²⁴₁₁Na₁₃

²⁴Mg(d,²He) 1995Xu02,2002Ra12

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022

Other: 2002Ra15.

1995Xu02: The experiment was performed using 125.2 MeV deuteron beams from the Texas A&M University K500 superconducting cyclotron. Self-supporting ²⁴Mg targets having 1.95 mg/cm² thickness were used. The Texas A&M Proton Spectrometer was used to detect the correlated protons from ²He decay. Measured differential cross-sections.

2002Ra12: The reaction ²⁴Mg(d,²He), E=170 MeV was used. The 170 MeV deuteron beams were delivered by the AGOR cyclotron. The detection system was comprised of two vertical drift chambers and a tracking detector of a set of four multiwire proportional chambers. The detection system was placed near the focal plane of the Big-Bite Spectrometer (BBS). Self-supporting target of ²⁴Mg having a thickness of 7 mg/cm² and 99.9% enrichment was used. Measured excitation energy spectra, differential cross-sections. Deduced Gamow-Teller matrix elements. Performed DWBA analysis.

²⁴Na Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
472.2	1+	 σ=0.08 mb/sr 4 (1995Xu02), dσ/dΩ=0.138 mb/sr 12 (2002Ra12). B(GT⁺)=0.049 4 3 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
1346.6	1+	σ =0.84 mb/sr 6 (1995Xu02), d σ /d Ω =1.563 mb/sr 85 (2002Ra12). B(GT ⁺)=0.654 35 42 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
1885.5		 dσ/dΩ=0.087 mb/sr 26 (2002Ra12). J^π: 1⁺ in 2002Ra12 (dσ/dΩ and DWBA are not shown in fig). 3⁺ in Adopted Levels. B(GT⁺)=0.025 8 2 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
3413.3	1+	$d\sigma/d\Omega=0.667$ mb/sr 39 (2002Ra12). B(GT ⁺)=0.290 16 18 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
3589.3	1+	 σ=0.52 mb/sr 5 (1995Xu02). The quoted value includes the combined scattering effect from 3413-keV and 3589-keV level. \$dσ/dΩ=0.266 mb/sr 18 (2002Ra12). B(GT⁺)=0.095 6 6 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
3933.6		J^{π} : 1 ⁺ in 2002Ra12 (d σ /d Ω and DWBA are not shown in fig). (1 ⁺ , 2 ⁺ , 3) in Adopted Levels. d σ /d Ω =0.193 mb/sr 58 (2002Ra12). B(GT ⁺)=0.070 22 4 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
5059.6		 J^π: 1⁺ in 2002Ra12 (dσ/dΩ and DWBA are not shown in fig). (3)⁻ in Adopted Levels. dσ/dΩ=0.093 mb/sr 27 (2002Ra12). B(GT⁺)=0.024 7 2 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
6247.5		 J^π: 1⁺ in 2002Ra12 (dσ/dΩ and DWBA are not shown in fig). (2⁺,3⁺) in Adopted Levels. dσ/dΩ=0.086 mb/sr 26 (2002Ra12). B(GT⁺)=0.031 10 2 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).
6715	1+	J^{π} : from 2002Ra12. $d\sigma/d\Omega=0.161$ mb/sr <i>12</i> (2002Ra12). B(GT ⁺)=0.071 <i>5 4</i> (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic)
7200	1+	 J^π: from 2002Ra12. dσ/dΩ=0.173 mb/sr 13 (2002Ra12). B(GT⁺)=0.050 4 3 (2002Ra12) (first and second uncertainty corresponds respectively to statistical and systematic).

[†] From Adopted Levels, rounded value to one-tenth of a keV.

[‡] From Adopted Levels, except where otherwise noted.