### <sup>24</sup>Al ε decay (130.7 ms) 1979Ho08,1971To12

|                 | History                                    |                   |                        |
|-----------------|--------------------------------------------|-------------------|------------------------|
| Туре            | Author                                     | Citation          | Literature Cutoff Date |
| Full Evaluation | M. Shamsuzzoha Basunia, Anagha Chakraborty | NDS 186, 2 (2022) | 31-Mar-2022            |

Parent: <sup>24</sup>Al: E=425.81 *10*;  $J^{\pi}=1^+$ ;  $T_{1/2}=130.7$  ms *13*;  $Q(\varepsilon)=13884.77$  *23*;  $\%\varepsilon+\%\beta^+$  decay=30.4 7

<sup>24</sup>Al-E,J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From <sup>24</sup>Al Adopted Levels.

<sup>24</sup>Al-Q( $\varepsilon$ ): From 2021Wa16.

Other references: 1966Ar02, 1979Sh11, 1982Ra05, 2011Ni18, 2011Ma88.

1979Ho08: <sup>24</sup>Al produced from <sup>24</sup>Mg(p,n). Ge(Li), Si(Au) detectors. Measured:  $E\gamma$ ,  $I\gamma$ ,  $I\beta$ ,  $I\alpha$ . A total  $\%\epsilon\alpha$  branching of 0.028 6 has been reported.

1971To12: <sup>24</sup>Al produced from <sup>24</sup>Mg(p,n). Si(Au) detector. Measured  $\beta$ -delayed E $\alpha$ , I $\alpha$ , half-life.

1966Ar02: Measured E $\gamma$  and I $\gamma$  of isomeric transition, relative I $\beta$ . Deduced IT branching. Ge(Li) and a wedge-gap magnetic spectrometer.

1979Sh11: Measured E $\gamma$ , I $\gamma$ ,  $\gamma$  branching,  $\beta$  branching. Ge(Li), a counter telescope of two plastic scintillators.

1982Ra05: Measured E $\gamma$ , I $\gamma$ . Ge(Li) detector.

2011Ni18,2011Ma88: measured  $\beta$  decay time spectra,  $E\gamma$ ,  $\gamma\beta$ -coin; deduced  $\beta$  decay branching ratios. HPGe and scintillator detectors.

### <sup>24</sup>Mg Levels

| E(level) <sup>†</sup>         | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | Comments                                                                   |
|-------------------------------|--------------------|------------------|----------------------------------------------------------------------------|
| 0                             | $0^{+}$            | stable           |                                                                            |
| 1368.667 5                    | 2+                 |                  |                                                                            |
| 4238.06 24                    | 2+                 |                  |                                                                            |
| 9828.1 20                     | 1+                 |                  |                                                                            |
| 9965.3 11                     | $1^{+}$            |                  |                                                                            |
| 10059 <i>3</i>                | $(1,2)^+$          |                  |                                                                            |
| 10679.7 <sup>‡</sup> <i>3</i> | $0^{+}$            |                  | E(level): Other: 10683 10 (1979Ho08).                                      |
| 10917.2 <sup>‡</sup> 3        | 2+                 |                  | E(level): Other: 10922 10 (1979Ho08).                                      |
| 11018 <sup>‡</sup> <i>3</i>   | 2+                 |                  | E(level): Others: 11017 5 (1979Ho08), 11000 20 (1971To12).                 |
| 11457 3                       | $(0^{+})$          |                  | E(level): Others: 11457 10 (1979Ho08), 11440 20 (1971To12).                |
| 11522 <sup>‡</sup> 2          | 2+                 |                  | E(level): Others: 11520 10 (1979Ho08), 11510 30 (1971To12 in parentheses). |
| 12404.9 <sup>‡</sup> 5        | 2+                 |                  | E(level): Other: 12401 10 (1979Ho08).                                      |
| 12467 3                       | 2+                 |                  | E(level): Other: 12459 10 (1979Ho08).                                      |

<sup>†</sup> From a least-squares fit to  $\gamma$ -ray energies, except where otherwise noted.

<sup>‡</sup> From Adopted Levels.

| E(decay)    | E(level) | Ιβ <sup>+</sup> #     | Ie#                          | Log ft  | $I(\varepsilon + \beta^+)^{\dagger \#}$ | Comments                                                                                                                        |
|-------------|----------|-----------------------|------------------------------|---------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| (1844 3)    | 12467    | 4.×10 <sup>-5</sup> 2 | 2.×10 <sup>-6</sup> 1        | 5.68 22 | 4×10 <sup>-5</sup> <sup>‡</sup> 2       | av Eβ=334.4 13; εK=0.0467 6; εL=0.00407 5;<br>εM+=0.000262 3                                                                    |
| (1905.7 6)  | 12404.9  | 8.×10 <sup>-5</sup> 3 | 3.×10 <sup>-6</sup> 1        | 5.50 17 | $8 \times 10^{-5 \ddagger} 3$           | av Eβ=360.75 25; εK=0.03744 8; εL=0.003259 7;<br>εM+=0.0002100 4                                                                |
| (2788.6 20) | 11522    | 0.0017 6              | 8.×10 <sup>-6</sup> 3        | 5.43 16 | 0.0017 <sup>‡</sup> 6                   | av E $\beta$ =757.03 98; $\varepsilon$ K=0.004521 16; $\varepsilon$ L=0.0003935<br>1; $\varepsilon$ M+=2.535×10 <sup>-5</sup> 9 |
| (2854 3)    | 11457    | 0.009 3               | 4.×10 <sup>-5</sup> <i>I</i> | 4.77 15 | 0.009 <sup>‡</sup> 3                    | av Eβ=787.1 14; εK=0.004053 21; εL=0.0003527<br>1; εM+=2.272×10 <sup>-5</sup> 12                                                |
| (3293 3)    | 11018    | 0.016 5               | 3.7×10 <sup>-5</sup> 12      | 4.92 14 | 0.016 <sup>‡</sup> 5                    | av E $\beta$ =992.0 15; $\varepsilon$ K=0.002123 9; $\varepsilon$ L=0.0001847 8;<br>$\varepsilon$ M+=1.190×10 <sup>-5</sup> 5   |

 $\varepsilon, \beta^+$  radiations

Continued on next page (footnotes at end of table)

1979Ho08,1971To12 (continued)

|             |          |                       | <u>e</u>              | ε,β <sup>+</sup> radiati | ons (continued)                         |                                                                                                                                                      |
|-------------|----------|-----------------------|-----------------------|--------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(decay)    | E(level) | Iβ <sup>+</sup> #     | Ιε <sup>#</sup>       | Log ft                   | $I(\varepsilon + \beta^+)^{\dagger \#}$ | Comments                                                                                                                                             |
| (3393.4 4)  | 10917.2  | 9.×10 <sup>-5</sup> 4 | 2.×10 <sup>-7</sup> 1 | 7.26 20                  | 9×10 <sup>-5‡</sup> 4                   | av E $\beta$ =1039.48 <i>19</i> ; $\varepsilon$ K=0.001863 <i>1</i> ;<br>$\varepsilon$ L=0.000162; $\varepsilon$ M+=1.0445×10 <sup>-5</sup> 6        |
| (3630.9 4)  | 10679.7  | 0.0009 3              | $1. \times 10^{-6}$   | 6.44 15                  | 9×10 <sup>-4‡</sup> 3                   | av E $\beta$ =1151.91 <i>19</i> ; $\varepsilon$ K=0.0014004 <i>7</i> ;<br>$\varepsilon$ L=0.000122; $\varepsilon$ M+=7.849×10 <sup>-6</sup> <i>4</i> |
| (4252 3)    | 10059    | 0.17 9                |                       | 4.58 23                  | 0.17 9                                  | av E $\beta$ =1448.6 15                                                                                                                              |
| (4345.3 11) | 9965.3   | 1.83 19               | 0.00136 14            | 3.60 5                   | 1.83 19                                 | av $E\beta$ =1493.70 55; $\varepsilon$ K=0.0006805 7;<br>$\varepsilon$ L=5.920×10 <sup>-5</sup> 6; $\varepsilon$ M+=3.814×10 <sup>-6</sup> 4         |
| (4482.5 20) | 9828.1   | 0.17 9                |                       | 4.71 23                  | 0.17 9                                  | av $E\beta = 1559.8398$                                                                                                                              |
| (10072.5 4) | 4238.06  | 0.33 12               |                       | 6.37 16                  | 0.33 12                                 | av $E\beta = 4308.81$                                                                                                                                |
| (12941.9 3) | 1368.667 | 3.7 9                 |                       | 5.89 11                  | 3.7 9                                   | av $E\beta$ =5735.17<br>I( $\varepsilon + \beta^+$ ): Other: 3.6 5 in 2011Ni18.                                                                      |
| (14310.6 3) | 0        | 24.3 11               |                       | 5.30 2                   | 24.3 11                                 | av $E\beta$ =6416.56<br>I( $\varepsilon + \beta^+$ ): Other: 24.3 9 in 2011Ni18.                                                                     |

<sup>†</sup> From  $\gamma$ -ray intensity balance for levels up to 10058.54, except where otherwise noted.

 $^{24}\mathrm{Al}\,\varepsilon$  decay (130.7 ms)

<sup>‡</sup> From  $\%\alpha$  branching in 1979Ho08.

<sup>#</sup> Absolute intensity per 100 decays.

# $\gamma$ <sup>(24</sup>Mg)

Iγ normalization: From %Iγ(1368.6)=4.4 10, deduced in 2011Ni18 from β-γ coincidence measurements and the Iγ(1368.6) component for this isomeric decay with respect to the <sup>24</sup>Al ε decay (2.053 s).

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\#a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>@</sup> | $\delta^{@}$ | α <b>&amp;</b>          | Comments                                                                                                                                                                                                                                                               |
|-------------------------|--------------------|------------------------|--------------------|----------|----------------------|--------------------|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1368.625 <sup>‡</sup> 5 | 5.3 10             | 1368.667               | 2+                 | 0        | 0+                   | E2                 |              | 5.62×10 <sup>-5</sup> 8 | % Iy=4.4 10<br>$\alpha$ =5.62×10 <sup>-5</sup> 8;<br>$\alpha$ (K)=9.29×10 <sup>-6</sup> 13;<br>$\alpha$ (L)=5.97×10 <sup>-7</sup> 9;<br>$\alpha$ (M)=2.21×10 <sup>-8</sup> 3<br>$\alpha$ (IPF)=4.63×10 <sup>-5</sup> 7<br>E <sub>y</sub> : Other: 1368.6 1 (1979Ho08). |
| 2869.3 4                | 0.1 <i>I</i>       | 4238.06                | 2+                 | 1368.667 | 2+                   | M1+E2              | -23 9        | 7.29×10 <sup>-4</sup>   | $\alpha(K)=2.38\times10^{-6} 4;$<br>$\alpha(L)=1.529\times10^{-7} 22;$<br>$\alpha(M)=5.67\times10^{-9} 8$<br>$\alpha(IPF)=0.000727 11$                                                                                                                                 |
| 4237.6 3                | 0.3 1              | 4238.06                | 2+                 | 0        | 0+                   | [E2]               |              | 1.25×10 <sup>-3</sup>   | $\alpha(K)=1.330\times10^{-6} \ 19;$<br>$\alpha(L)=8.54\times10^{-8} \ 12;$<br>$\alpha(M)=3.16\times10^{-9} \ 5$<br>$\alpha(IPF)=0.001253 \ 18$                                                                                                                        |
| 8595.1 <i>15</i>        | 0.6 1              | 9965.3                 | $1^{+}$            | 1368.667 | $2^{+}$              |                    |              |                         |                                                                                                                                                                                                                                                                        |
| 8688.6 25               | 0.2 1              | 10059                  | $(1,2)^+$          | 1368.667 | $2^{+}$              |                    |              |                         |                                                                                                                                                                                                                                                                        |
| 9825.9 20               | 0.2 1              | 9828.1                 | $1^{+}$            | 0        | $0^{+}$              |                    |              |                         |                                                                                                                                                                                                                                                                        |
| 9963.0 15               | 1.6 2              | 9965.3                 | $1^{+}$            | 0        | $0^{+}$              |                    |              |                         |                                                                                                                                                                                                                                                                        |

<sup>†</sup> From 1979Ho08, except otherwise noted.

<sup>‡</sup> From Adopted Gammas.

<sup>#</sup> From 1979Ho08, except where otherwise noted.

#### $^{24}\mathrm{Al}\,\varepsilon$ decay (130.7 ms) 1979Ho08,1971To12 (continued)

 $\gamma(^{24}Mg)$  (continued)

<sup>@</sup> From Adopted Gammas.
<sup>&</sup> Additional information 1.
<sup>a</sup> For absolute intensity per 100 decays, multiply by 0.830 *19*.

## <sup>24</sup>Al ε decay (130.7 ms) 1979Ho08,1971To12

### Decay Scheme







 $^{24}_{12}Mg_{12}$