¹²C(²⁴Mg,2¹²C),(²⁰Ne,2¹²C) 2001Sh08,2001Fr03

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022

Others: 1999Co15, 1998Ch48, 1995Le22, 1995Cu01 (Brief refort – appears to be superseded by 2001Sh08, 2001Fr03), 1995Ch07, 1995Mi02, 1991Fu09.

2001Sh08: ¹²C(²⁴Mg, 2¹²C), E=170 MeV; natural carbon targets. Two Gas-Si-CsI hybrid detector telescopes centered horizontally on either side of the optical beam axis at laboratory angle of 16°, 50 mm deep longitudinal ionization chambers, CsI(Tl) scintillation detectors. Measured breakup fragments energy spectra, angular correlations. Deduced levels, spin and parity.

2001Fr03: ${}^{12}C({}^{20}Ne, 2{}^{12}C)$, (${}^{20}Ne, {}^{8}Be{}^{16}O$), E=110, 160 MeV; natural carbon targets. Two gas-silicon hybrid telescopes, gas ionization chambers provided ΔE signal. Measured breakup fragments energy spectra, angular correlations. Deduced levels, spin and parity. FWHM ~1.3 MeV.

1998Ch48: ¹²C(¹²C, ¹²C'), E(cm)=31-45 MeV; measured excitation function, particle angular correlations following breakup. Deduced high-spin resonances.

1995Mi02: ${}^{12}C({}^{12}C, \alpha)$, $({}^{12}C, {}^{8}Be)$, E=50-70 MeV; natural ${}^{12}C$ target. Two surface barrier detector telescopes. Measured α , ${}^{8}Be$ spectra, $\sigma(\theta)$ vs E. Deduced resonance, decay features, α -chain character.

²⁴Mg Levels

E(level) [†]	$J^{\pi}^{\dagger \ddagger}$	Comments
$20.5 \times 10^3 $ $\&$ 2	(2^{+})	
21.1×10 ³ 2	4+	
21.9×10 ³ 2	4+	
$22.3 \times 10^3 2$	4+	
22.4×10^3 @ 2	(8) [@]	
$22.9 \times 10^3 \frac{\&}{2}$	6+	E(level), J^{π} : In 2001Fr03: 23.0×10 ³ 200 and spin=6,8 (²⁰ Ne, ⁸ Be ¹⁶ O).
23.8×10 ³ 2	6 ⁺ ,(8 ⁺)	E(level), J^{π} : In 2001Fr03: 23.4×10 ³ 200 and spin=8 (²⁰ Ne, 2 ¹² C) and 23.8×10 ³ 200 and spin=8 (²⁰ Ne, ⁸ Be ¹⁶ O).
24.3×10 ³ @ 2	9 [@]	
24.6×10 ³ 2	8+	E(level), J^{π} : In 2001Fr03: 24.5×10 ³ 200 and spin=8,6 (²⁰ Ne, 2 ¹² C).
24.8×10^3 @ 2	9 [@]	
$25.1 \times 10^3 2$	(6 ⁺)	E(level), J^{π} : In 2001Fr03: 25.1×10 ³ 200 and spin=8 (²⁰ Ne, 2 ¹² C).
$(25.3 \times 10^3 @)$		E(level): Uncertain level not adopted.
25.8×10^3 @ 2	(9,10) [@]	
$26.2 \times 10^{3#} 2$	10 [#]	
$26.4 \times 10^3 2$	8+	
$26.8 \times 10^{3#}$ 2	10 [#]	
27.4×10^3 @ 2		
$27.8 \times 10^{3#} 2$	10 [#]	E(level), J^{π} : In 2001Fr03: 27.9×10 ³ 200 and spin=10 (²⁰ Ne, ⁸ Be ¹⁶ O).
$29.1 \times 10^{3#} 2$	10,12 [#]	E(level): In 2001Fr03: $29.0 \times 10^3 \ 200 \ (^{20}\text{Ne}, {}^8\text{Be}{}^{16}\text{O}).$
30.3×10 ³ [#] 2	12 [#]	E(level): In 2001Fr03: 29.9×10^3 200 (²⁰ Ne, ⁸ Be ¹⁶ O).
$31.2 \times 10^{3#} 2$	12 [#]	
32.7×10 ³ [#] 2	10 [#]	E(level): Other: 32.5×10^3 (1998Ch48) – dominant total angular momentum J=18.
37.5×10^3		E(level): From 1998Ch48 – dominant total angular momentum J=20.
43.0×10^{3}		E(level): From 1998Ch48 – dominant total angular momentum J=22.
46.4×10^3	$(14^+, 16^+)$	E(level), J^{π} : From 1995Mi02.

[†] From 2001Sh08. Others are from 2001Fr03, flagged by footnote. 2001Sh08 note an uncertainty of ~150 keV in the absolute excitation energy was expected for breakup experiments of this kind. 2001Fr03 reports a systematic uncertainty in the reconstructed excitation energies of ~200 keV. Evaluators assign 200 keV in both cases.

¹²C(²⁴Mg,2¹²C),(²⁰Ne,2¹²C) 2001Sh08,2001Fr03 (continued)

²⁴Mg Levels (continued)

- [‡] Spin parity assignments are based on measured and projected angular correlation measurement data of the decaying state in 2001Sh08 or 2001Fr03. The periodicity of the ridges is described by a Legendre polynomial of order of the spin of the decaying state. Parity $(-1)^{J}$ for the decaying state of natural parity, if the recoiling particle has spin-zero.
- [#] From 2001Fr03 (20 Ne,2 12 C).
- [@] From 2001Fr03 (20 Ne, 8 Be 16 O).
- & Overlaps with three or more Adopted Levels, not referenced in the adopted dataset.