${ }^{25} \mathrm{Mg}\left(\mathrm{d},{ }^{3} \mathrm{He}\right),\left({ }^{11} \mathrm{~B},{ }^{12} \mathrm{C}\right) \quad$ 1998Ve01,1971Kr04,2006De32
$\frac{\text { Type }}{\frac{\text { Full Evaluation }}{}} \frac{\text { Author }}{\text { M. Shamsuzzoha Basunia, Anagha Chakraborty }} \quad \frac{\text { Citation }}{\text { NDS 186, } 2(2022)} \quad \frac{\text { Literature Cutoff Date }}{31-M a r-2022}$
$J^{\pi}\left({ }^{25} \mathrm{Mg}\right)=5 / 2^{+}$.
1998Ve01: ${ }^{25} \mathrm{Mg}\left(\mathrm{d},{ }^{3} \mathrm{He}\right) \mathrm{E}_{\mathrm{d}}=29 \mathrm{MeV} .{ }^{25} \mathrm{Mg}$ target (with 96% enrichment) with carbon backing having thickness about $5 \mu \mathrm{~g} / \mathrm{cm}^{2}$ was used. The ${ }^{3} \mathrm{He}$ particles were momentum analyzed with an Enge split-pole magnetic spectrograph. Measured $\sigma\left(\mathrm{E}\left({ }^{3} \mathrm{He}\right), \theta\right)$ and compared with DWBA calculations.
1971Kr04: ${ }^{25} \mathrm{Mg}\left(\mathrm{d},{ }^{3} \mathrm{He}\right) \mathrm{E}=52 \mathrm{MeV}$. Measured $\sigma\left(\mathrm{E}\left({ }^{3} \mathrm{He}\right), \theta\right)$, $\mathrm{E}-\Delta \mathrm{E}$ telescope.
2006De32: The reaction ${ }^{25} \mathrm{Mg}\left({ }^{11} \mathrm{~B},{ }^{12} \mathrm{C}\right)$ at $\mathrm{E}=35 \mathrm{MeV}$ was used. The beam was delivered by the 8 MV Sao Paulo Pelletron Tandem accelerator. An enriched (97% enrichment) ${ }^{25} \mathrm{Mg}$ target on carbon backing was used. A very thin layer of ${ }^{209} \mathrm{Bi}$ was evaporated on carbon backing for the sake of normalization purpose. The detection system comprised of three telescopes formed by gas proportional counters as the $\Delta \mathrm{E}$ detectors and the silicon surface barrier detectors for the energy measurements. Measured angular distributions of the out-going particles and compared with DWBA calculations. The DWBA calculations were carried out using two different optical potentials, the Sao Paulo Optical Potential (PSP) and the Wood-Saxon potential (POT2).

			${ }^{24} \mathrm{Na}$ Levels
$\underline{\mathrm{E}(\text { level) })^{\dagger}}$	L^{\dagger}	$\mathrm{C}^{2} \mathrm{~S}^{\dagger}$	Comments
0	2	0.88	$\mathrm{C}^{2} \mathrm{~S}: 1.07$ (following PSP), 0.601 (following POT2) (from 2006De32); 1.37 (from 1971Kr04).
4755	2	0.13	$\mathrm{C}^{2} \mathrm{~S}$: 0.118(following both PSP and POT2)(from 2006De32).
5685	2	0.42	$\mathrm{C}^{2} \mathrm{~S}: 0.45$ (following PSP), 0.268 (following POT2) (from 2006De32); 0.41 (from 1971Kr04).
$1348^{\ddagger} 5$	2	0.48	$\mathrm{C}^{2} \mathrm{~S}: 2006 \mathrm{De} 32$ provides separately the spectroscopic factors for the triplet of states 1341, 1345, and 1347 keV . The quoted values are: 0.0 (following both PSP and POT2) for the $1341-\mathrm{keV}$ state, 0.877 (following PSP), 0.461 (following POT2) for the $1345-\mathrm{keV}$ state, 0.0 (following both PSP and POT2) for the $1347-\mathrm{keV}$ state; 0.58 (from 1971Kr04).
15145	2	0.34	$\mathrm{C}^{2} \mathrm{~S}: 0.60$ (following PSP), 0.322 (following POT2) (from 2006De32); 0.53 (from 1971Kr04).
18455	2	<0.013	
18835	2	0.14	
25115	2	0.13	
25605	2	0.14	
29055	0	<0.27	L: From 1971 Kr 04 - from a comparison with typical angular distributions from the ${ }^{24} \mathrm{Mg}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{23} \mathrm{Na}$ reaction. Other: 2 (1998 Ve 01 - from two measured data points).
29785	2	<0.06	
32145	2	0.054	
33715	1	0.08	
34135	2	0.010	
36305	2	<0.037	
36575	2	<0.043	
37455	1	0.06	
38845			
39345	1	0.70	
39745			
41405			
41945			
44385			
45245	1	0.59	
46195			
46925			
47515			
48885			
49075			
49365	2		L: from 1971 Kr 04 - from a comparison with typical angular distributions from the ${ }^{24} \mathrm{Mg}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{23} \mathrm{Na}$ reaction.
49735			
50285			

${ }_{11}^{24} \mathrm{Na}_{13} \quad$ From ENSDF $\quad{ }_{11}^{24} \mathrm{Na}_{13}$
${ }^{25} \mathrm{Mg}\left(\mathbf{d},{ }^{3} \mathrm{He}\right),\left({ }^{11} \mathbf{B},{ }^{12} \mathbf{C}\right) \quad$ 1998Ve01,1971Kr04,2006De32 (continued) $)$
$\xrightarrow{24} \mathrm{Na}$ Levels (continued)

$\mathrm{E}(\mathrm{level})^{\dagger}$	L^{\dagger}	$\mathrm{C}^{2} \mathrm{~S}^{\dagger}$	$\mathrm{E}(\mathrm{level})^{\dagger}$		$\mathrm{C}^{2} \mathrm{~S}^{\dagger}$	$\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$		$\mathrm{C}^{2} \mathrm{~S}^{\dagger}$	$\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$	L^{\dagger}	$\mathrm{C}^{2} \mathrm{~S}^{\dagger}$
50555			54525	1	0.08	58465	1	0.02	68465		
51155			54765			58635	1	0.008	69055	1	0.09
51895	1	0.05	56275			62235			70845	1	0.22
52435	1	0.21	56745			62485			71445		
53355			57335			67155			72465	1	0.04
54025			57705			67875			73135		

\dagger From 1998Ve01 unless otherwise stated.

* Multiplet.

