Adopted Levels, Gammas

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 186, 2 (2022)	31-Mar-2022

 $Q(\beta^{-}) = 1.350 \times 10^{4} \ \textit{10}; \ S(n) = 3.81 \times 10^{3} \ \textit{10}; \ S(p) = 1.437 \times 10^{4} \ \textit{16}; \ Q(\alpha) = -1.665 \times 10^{4} \ \textit{13}$

 $S(2n)=1.139\times10^4$ 10, $S(2p)=3.880\times10^4$ 23, $Q(\beta^-n)=4.63\times10^3$ 10 (2021Wa16). 1970Ar09: ²⁴O produced and identified in ²³²Th(²²Ne,X) reaction at 174 MeV, measured yield. A total of 25 events were

Measurement of yields in fragmentation reactions: 2007No13, 2012Kw02, 2012Zh06.

²⁴F Levels

Cross Reference (XREF) Flags

A
24
O β $^{-}$ decay D $^{-}$ C(26 Ne,Xγ)
B 9 Be(25 F, 24 Fγ) E $^{-}$ C(27 Na, 24 Fγ)
C $^{-}$ C(24 F, 23 F)

E(level) [†]	J^{π} @	$T_{1/2}$	XREF	Comments
0‡	(3+)	382 ms <i>16</i>	ABCDE	$\%\beta^-$ =100; $\%\beta^-$ n<5.9 (1995ReZZ) J ^π : Absence of 24 F β^- feeding from 0 ⁺ , authors in 2015Ca09 propose 3 ⁺ based on 24 F β^- decay feeding to the 2 ⁺ and 4 ⁺ states of 24 Ne at 1981.5 and 3963.1 keV levels, respectively, quoting Ref. [18 – thesis] (not published yet); in 2004Sa14 (24 F, 23 F) 3 ⁺ based on one-neutron removal σ , core fragment longitudinal and transverse momentum distributions; also shell model calculations. T _{1/2} : Weighted average of 384 ms <i>16</i> (2007Su05 – 1980 γ (t) – γ -ray gated) and 340 ms <i>80</i> (1986Du07). Other: 435 ms <i>65</i> (2008ReZZ, 1995ReZZ) – omitted in the weighted averaging as a secondary source and carries less weight for higher uncertainty. Recommended half-life is same as that in 2015Bi05 horizontal evaluation.
521.6 [‡] 3	(2 ⁺)		AB DE	J^{π} : Absence of β^- feeding from 0 ⁺ in ²⁴ O β^- decay. γ from 1 ⁺ and γ to (3 ⁺). Shell model calculations also indicates 2 ⁺ .
1831.4 <i>4</i>	(1^+)		A E	J^{π} : log ft =4.1 in ²⁴ O β ⁻ decay.
2384? [#] <i>64</i>	$(4^+,3^+)$		E	
2739 [#] <i>14</i>	$(3^+,4^+)$		E	
3562 22	$(2^+,4^+)$		E	
3640 <i>40</i>	$(1^+, 2^+)$		E	

[†] From Eγ.

[‡] Suggested dominant configuration: $\pi d_{5/2} \otimes vs_{1/2}$ (>70%).

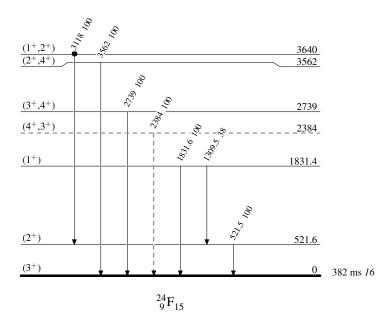
[#] Suggested dominant configuration: $\pi d_{5/2} \otimes \nu[(d_{5/2})^{-1}(s_{1/2})^2]$.

@ Assignment from 2015Ca09 (27 Na, 24 F γ) based on 24 O β^- decay, 24 F β^- decay, in-beam studies (27 Na, 24 F γ), γ ray feeding, and shell model calculations. For a few cases, some details are added in comments.

Adopted Levels, Gammas (continued)

$\gamma(^{24}F)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	\mathbf{E}_f	J_f^{π}	Comments
521.6	(2 ⁺)	521.5 3	100	0	(3^{+})	
1831.4	(1+)	1309.5 5	38 9	521.6	(2+)	I_{γ} : unweighted average of 46 5 from ²⁴ O β ⁻ decay and 29 6 from (²⁷ Na, ²⁴ F γ).
		1831.6 5	100 8	0	(3 ⁺)	I_{γ} : weighted average of 100 8 from ²⁴ O β ⁻ decay and 100 <i>12</i> from (²⁷ Na, ²⁴ F γ).
2384?	$(4^+,3^+)$	2384 ^{‡#} <i>64</i>	100	0	(3^{+})	
2739	$(3^+,4^+)$	2739 [‡] <i>14</i>	100	0	(3^{+})	
3562	$(2^+,4^+)$	3562 [‡] 22	100	0	(3^{+})	
3640	$(1^+,2^+)$	3118 [‡] <i>33</i>	100	521.6	(2^{+})	


 $^{^{\}dagger}$ From ^{24}O β^- decay, except otherwise noted. ‡ From $(^{27}Na,^{24}F\gamma).$

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level γ Decay (Uncertain) Coincidence

[#] Placement of transition in the level scheme is uncertain.