$^{12}C(^{12}C,\gamma)$ **2011Ma51**

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022	

Others: (2008Le27, 2008Ma56, 2007Je08 and 2005Je03 – same research group of 2011Ma51), 1988De18, 1981Na06, 1980Er06, 1979NaZX, 1978Sa05, 1969Fe05.

2011Ma51: E(c.m)=8 MeV. Target=60 μ g/cm² enriched in ¹²C beam. Fragment mass analyzer (FMA) and a multistep ion chamber/Parallel Grid Avalanche Counter (PGAC) were used for E- Δ E and tof measurement. 100 Compton-suppressed HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ using Gammasphere array. Gamma-ray spectra were correlated with ²⁴Mg residues. Also measured decay branching from a resonance at E(c.m.)=8.0 MeV with most probable J^{π} =4⁺.

1969Fe05: Studied excitation energy in the range of 19.73-25.3 MeV. Measured differential cross section $(d\sigma/d\Omega)$ 53 nb/sr 26 for the unresolved 2nd and 3rd excited states, 25 nb/sr 13 for the 1st excited state, and >6 nb/sr for g.s.

1978Sa05: E(c.m.)=5-11 MeV; reported a 2⁺ resonance state at 21.98 MeV 3, measured a peak cross section of 44.3 nb/sr 45 at 45° in ${}^{12}C({}^{12}C,\gamma_0)$. FWHM=261 keV 74.

1980Er06: E(c.m.)=11.8-20 MeV; measured σ (E); deduced resonances, spin, parity, Γ (¹²C), Γ .

1981Na06: E(c.m.)=5.6-8 MeV; measured E γ , $\sigma(\theta\gamma, E)$, deduced resonances, Γ , $\Gamma\gamma$, $\Gamma(^{12}C)/\Gamma$. Large volume NaI detector. Same research group of 1978Sa05.

1988De18: E(c.m.)=4.7-6.0 MeV; deduced resonances, Γ(capture)/Γ. Hauser-Feshbach calculations. Natural targets. NaI spectrometer.

All data from 2011Ma51, except where otherwise noted.

²⁴Mg Levels

2011Ma51 note, a coincidence of three counts between the 4641 γ and 4571 γ , implying the depopulation of the known (3,4)⁺ (2⁺,3,4⁺ in adopted dataset) state at 10581 keV. The branch (4571 γ) carries about 10% (8% in the adopted dataset) of the decay of the state and authors were not able to obtain clear evidence for the more dominant γ transition branches of the state.

E(level)	\mathbf{J}^{π}	E(level)	J^{π}	E(level)	J^{π}
0	$\overline{0^+}$	5235	3+	8439	4+
1368	2+	6010	4+	9284	2+
4122	4+	7617	3-	9301	(2,3,4)
4238	2+	8358	3-	10028	5-
				10333	(3 ⁻)

 $\gamma(^{24}Mg)$

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$
1368	100	1368	2^{+}	$0 \ 0^+$	5161	2.4 [†] 4	9284	2+	4122 4+
1670	1.6 4	10028	5-	8358 3-	5176	2.4 7 4	9301	(2,3,4)	4122 4+
2346	3.1 6	8358	3-	6010 4+	5905	2.7 3	10028	5-	4122 4+
2754	22 1	4122	4+	1368 2+	6248	2.3 3	7617	3-	1368 2+
2870	2.6 6	4238	2^{+}	1368 2+	6988	6.0 4	8358	3-	1368 2+
3123	4.5 10	8358	3-	5235 3+	7069	3.5 4	8439	4+	1368 2+
3866	12.0 8	5235	3+	1368 2+	7914	$4.0^{\dagger} 4$	9284	2^{+}	1368 2+
4238	11.0 7	4238	2^{+}	$0 \ 0^{+}$	7931	4.0 [†] 4	9301	(2,3,4)	1368 2+
4641	8.4 6	6010	4+	1368 2+	8963	1.5 3	10333	(3-)	1368 2+

[†] Intensities for 5161+5176 or 7914+7931 doublets.

 $^{24}_{12}Mg_{12}$