4	1344.648 3 ⁽⁺⁾	
		2592.10 12	100 6	1341.438 2+	I_{γ} : Other: 64 10 (d,p γ).
		3370.12 8	42 21	563.1993 2+	I_{γ} : Other: 100 <i>10</i> (d,p γ).
3943.66	(2^{+})	3471.27 7	100 4	472.2071 1+	
		3942.80 17	32.1 16	0.0 4+	
3977.33	1-	387.98 18	0.38 8	3589.31 1+	
		605.46 18	2.33 23	3371.830 2	
		999.7 3	1.28 23	2977.76 2 ⁺	
		2131.33 3	2.9 5	1640.020 2 1246.625 1 ⁺	
		2635.36.12	41.75	1340.033 1 1341.438 2 ⁺	
		2035.50 12	62 4 11	563 1993 2+	I : weighted average of 62.3.8 from (n, y) E-thermal and 72.7 from (d, ny)
		3504.82.10	100.0 8	472.2071 1+	$(1, \gamma)$ weighted average of 02.5 6 from $(1, \gamma)$ L=uterniar and $(2, \gamma)$ from $(4, \gamma)$.
4048.83	$(0.1.2)^{-}$	2701.4 4	62.8	1346.635 1+	
	(*,-,-)	3576.5 3	100 22	472.2071 1+	
4143.21	(4^{+})	1578.0 6	22 4	2563.06 4+	
	. ,	2297.04 17	100 9	1846.026 2+	
		4144.5 5	22 4	$0.0 4^+$	
4185.7	$(1,3)^+$	2301.3 6	100 [#] 5	1885.537 3+	
		2842	56 # 5	1344.648 3(+)	
4196.18	$(2)^{-}$	1218.2 5	7.9 13	2977.776 2+	
		1292.4 <i>3</i>	2.3 7	2903.935 3+	
		1683.1 <i>3</i>	6.3 10	2513.37 3+	
		2310.2 4	<13.5	1885.537 3+	I_{γ} : From 11.2 23 in a multiplet.
		2349.9 3	17.5 13	1846.026 2+	
		3632.64 13	34 3	563.1993 2+	
4207 1 42	$\langle 0 \rangle =$	3723.59 10	100 2	472.2071 1+	
4207.143	(2)	551.2 3	1.88 0	3655.84 (2,1,3)	
		617.84 J 702.85 4	0.790	3589.31 I ⁺	
		175.05 4	63.0.6	3+13.270 1 3371 830 2 ⁻	
		1229 35 4	8 48 18	2977 776 2+	
		1693 83 14	365	2513 37 3+	
		2361.04 6	48.1 12	1846.026 2+	
		2860.29.3	100.0 12	1346.635 1+	

From ENSDF

$\gamma(^{24}$ Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Comments
4207.143	$(2)^{-}$	2865.61 6	65 <i>3</i>	1341.438	2+	
		3643.56 4	39.1 <i>I</i>	563.1993	2+	
		3734.58 12	2.4 3	472.2071	1+	
4220.6		2707	100 [#] 7	1513.7	5+	
		4220	11 [#] 7	0.0	4+	
4441.641	2-	464.47 12	0.77 14	3977.33	1-	
		696.69 19	0.93 7	3745.04	3-	
		785.8 <i>3</i>	0.89 14	3655.84	$(2^+, 1^+, 3^+)$	
		813.0 5	0.35 5	3628.18	3+	
		852.33 7	2.1 3	3589.31	1^{+}	
		1028.33 11	1.54 5	3413.278	1+	
		1928.23 4	21.1 4	2513.37	3+	
		2556.14 10	1.82 16	1885.537	3+	
		2595.49 5	22.5 3	1846.026	2+	
		3094.80 <i>3</i>	12.6 14	1346.635	1+	
		3096.62 6	84.6 12	1344.648	3 ⁽⁺⁾	
		3099.90 6	65.0 12	1341.438	2+	
		3878.08 4	100.0 12	563.1993	2+	
		3969.08 11	10.0 2	472.2071	1+	
4561.95	2-	906.20 20	12 3	3655.84	$(2^+, 1^+, 3^+)$	
		1584.17 16	8.5 4	2977.776	2+	
		2048.27 24	17.5 7	2513.37	3+	
		2715.82 6	100.0 12	1846.026	2+	
4621.14	(2-1+)	4089.37 9	713	472.2071	1'	
4621.14	$(2,1^{+})$	992.6 5	3.3 33	3628.18	3' 1+	
		1208.5 5	03 28	3413.278	$\frac{1}{2^+}$	L. Fran 27 12 is a multiplat
		2100.5 5	<49	2313.37	3* 2+	I_{γ} : From 37/12 in a multiplet.
4602.06	(2^{-})	4037.74	57 20	2655.84	$(2^{+} 1^{+} 2^{+})$	
4092.00	(\mathbf{J})	1714 2 3	100 33	2077 776	(2,1,5) 2^+	
		2806 3 12	35 14	1885 537	2 3+	E I : From $(n y)$ E-10-80 keV Intensity from scaling I_{2} (4693) to 67
		4693 2 8	67 10	0.0	4 ⁺	$L_{\gamma,1\gamma}$. From (ii, γ) $L=10$ 00 keV. Intensity from searing $1\gamma(10)0$ to 07.
4751 027	(2^{-})	543 94 13	0 54 7	4207 143	$(2)^{-}$	
	(-)	702.13 16	3.5.3	4048.83	$(0.1.2)^{-}$	
		773.86 14	6.5 7	3977.33	1-	
		1005.969 41	12.6 4	3745.04	3-	
		1095.05 7	8.8 1	3655.84	$(2^+, 1^+, 3^+)$	
		1337.80 4	42 2	3413.278	1+	
		1378.80 12	4.8 5	3371.830	2-	
		1773.15 6	12.9 <i>3</i>	2977.776	2+	
		1847.06 17	5.9 <i>3</i>	2903.935	3+	
		2237.46 12	13.3 16	2513.37	3+	
		2865.41 <i>3</i>	36 5	1885.537	3+	

11

$^{24}_{11}$ Na₁₃-11

From ENSDF

 $^{24}_{11}$ Na₁₃-11

$\gamma(^{24}$ Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
4751.027	(2^{-})	2904.74 6	72.8 14	1846.026	2+	
		3409.23 7	30.1 5	1341.438	2^{+}	
		4187.35 <i>3</i>	100.0 14	563.1993	2^{+}	
		4278.76 23	0.95 7	472.2071	1^{+}	
4891.35	$(4)^{-}$	4890.82 8	100	0.0	4^{+}	
4908.6	$(3)^{+}$	2004.0 5	71 14	2903.935	3+	E_{γ} , I_{γ} : From (n, γ) E=10-80 keV.
		3395.9 8	90 12	1513.7	5+	E_{γ},I_{γ} : From (n,γ) E=10-80 keV.
		3563.7 8	45 17	1344.648	$3^{(+)}$	E_{γ} , I_{γ} : From (n, γ) E=10-80 keV.
		4908.2 9	100 13	0.0	4+	E_{γ}, I_{γ} : From (n, γ) E=10-80 keV.
4939.60	$(1)^{-}$	1526.1 6	5.9 17	3413.278	1^{+}	
		2426.44 22	9.4 <i>14</i>	2513.37	3+	
		3594.2 5	19.4 24	1344.648	$3^{(+)}$	
		3597.4 4	24.3 24	1341.438	2^{+}	
		4376.00 11	36.8 21	563.1993	2^{+}	
		4466.89 11	100.0 14	472.2071	1+	
5030.62	$(2,3,4)^+$	4466.97 15	100	563.1993	2+	
5045.031	$(2)^{-}$	1415.8 10	2.0 7	3628.18	3+	
		1455.4 4	85	3589.31	1+	
		1631.54 8	46 7	3413.278	1+	
		3198.97 10	49.1 12	1846.026	2+	
		3698.08 10	44.3 15	1346.635	1'	
		3703.297	100.0 17	1341.438	2+	
		4481.41 3	43.3 22	563.1993	2	
5050 (20	$(2)^{-}$	4572.52 4	21.2 24	4/2.20/1	$(2)^{-}$	
5059.629	(3)	852.527	12 6	4207.145	(2)	
		803.37 20	130	4190.18	$\binom{2}{2^{-}}$	
		1314.37 13	205	2580.21	5 1+	
		1470.0 5	2.0 5	3/13 278	1 1+	
		2545.0.5	8515	2513 37	3+	
		3174 00 13	13.8.8	1885 537	3+	
		3712 79 14	10.8.75	1346 635	1+	
		4496.00 3	100.0 15	563,1993	2+	
		4586.95 4	36.3 10	472.2071	1^{+}	
		5058.7 7	5.3 5	0.0	4^{+}	
5117.40	(2^{-})	2139.4 4	33 7	2977.776	2+	
		3231.6 6	27 3	1885.537	3+	
		3270.77 24	100 <i>3</i>	1846.026	2^{+}	
		3770.77 16	94 <i>3</i>	1346.635	1^{+}	
		3776.7 4	16 2	1341.438	2+	
		4553.5 <i>3</i>	72 5	563.1993	2^{+}	
		4644.57 12	52 2	472.2071	1^{+}	
5192.34	(3-)	4628.56 12	100 5	563.1993	2+	

$\gamma(^{24}$ Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Comments
5192.34	(3^{-})	5191.99 19	18.6 23	0.0	4+	
5252.16	1-	810.4 <i>3</i>	100 44	4441.641	2-	
		1570.17 17	78 11	3681.78	0^{+}	
5308.95	(2^{+})	3964.13 15	100 8	1344.648	3 ⁽⁺⁾	
		4836.06 24	55 <i>5</i>	472.2071	1+	
5339.10	2^{-}	3492.93 12	26.8 6	1846.026	2+	
		3997.61 9	100.0 16	1341.438	2+	
		4775.23 6	53.2 13	563.1993	2+	
	(2-)	4866.27 20	5.1 3	472.2071	1+	
5397.33	(3 ⁻)	1741.48 24	20 4	3655.84	$(2^+, 1^+, 3^+)$	
		4055.49 20	100 19	1341.438	2+	
EAEAEC	1- 0-	5396.6 8	0.35 18	0.0	4'	
3434.30	1,2	1012.5 5	4.0 10	4441.041	∠ 1−	
		20/0.9.3	5.57	3/13 278	1 1 ⁺	
		4107.6.7	4313	1346 635	1+	
		4890.87 15	100.6	563,1993	2+	
		4982.7 7	21.5	472.2071	1 ⁺	
5478.99	$(1,2)^{-}$	2106.5 5	<20	3371.830	2-	I_{y} : From 15 5 in a multiplet.
		3632.70 13	68 7	1846.026	2+	
		4131.7 9	20.5 13	1346.635	1+	
		4137.14 12	100.0 26	1341.438	2+	
		4915.00 16	37.7 20	563.1993	2+	
		5006.30 8	29.1 13	472.2071	1+	
5775.7	$(2^+, 3^+)$	4433.8 3	100	1341.438	2+	
5809.48	2-	1247.504 23	100.0 18	4561.95	2-	
		1832.00 11	73 3	3977.33	1 1+	
		2220.00 /	13 5	3589.31	1 · 2+	
		5295.0 0	2.3 9	2313.37	5 1 ⁺	
		5245 51 21	4 1 5	563 1003	2^{+}	
		5336 64 17	635	472 2071	1 ⁺	
5863.13	(2)	2118.0 4	100 35	3745.04	3-	
0000110	(_)	4521.23 22	65 5	1341.438	2 ⁺	
5918.26	(2)	858.1 5	83 45	5059.629	$(3)^{-}$	
		1225.0 6	10 3	4692.06	(3 ⁻)	
		1711.16 <i>16</i>	33 4	4207.143	$(2)^{-}$	
		2546.51 21	22 4	3371.830	2^{-}	
		4571.14 5	88 10	1346.635	1+	
		5445.49 16	100.0 19	472.2071	1+	
5953.33	(1^{-})	2009.60 17	100 12	3943.66	(2^+)	
		2016.4 4	44 14	3933.58	$(1^+, 2^+, 3)$	
		22/1.2 3	12.3	3681.78	0'	

$\gamma(^{24}$ Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Comments
5953.33	(1^{-})	4107.3 3	16.2 22	1846.026	2+	
5966.24	(0^+)	2378.0 8	13.6 26	3589.31	1+	I_{γ} : weighted average of 13.2 26 from (³ He,p γ) and 17 8 from (n, γ) E=thermal.
		4619 10 18	$18^{@} 4$	1346 635	1+	L. Other: 17.8 in $(n v)$ E=th
		5402.8.7	$100^{@} 5$	472 2071	1+	$I : \text{Other: } 100 17 \text{ in } (n, \gamma) E \text{ the}$
6072 75	(2)	820 27 21	96.27	5252.16	1	1_{γ} . Other. 100 17 III (II, y) E-III.
0072.75	(2)	1875 6 4	8427	4196 18	$(2)^{-}$	
		2482.9.5	5.7.12	3589.31	1+	
		3168.3 3	13.3 9	2903.935	3+	
		4187.39 26	93	1885.537	3+	
		4226.32 14	9.6 6	1846.026	2+	
		4725.81 9	30.7 15	1346.635	1+	
		4727.58 7	7.2 21	1344.648	3 ⁽⁺⁾	
		4730.69 9	100.0 24	1341.438	2+	
		5507.8 8	1.5 9	563.1993	2+	
		5599.94 14	38.6 9	472.2071	1+	
6111.56	$(2^+, 3^+)$	2521.92 <i>21</i>	100 9	3589.31	1+	
		6111.1 <i>3</i>	11.9 <i>16</i>	0.0	4+	
6176.65	$(1^{-},2^{-})$	4829.68 18	93 7	1346.635	1+	
(222.2.4)	(1+ 0+)	5703.2 3	100 7	472.2071	1+	
6222.34	$(1^+, 2^+)$	3244.31 7	5 2	2977.776	2+ 2+	
		4376.02 13	100 5	1846.026	2'	
		48/3.18 /	0.1 I0	1340.033	1 · 2+	
6247 40	$(2^+ 2^+)$	2028.41 / 1695 7 2	$0.1 \ 10$	303.1993	2-	
0247.49	(2,5)	2062 4 4	3.77 18.6	4301.93	$(1 3)^+$	
		2002.4 4	54 15	3077 33	(1,3) 1 ⁻	
		2591.71.20	100 10	3655.84	$(2^+, 1^+, 3^+)$	
		2657.6 3	7.1 7	3589.31	1+	
		2833.7 3	3.7 5	3413.278	1+	
		2875.6 4	5.1 5	3371.830	2-	
		3343.27 8	53 4	2903.935	3+	
		4361.57 17	4.88 24	1885.537	3+	
		4900.46 13	34.9 22	1346.635	1+	
		4902.0 <i>3</i>	45 18	1344.648	$3^{(+)}$	
		4904.2 5	22 5	1341.438	2+	
		5683.2 <i>3</i>	3.2 5	563.1993	2+	
		5774.62 13	60.7 12	472.2071	1+	
	(6246.5 12	0.73 24	0.0	4 ⁺	
6251.10	$(2)^{-}$	943.4 5	17 4	5308.95	(2^+)	
		2623.3 4	28 7	3628.18	3' 1+	
		2001.55 14	/2.6	3389.31	1'	
		4404.4 3	100 /	1840.020	2+ 2+	
		4908.0 0	0/ 19	1341.438	L	

14

$\gamma(^{24}$ Na) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
6256.90	1-	2279.3 4	100 21	3977.33	1-	6407.03	(2 ⁻)	2993.62 11	100 5	3413.278	1+
		2574.9 <i>3</i>	42 10	3681.78	0^{+}			6406.4 7	20 5	0.0	4^{+}
		5784.4 <i>5</i>	48 4	472.2071	1^{+}	6448.31		3934.34 25	789	2513.37	3+
6407.03	(2 ⁻)	1964.3 4	13 5	4441.641	2^{-}			4562.57 25	100 9	1885.537	3+

[†] From (n,γ) E=Thermal, except where otherwise noted.

[±] From (d, $\alpha\gamma$), based on α - γ angular correlation measurements, except where otherwise noted. Magnetic and electric nature assigned based on RUL, if applicable.

[#] From (d, φγ), cased on φγ
[#] From (d, φγ).
[@] From (³He, pγ).
[&] Additional information 1.

Level Scheme

²⁴₁₁Na₁₃

Level Scheme (continued)

Level Scheme (continued)

 $^{24}_{11}Na_{13}$

Level Scheme (continued)

Level Scheme (continued)

 $^{24}_{11}Na_{13}$

Level Scheme (continued)

 $^{24}_{11}Na_{13}$

Level Scheme (continued)

 $^{24}_{11} Na_{13} \\$

23

ž

From ENSDF

Adopted Levels, Gammas

 $^{24}_{11}$ Na $_{13}$ -23

Level Scheme (continued)

Intensities: Relative photon branching from each level

²⁴₁₁Na₁₃