$^{24}_{12}Mg_{12}$

¹²C(¹²C,p):Resonances 2018Zi03

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022

Other: 1963Al07 from ${}^{12}C({}^{12}C,\alpha)$ report resonance levels and suggest spins 2 and 4 for the "quasimolecular" states at 19.5- and 19.9-MeV excitation in ${}^{24}Mg$.

2018Zi03: 3 to 7-MeV 12 C beam with $\Delta E=3$ keV and energy spread of 2 keV. 12 C target was mounted on a water-cooled stainless-steel backing inside a target chamber at 5×10^{-9} mbar pressure. Different targets with purities of 99.997%, 99.98%, 99.95%, 99.999%, as well as pristine highly ordered pyrolytic graphite (HOPG) targets were used to find lower level of impurity and HOPG had a lower level of 0.3 ppm hydrogen impurity. Two identical ΔE -E telescopes placed at 130° to measure the proton spectra. The detectors were cooled to 0° C. For data analysis, only events with signals in both detectors were used for data analysis. Measured thick target yield. Only p_0 and p_1 proton groups were considered for data analysis to avoid interfering protons from other reactions. FWHM \approx 250 keV. Deduced modified astrophysical S factors and resonance strengths.

²⁴Mg Levels

E(level) [†]	Comments
13193?	E(level): $E_r=1500$, a hypothetical resonance quoted in 2018Zi03. Estimated an upper limit of resonance strength $\omega\gamma(p_0+p_1) < 1.5 \ \mu eV$ (2018Zi03).
(13773 50)	E(level): $E_r=2080\ 50$, value from literature. Not identified by 2018Zi03 due to poor counting statistics, relatively large step size, and lack of data below 2000 keV. Estimated an upper limit of resonance strength $\omega\gamma(p_0+p_1) < 0.6\ \mu\text{eV}$ and $\omega\gamma_{tot} < 18\ \mu\text{eV}$ (2018Zi03).
≈14793 [‡]	E(level): $E_r=3100$.
≈15093 [‡]	$E(\text{level}): E_r = 3400.$
≈15473 +	$E(\text{level}): E_r=3780.$

[†] From E_r (listed in comments section) and $S(p)(^{24}Mg)=11692.69$ keV 1 (2021Wa16).

[‡] Resonance energy from fit to the thick target yield data with two phenomenological partial widths and the resonance energy leading to a total of 10 fit parameters including a scaling parameter that accounts for the nonresonant contribution. An additional high-energy resonance was required to fit the thick-target yield data above 3800 keV and to account for contributions from higher lying resonances.