Coulomb excitation 2005Zh20,1957Ne07

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, J. K. Tuli	NDS 122, 293 (2014)	30-Jun-2013				

Additional information 1. 2005Zh20: ²⁰⁷Pb beam, E=1300 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) with the Gammasphere array of 101

Compton-suppressed HPGe detectors. 1993De12: 99.967% enriched ²³⁹Pu target. Projectile: ¹¹⁷Sn, E=42.9 MeV. Measured E γ , $\gamma\gamma$ coin. Detector: Spin Spectrometer,

an array of 45 NaI detectors and 18 BGO or NaI shielded, Compton-suppressed Ge detectors. Other: 1995Cr01. 1990StZZ: ²³⁹Pu target. Projectile: ⁹⁰Zr, E=500 MeV. Measured E γ , $\gamma\gamma$ coin. Detector: Ge(Li) array.

1957Ne07: ²³⁹Pu target. Projectile: Alpha particles, E=2.85 MeV. Measured Ey, Iy. Detector: proportional counter.

²³⁹Pu Levels

E(level) [†]	\mathbf{J}^{π}	Comments
0.0#	$1/2^{+}$	
7.861 ^{‡@} 2	3/2+	Additional information 2.
57.275 ^{‡#} 2	5/2+	Additional information 3. B(E2)=5.3 3 (1957Ne07) using α =214.
75.705 ^{‡@} 3	7/2+	Additional information 4.
163.76 ^{‡#} 3	9/2+	Additional information 5.
193.5 [@] 8	$11/2^+$	
318.5 [#] 7	$13/2^{+}$	
359.2 [@] 9	$15/2^+$	
469.8 <mark>&</mark>	$(1/2^{-})$	
492.1 ^{<i>a</i>}	$(3/2^{-})$	
505.6°	$(5/2^{-})$	
519.5# 9	$17/2^+$	
556.0^{a} /	(1/2)	
$5/0.9 \sim 10$	$19/2^{-1}$	
$583^{\circ\circ}$	(9/2)	
698 7 ^{&} 10	$13/2^{-1}$	
$764.7^{\#}.10$	$21/2^+$	
806.4 ^{<i>a</i>} 9	$15/2^{-1}$	
828.0 [@] 11	$23/2^{+}$	
857.5 <mark>&</mark> 10	$17/2^{-}$	
992.5 ^a 10	$19/2^{-}$	
1053.1 [#] 11	$25/2^+$	
1058.1 11	$21/2^{-}$	
1127.8 [@] 13	$27/2^+$	
1219.4 ^{<i>a</i>} 11	23/2-	
1300.9 ^{cc} 12	25/2-	
1381.5 [#] <i>13</i>	29/2+	
1467.8° 14	31/2*	
1407.4 13 1584.0 $\frac{1}{10}$	20/2-	
1748 5 [#] 14	29/2 33/2+	
1740.5 14 1795.4^a 18	$33/2^{-}$	

Coulomb excitation	2005Zh20,1957Ne07	(continued)
--------------------	-------------------	-------------

E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	\mathbf{J}^{π}
1847.0 [@] 15	35/2+	2529.4 ^a 23	39/2-	3108.0 ^{&} 20	45/2-	3895 ^a 3	51/2-
1908.9 ^{&} 15	33/2-	2590.1 [#] 17	$41/2^{+}$	3198.0 [@] 22	$47/2^{+}$	4080.0 ^{&} 24	$(53/2^{-})$
2143.4 ^{<i>a</i>} 21	35/2-	2672.0 ^{&} 17	$41/2^{-}$	3407 ^{<i>a</i>} 3	$47/2^{-}$	4087.1 [#] 24	$(53/2^+)$
2152.2 [#] 16	$37/2^+$	2714.0 [@] 19	$43/2^{+}$	3559.1 [#] 22	$(49/2^+)$	4256 [@] 3	$(55/2^+)$
2263.0 [@] 16	39/2+	2951.4 ^a 25	43/2-	3578.0 ^{&} 22	$(49/2^{-})$	4413 ^a 3	55/2-
2272.0 ^{&} 16	37/2-	3060.1 [#] 20	$45/2^{+}$	3713.0 [@] 24	$(51/2^+)$		

²³⁹Pu Levels (continued)

[†] Deduced by evaluators from least-squares fit to $E\gamma'$ s; $\Delta E\gamma=1$ keV assumed for each transition, unless otherwise noted. [‡] From ²³⁹Pu in Adopted Gammas.

[#] Band(A): 1/2[631], $\alpha = +1/2$. [@] Band(a): 1/2[631], $\alpha = -1/2$. [&] Band(B): Octupole band, $\alpha = +1/2$. Band associated with octupole vibration at low spin.

^{*a*} Band(b): Octupole band, $\alpha = -1/2$. Band associated with octupole vibration at low spin.

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]
7.860 [†] 3	7.861	$3/2^{+}$	0.0	$1/2^{+}$	
49.412 [†] 4	57.275	$5/2^{+}$	7.861	$3/2^{+}$	M1+E2 [‡]
57.273 [†] 4	57.275	$5/2^{+}$	0.0	$1/2^{+}$	E2
67.841 [†] 7	75.705	$7/2^{+}$	7.861	$3/2^{+}$	E2
88.06 [†] <i>3</i>	163.76	$9/2^{+}$	75.705	$7/2^{+}$	M1+E2 [‡]
106.47 [†] 4	163.76	$9/2^{+}$	57.275	$5/2^{+}$	E2
118	193.5	$11/2^{+}$	75.705	$7/2^{+}$	E2 [@]
125	318.5	$13/2^{+}$	193.5	$11/2^{+}$	
145	806.4	$15/2^{-}$	661.2	$11/2^{-}$	(E2) ^{<i>a</i>}
155	318.5	$13/2^{+}$	163.76	$9/2^{+}$	E2 [@]
159	857.5	$17/2^{-}$	698.7	$13/2^{-}$	
160	519.5	$17/2^{+}$	359.2	$15/2^{+}$	
166 ^b	359.2	$15/2^{+}$	193.5	$11/2^{+}$	E2 [@]
166 ^b	1219.4	$23/2^{-}$	1053.1	$25/2^+$	&
173	1300.9	$25/2^{-}$	1127.8	$27/2^{+}$	&
186	992.5	$19/2^{-}$	806.4	$15/2^{-}$	(E2) ^{<i>a</i>}
194	764.7	$21/2^{+}$	570.9	$19/2^{+}$. ,
201 ^b	519.5	$17/2^{+}$	318.5	$13/2^{+}$	E2 [@]
201 ^b	1058.1	$21/2^{-}$	857.5	$17/2^{-}$	
212	570.9	$19/2^{+}$	359.2	$15/2^{+}$	E2 [@]
225	1053.1	$25/2^{+}$	828.0	$23/2^{+}$	
227	1219.4	$23/2^{-}$	992.5	$19/2^{-}$	(E2) ^{<i>a</i>}
228	992.5	19/2-	764.7	$21/2^{+}$	&
230	1058.1	$21/2^{-}$	828.0	$23/2^{+}$	&
243	1300.9	$25/2^{-}$	1058.1	$21/2^{-}$	(E2) ^{<i>a</i>}
245	764.7	$\frac{1}{21/2^{+}}$	519.5	$\frac{17}{2^+}$	E2 [@]
254	1381.5	$\frac{29}{2^+}$	1127.8	$27/2^+$	
257	828.0	23/2+	570.9	19/2+	E2 [@]

 $\gamma(^{239}\text{Pu})$

				Coulomb excitation			2005Zh20,1957Ne07 (continued)				
		γ ⁽²³⁹ Pu) (continued)									
Eγ	E_i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [#]	Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]
268	1487.4	$27/2^{-}$	1219.4	23/2-	(E2) ^{<i>a</i>}	425	2272.0	37/2-	1847.0	35/2+	&
281	1748.5	$33/2^{+}$	1467.8	$31/2^+$		436	3108.0	45/2-	2672.0	$41/2^{-}$	
284	1584.9	$29/2^{-}$	1300.9	$25/2^{-}$	(E2) ^{<i>a</i>}	438	2590.1	$41/2^{+}$	2152.2	$37/2^+$	E2 [@]
287 <mark>b</mark>	806.4	$15/2^{-}$	519.5	$17/2^{+}$	&	441	1908.9	33/2-	1467.8	$31/2^{+}$	&
287 <mark>b</mark>	857.5	$17/2^{-}$	570.9	$19/2^{+}$	&	451	2714.0	$43/2^{+}$	2263.0	39/2+	E2 [@]
288	1053.1	$25/2^+$	764.7	$21/2^{+}$	@	455	1219.4	$23/2^{-}$	764.7	$21/2^+$	&
300	1127.8	$27/2^+$	828.0	$23/2^+$	@	456	3407	$47/2^{-}$	2951.4	43/2-	
305	2152.2	$37/2^{+}$	1847.0	$35/2^+$		457	1584.9	$29/2^{-}$	1127.8	$27/2^+$	&
308	1795.4	$31/2^{-}$	1487.4	$27/2^{-}$	(E2) ^{<i>a</i>}	470 ^b	3060.1	$45/2^{+}$	2590.1	$41/2^{+}$	E2 [@]
324	1908.9	33/2-	1584.9	29/2-	(E2) ^{<i>a</i>}	470 ^b	3578.0	$(49/2^{-})$	3108.0	$45/2^{-}$	
327	2590.1	$41/2^{+}$	2263.0	39/2+		473 ^b	992.5	$19/2^{-}$	519.5	$17/2^{+}$	&
328	1381.5	$29/2^+$	1053.1	$25/2^+$	E2 [@]	473 ^b	1300.9	$25/2^{-}$	828.0	$23/2^+$	&
340 <mark>b</mark>	698.7	$13/2^{-}$	359.2	$15/2^+$	&	484	3198.0	$47/2^{+}$	2714.0	$43/2^{+}$	E2 [@]
340 ^b	1467.8	$31/2^{+}$	1127.8	$27/2^+$	E2 [@]	487	1058.1	$21/2^{-}$	570.9	$19/2^{+}$	&
343	661.2	$11/2^{-}$	318.5	$13/2^{+}$	&	488 <mark>b</mark>	806.4	$15/2^{-}$	318.5	$13/2^{+}$	&
348	2143.4	$35/2^{-}$	1795.4	31/2-	(E2) ^{<i>a</i>}	488 <mark>b</mark>	3895	$51/2^{-}$	3407	$47/2^{-}$	
363	2272.0	$37/2^{-}$	1908.9	33/2-	(E2) ^{<i>a</i>}	497	661.2	$11/2^{-}$	163.76	9/2+	&
367	1748.5	$33/2^{+}$	1381.5	$29/2^+$	@	498	857.5	$17/2^{-}$	359.2	$15/2^{+}$	&
379	1847.0	$35/2^+$	1467.8	$31/2^+$	E2 [@]	499 <mark>b</mark>	556.0	$(7/2^{-})$	57.275	5/2+	&
386	2529.4	39/2-	2143.4	35/2-		499 <mark>b</mark>	3559.1	$(49/2^+)$	3060.1	$45/2^{+}$	E2
392	556.0	$(7/2^{-})$	163.76	$9/2^{+}$	&	502	4080.0	$(53/2^{-})$	3578.0	$(49/2^{-})$	
400	2672.0	$41/2^{-}$	2272.0	37/2-		505	698.7	$13/2^{-}$	193.5	$11/2^+$	&
404	2152.2	$37/2^{+}$	1748.5	$33/2^{+}$	E2 [@]	515	3713.0	$(51/2^+)$	3198.0	$47/2^{+}$	
409	2672.0	$41/2^{-}$	2263.0	39/2+	&	518	4413	$55/2^{-}$	3895	51/2-	
416 422	2263.0 2951.4	39/2 ⁺ 43/2 ⁻	1847.0 2529.4	35/2+ 39/2-	E2 [@]	528 543	4087.1 4256	(53/2 ⁺) (55/2 ⁺)	3559.1 3713.0	(49/2 ⁺) (51/2 ⁺)	

[†] From ²³⁹Pu in Adopted Gammas.
[‡] From Adopted Gammas.
[#] Additional information 6.
[@] γγ(θ) analysis supports stretched E2 transition (2005Zh02).
[&] Linking transition suggested by 2005Zh20 as E1.
^a From γ-ray angular distributions (1993De12).
^b Multiple placed

^b Multiply placed.

Coulomb excitation 2005Zh20,1957Ne07

Level Scheme

²³⁹₉₄Pu₁₄₅

Coulomb excitation 2005Zh20,1957Ne07

Level Scheme (continued)

²³⁹₉₄Pu₁₄₅

Coulomb excitation 2005Zh20,1957Ne07

²³⁹₉₄Pu₁₄₅