$^{243}\mathrm{Cm}\,\alpha$ decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 122, 293 (2014)	30-Jun-2013

Parent: ²⁴³Cm: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=28.9$ y 4; $Q(\alpha)=6168.8$ 10; % α decay=99.71 3 ²⁴³Cm- $Q(\alpha)$: From 2012Wa38.

²⁴³Cm-T_{1/2}: Recommended in 2012Ch30, weighted average (using the Limited Statistical Weight method) of 29.0 y 8 (1958Ch38) and 29.20 y *12* (1986Ti03). Other value: 29.1 y *1* (1989Ho24).

See also the evaluation from the Decay Data Evaluation Project (ddep) (2012Ch30).

αγ: 1953As14, 1963Le17, 1966Ba07, 1977VaZW.

 $\alpha\gamma(\theta)$: 1963Fl01.

(L x ray)(γ)(θ): 1975Za11.

(K x ray)(L x ray)(θ): 1974Ma27.

²³⁹Pu Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$1/2^{+}$		
7.8607 20	$3/2^{+}$		
57.2750 20	$5/2^+$		
75.7055 23	$7/2^+$		
163.755 23	9/2+		
192.8 10	$11/2^{+}$		
285.4594 17	$5/2^{+}$	≈1.2 ns	T _{1/2} : from 1956St23.
330.124 <i>3</i>	$7/2^+$		-,-
387.419 20	$9/2^{+}$		
391.5847 22	$7/2^{-}$		
427? 3			
434 <i>3</i>	$(9/2^{-})$		
451? 5			
462 <i>3</i>	$(11/2^+)$		
469.8 <i>4</i>	$(1/2^{-})$		E(level): from Adopted Levels.
481? <i>3</i>			
487 <i>3</i>	$(11/2^{-})$		
492.1 <i>3</i>	$3/2^{-}$		
499? <i>3</i>			
505.56 20	$(5/2^{-})$		
538 3			
543? 3			
556.2 5	$(1/2^{-})$		E(level): from Adopted Levels; from $E\alpha$ E(level)=552 3.
746 3			
756 3			
/63 3			
813 3			
850 15			

[†] From Adopted Levels.

^{\ddagger} Deduced by evaluator from a least-squares fit to γ -ray energies.

²⁴³Cm α decay (continued)

α radiations

$E\alpha^{\dagger}$	E(level)	Ια ^{‡&}	HF [#]	Comments
5607 ^a				
5713 ^a 5		< 0.04		From 1963Dz07 (s).
5226 15	850	0.00039	138	E α : from 1963Le17 ($\alpha\gamma$ semi).
5267 3	813	0.0015	61.0	
5316 <i>3</i>	763	0.001	185	
5323 <i>3</i>	756	0.003	68.1	
5332 <i>3</i>	746	0.003	78.4	
5523 <i>3</i>	556.2	0.002	1550	
5532 ^a 3	543?	0.006	614	
5537 <i>3</i>	538	0.002	1970	
5568 <i>3</i>	505.56	0.007	861	
5575 ^a 3	499?	0.007	937	
5582 <i>3</i>	492.1	≈0.009	≈797	
5587 <i>3</i>	487	≈0.02	≈383	
5593 ^a 3	481?	0.01	828	
5609 <i>3</i>	469.8	≤0.01	≥957	Ia: $I(5609\alpha + 5607\alpha) = 0.01$ was measured by 1966Ba07.
5612 3	462	≈0.03	≈353	•
5622 ^{<i>a</i>}	451?	0.06	203	
5639 <i>3</i>	434	0.14	108	
5646 ^a	427?	0.03	553	
5682 <i>3</i>	391.5847	0.2	130	I α =0.41% 4, deduced by evaluator from γ -ray transition intensity balance.
5686	387.419	1.6	17.1	I $\alpha \approx 2.5\%$ 1, deduced by evaluator from γ -ray transition intensity balance.
5742.1 [@] 9	330.124	11.5 [@] 5	4.89	I α =9.5% 21, deduced by evaluator from γ -ray transition intensity balance.
5785.2 [@] 9	285.4594	73.2 [@] 23	1.33	$I\alpha = 72\%$ 3, deduced by evaluator from γ -ray transition intensity balance.
5876 <i>3</i>	192.8	0.7	430	
5907 <i>3</i>	163.755	0.1	4260	I α =0.11% 2, deduced by evaluator from γ -ray transition intensity balance.
5991.8 [@] 15	75.7055	5.7 [@] 2	211	I $\alpha \approx 7\%$, deduced by evaluator from γ -ray transition intensity balance.
6010	57.2750	1.1	1350	
6058 [@] 1	7.8607	4.7 [@] 3	559	I $\alpha \approx 6\%$, deduced by evaluator from γ -ray transition intensity balance.
6066.2 [@] 17	0.0	$1.5^{\textcircled{0}}2$	1920	

[†] From 1966Ba07 (s), unless otherwise specified. 1966Ba07 reported uncertainties of 1 keV near their alpha calibration lines of 5167.7 (²⁴⁰Pu), 5498.8 (²³⁸Pu), 5806.1 (²⁴⁴Cm), and 2-3 keV elsewhere. Others: 1953As14, 1957As70, 1957As83, 1962Iv01, 1963Le17, 1963Dz07, 1970By01, 1971Bb10, 1976BaZZ, 1977VaZW.

- [±] From 1966Ba07, unless otherwise specified. Others: 1976BaZZ, 1963Dz07, 1963Le17. [#] Using $r_0(^{239}Pu)=1.4996$, average of $r_0(^{238}Pu)=1.5013$ *10* and $r_0(^{240}Pu)=1.4979$ 7 (1998Ak04). [@] From 1979Ry03 and 1991Ry01.

& For absolute intensity per 100 decays, multiply by 0.9971 3.

^{*a*} Existence of this branch is questionable.

 γ ⁽²³⁹Pu)

I γ normaliza	tion: from 1	972Ah02.								
2	x-rays(Pu)	:								
Εγ (1972Ah02)	Ιγ(%α) (1972Ah02)) -		Calcu (RADLST)	lated					
99.536 103.750 117.1 120.6 The agreement the experiment	13.5 5 20.8 8 7.6 3 2.6 1 ent between mental γ -ra	$egin{array}{c} & { m K}lpha_2 & { m K}lpha_1' & { m K}eta_2' & { m K}eta_2' & { m measured} & { m measu$	x x 2 2 d and sities	ray ray ray ray ray calculate and assi	12.5 5 19.8 8 9.8 4 ed K x gned mu	(Kβ ray supp iltipolar	x ray) ports rities.			
$E_{\gamma}^{\#}$	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^b	$\delta^{\boldsymbol{b}}$	$\alpha^{\dagger\ddagger}$	$I_{(\gamma+ce)}^{c}$	Comments
(4.2 <i>CA</i>) (7.860 ^{&} 3)	≈0.015	391.5847 7.8607	7/2 ⁻ 3/2 ⁺	387.419 0.0	9/2 ⁺ 1/2 ⁺	[E1] M1+E2	0.055 3	5.7×10 ³ 4	≈85	ce(M)/(γ +ce)=0.74 4; ce(N+)/(γ +ce)=0.261 20 ce(N)/(γ +ce)=0.203 17; ce(O)/(γ +ce)=0.049 5; ce(P)/(γ +ce)=0.0083 7; ce(Q)/(γ +ce)=0.000286 19 I($_{\gamma+ce}$): deduced by evaluator from γ -ray and α -particle transition intensity balance at 7.86-keV level. I(γ +ce)(7.86 γ)=I(γ +ce)(49 γ) + I(γ +ce)(67 γ) + I(γ +ce)(277 γ) + I α (6058 α)≈85%. I $_{\gamma}$: deduced by evaluator from I(γ +ce)(7.86 γ)≈85% and α =5700 400.
(18.43 <i>CA</i>)		75.7055	7/2+	57.2750) 5/2+	(M1+E2)	1			ce lines were obscured by Auger lines in ²³⁹ Am decay; an upper limit of 3% for its transition intensity was given by 1972Po04
44.663 5	0.13 2	330.124	7/2+	285.4594	5/2+	M1+E2	0.20 3	86 8		$\begin{aligned} \alpha(\text{L}) = 64 \ 6; \ \alpha(\text{M}) = 16.2 \ 17; \ \alpha(\text{N}+) = 5.7 \ 6 \\ \alpha(\text{N}) = 4.4 \ 5; \ \alpha(\text{O}) = 1.08 \ 11; \ \alpha(\text{P}) = 0.193 \ 17; \\ \alpha(\text{Q}) = 0.00902 \ 15 \\ \text{I}_{\gamma}: \ \text{deduced from I}_{\gamma}(44.66\gamma)/\text{I}_{\gamma}(254.4\gamma) = 0.13 \ 1/0.11 \\ 6, \ \text{as observed in } ^{239}\text{Np} \ \beta^- \ \text{decay} \ (1982\text{Ah04}), \ \text{and} \\ \text{I}_{\gamma}(254.4\gamma) = 0.11 \ 1. \end{aligned}$
(49.412 ^{&} 4)	≈0.2	57.2750	5/2+	7.8607	3/2+	M1+E2	0.50 3	126 8		α (L)=92 6; α (M)=24.8 17; α (N+)=8.7 6 α (N)=6.8 5; α (O)=1.62 11; α (P)=0.269 17; α (Q)=0.00592 13 I _{γ} : From decay scheme and transition intensity balance

 $1/2^{+}$

0.0

E2

222

ω

57.273^d 4

≈0.05^d

57.2750 5/2+

 $^{239}_{94}\mathrm{Pu}_{145}\text{-}3$

 α (L)=161.1 23; α (M)=45.0 7; α (N+..)=15.73 22

						²⁴³ Cm α	decay (cont	inued)	
						$\gamma(^{239})$	Pu) (continu	ed)	
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	$\alpha^{\dagger\ddagger}$	Comments
									$\begin{split} &\alpha(\mathrm{N}){=}12.36 \ 18; \ \alpha(\mathrm{O}){=}2.91 \ 4; \ \alpha(\mathrm{P}){=}0.457 \ 7; \ \alpha(\mathrm{Q}){=}0.001109 \ 16 \\ &\mathrm{I}_{\gamma}{:} \ \gamma \text{ ray placed twice in level scheme. I}_{\gamma}{=}0.14 \ 1 \text{ was} \\ &\text{measured for the doublet. I}_{\gamma} \text{ from transition intensity balance} \\ &\text{at } 57{\text{-keV level. I}}(\gamma{+}\mathrm{ce})(228\gamma) + \mathrm{I}(\gamma{+}\mathrm{ce})(272\gamma) + \\ &\mathrm{I}(\gamma{+}\mathrm{ce})(334\gamma) + \mathrm{I}\alpha(6010) - \mathrm{I}(\gamma{+}\mathrm{ce})(49\gamma){\approx}0.06\%. \end{split}$
57.30 ^d	≈0.09 ^d	387.419	9/2+	330.124	7/2+	[M1+(E2)]		28.6 5	$\begin{array}{l} \alpha(\text{L})=21.5 4; \alpha(\text{M})=5.4 8; \alpha(\text{N}+)=1.428 21 \\ \alpha(\text{N})=7 6; \alpha(\text{O})=1.6 13; \alpha(\text{P})=0.26 20; \alpha(\text{Q})=0.0028 17 \\ \text{I}_{\gamma}: \text{from I}_{\gamma}(\text{doublet})=0.14\% 1 \text{and I}_{\gamma}(57\gamma, 57\text{-keV} \\ \text{level})\approx 0.05\%. \end{array}$
									 E_γ: from E(level) difference. E=57.273 4 measured for the doublet. α: for M1. Transition intensity balance at 387-keV level and theoretical α(E2)=221 suggest a negligibly small E2 admixture.
(61.460 ^{&} 2)	0.015 2	391.5847	7/2-	330.124	7/2+	E1		0.473	α (L)=0.354 5; α (M)=0.0881 <i>I3</i> ; α (N+)=0.0300 5 α (N)=0.0236 4; α (O)=0.00553 8; α (P)=0.000871 <i>I3</i> ; α (Q)=2.87×10 ⁻⁵ 4 I _γ : deduced from I _γ (61.46γ)/I _γ (334.31γ)=129 2/207 3, which which response and here 100 L = 7T, and form 239 Na θ = decay
(67.841 ^{&} 7)	0.20 5	75.7055	7/2+	7.8607	3/2+	E2		98.5	α (L)=71.5 <i>10</i> ; α (M)=20.0 <i>3</i> ; α (N+)=6.99 <i>10</i> α (N)=5.50 <i>8</i> ; α (O)=1.293 <i>19</i> ; α (P)=0.204 <i>3</i> ; α (Q)=0.000543 <i>8</i> I ₂ : From decay scheme and transition intensity balance.
(88.06 ^{&} 3)	0.0016	163.755	9/2+	75.7055	7/2+	M1+E2	0.50	12.26	$\alpha(L)=9.07\ 13;\ \alpha(M)=2.36\ 4;\ \alpha(N+)=0.830\ 12$ $\alpha(N)=0.645\ 9;\ \alpha(O)=0.1563\ 22;\ \alpha(P)=0.0274\ 4;$ $\alpha(Q)=0.001050\ 15$ L: from Le(82, 06)/Le(106 47)=0.12.5 from ²³⁹ Np θ^{-} decay
(101.96 ^{&} 2)	0.008 <i>CA</i>	387.419	9/2+	285.4594	5/2+	E2		14.42	α(L)=10.46 15; α(M)=2.93 5; α(N+)=1.026 15 α(N)=0.805 12; α(O)=0.190 3; α(P)=0.0302 5; α(Q)=0.0001088 16 $ I_γ: from Iγ(101.96γ)/Iγ(311.7γ)≈8/17, as deduced by $ 1972Po04 in 239Am ε decay.
(106.125 ^{&} 2)	0.31 3	391.5847	7/2-	285.4594	5/2+	E1(+M2)	-0.007 7	0.26 3	Additional information 1. α : experimental anomalous conversion coefficient (1959Ew90). Other: 1957Ew30. I _{γ} : deduced from I γ (106.12 γ)/I γ (334.31 γ)=27.2 4/2.07 3, as measured in ²³⁹ Np β^- decay.
(106.47 ^{&} 4)	0.0136	163.755	9/2+	57.2750	5/2+	E2		11.80	$\begin{array}{l} \alpha(\text{L}) = 8.56 \ 12; \ \alpha(\text{M}) = 2.40 \ 4; \ \alpha(\text{N}+) = 0.839 \ 12 \\ \alpha(\text{N}) = 0.659 \ 10; \ \alpha(\text{O}) = 0.1553 \ 22; \ \alpha(\text{P}) = 0.0248 \ 4; \\ \alpha(\text{Q}) = 9.29 \times 10^{-5} \ 13 \\ \text{I}_{\gamma}: \text{ from intensity balance at 163.76 level.} \end{array}$

4

L

					243	$\mathbf{Cm} \alpha$ decay	(continued	l)	
						γ ⁽²³⁹ Pu) (cc	ontinued)		
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_j^r$	Mult. ^b	δ^b	$\alpha^{\dagger\ddagger}$	$I_{(\gamma+ce)}^{c}$	Comments
(117.1 <i>CA</i>) (166.39 ^{&} 6)	0.012 3	192.8 330.124	11/2 ⁺ 7/2 ⁺	75.7055 7/2 163.755 9/2	+ + M1		6.22		α(K)=4.91 7; α(L)=0.984 14; α(M)=0.239 4; α(N+)=0.0846 12 α(N)=0.0651 10; α(O)=0.01621 23; α(P)=0.00308 5; α(Q)=0.000202 3 Iγ: deduced from Iγ(166.39γ)/Iγ(254.4γ)=0.111 23, using I(ce(L1))(166.39γ)/I(ce(K))(254.4γ)=7 1/105 15 from 239Am ε decay (1959Ew90), and the
209.753 2	3.30 10	285.4594	5/2+	75.7055 7/2	.+ M1+E2	0.37 8	2.93 13		following theoretical conversion coefficients: $\alpha(L1)(166.39\gamma; M1)=0.932$, and $\alpha(K)(254.4\gamma; M1+E2)=1.457$. $\alpha(K)=2.27$ 12; $\alpha(L)=0.499$ 9; $\alpha(M)=0.1231$ 18; $\alpha(N+)=0.0435$ 7 $\alpha(N)=0.0335$ 5; $\alpha(O)=0.00830$ 13; $\alpha(P)=0.00156$ 3;
228.183 2	10.6 <i>3</i>	285.4594	5/2+	57.2750 5/2	⁺ M1+E2	0.28 7	2.41 9		$\alpha(Q)=9.3\times10^{-5} 5$ δ : from $\alpha(K)\exp=2.42 \ 14$; $\alpha(L12)\exp=0.488 \ 15$ (1991Sh06). Other value: $\delta=-0.004 \ +1-24$ from $\gamma(\theta)$ (1972Kr07,1990Si12). $\alpha(K)=1.88 \ 8$; $\alpha(L)=0.395 \ 7$; $\alpha(M)=0.0967 \ 15$; $\alpha(N+)=0.0342 \ 6$
254.40 <i>3</i>	0.11 1	330.124	7/2+	75.7055 7/2	⁺ M1+E2	-0.159 6	1.85		$\alpha(N)=0.0263 \ 4; \ \alpha(O)=0.00653 \ 11; \ \alpha(P)=0.001233 \ 23; \ \alpha(Q)=7.7\times10^{-5} \ 3$ $\delta: \ from \ \alpha(K)exp=2.01 \ 7; \ \alpha(M)exp=0.0968 \ 59 \ (1991Sh06). \ Other \ value: \ \delta=+0.001 \ +9-1 \ from \ \gamma(\theta) \ (1972Kr07,1990Si12). \ \alpha(K)=1.457 \ 21; \ \alpha(L)=0.294 \ 5; \ \alpha(M)=0.0716 \ 10;$
			- 1						α (N+)=0.0253 4 α (N)=0.0195 3; α (O)=0.00485 7; α (P)=0.000920 13; α (O)=5.93×10 ⁻⁵ 9
272.87 9	0.08 1	330.124	7/2+	57.2750 5/2	⁺ M1+E2	+0.165 9	1.518		$\alpha(K) = 1.198 \ ls; \ \alpha(L) = 0.241 \ 4; \ \alpha(M) = 0.0588 \ 9; \ \alpha(N+) = 0.0208 \ 3 \ \alpha(N) = 0.01599 \ 23; \ \alpha(O) = 0.00397 \ 6; \ \alpha(P) = 0.000754$
277.599 2	14.0 4	285.4594	5/2+	7.8607 3/2	⁺ M1+E2	0.23 10	1.42 7		<i>11</i> ; $\alpha(Q)=4.86\times10^{-3}$ 7 $\alpha(K)=1.12$ 6; $\alpha(L)=0.228$ 6; $\alpha(M)=0.0555$ <i>13</i> ; $\alpha(N+)=0.0196$ 5 $\alpha(N)=0.0151$ 4; $\alpha(Q)=0.00375$ 9; $\alpha(P)=0.000711$ 19;
285.460 2	0.73 2	285.4594	5/2+	0.0 1/2	.+ E2		0.247		$\begin{aligned} \alpha(Q) = 4.53 \times 10^{-5} \ 22 \\ \delta: \ \text{from } \alpha(\text{K}) \exp[=1.19 \ 5; \ \alpha(\text{L12}) \exp[=0.238 \ 10, \\ \alpha(\text{M}) \exp[=0.0579 \ 29 \ (1991\text{Sh06}). \ \text{Other value:} \\ \delta=+0.165 \ 2, \ \text{from } \gamma(\theta) \ (1972\text{Kr07}, 1990\text{Si12}). \\ \alpha(\text{K}) = 0.0843 \ 12; \ \alpha(\text{L}) = 0.1190 \ 17; \ \alpha(\text{M}) = 0.0326 \ 5; \\ \alpha(\text{N}+) = 0.01145 \ 16 \\ \alpha(\text{N}) = 0.00896 \ 13; \ \alpha(\text{O}) = 0.00213 \ 3; \ \alpha(\text{P}) = 0.000356 \\ 5; \ \alpha(\text{Q}) = 4.99 \times 10^{-6} \ 7 \end{aligned}$

S

l

						<u> </u>	(^{239}Pu) (con	tinued)	
$E_{\gamma}^{\#}$	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	$\alpha^{\dagger \ddagger}$	Comments
311.7 2	0.017 2	387.419	9/2+	75.7055	7/2+	[M1+E2]	≤0.2	1.057 23	$\alpha(K)=0.835 \ 19; \ \alpha(L)=0.167 \ 3; \ \alpha(M)=0.0406 \ 7; \ \alpha(N+)=0.01434$
									24 $\alpha(N)=0.01104 \ 19; \ \alpha(O)=0.00275 \ 5; \ \alpha(P)=0.000522 \ 9; \ \alpha(Q)=3.38\times10^{-5} \ 8$ δ : assumed by evaluator.
315.880 <i>3</i>	0.018 2	391.5847	7/2-	75.7055	7/2+	E1(+M2)	+0.008 8	0.0372 9	$\alpha(K)=0.0294$ 6; $\alpha(L)=0.00583$ 16; $\alpha(M)=0.00141$ 4; $\alpha(N+)=0.000493$ 15
									$\alpha(N)=0.000382 \ I2; \ \alpha(O)=9.3\times10^{-5} \ 3; \ \alpha(P)=1.69\times10^{-5} \ 6; \ \alpha(O)=8.9\times10^{-7} \ 3$
322.3 2	0.007 1	330.124	7/2+	7.8607	3/2+	[E2]		0.1699	$\alpha(K)=0.0679 \ 10; \ \alpha(L)=0.0745 \ 11; \ \alpha(M)=0.0203 \ 3;$
									α (N+)=0.00713 <i>11</i> α (N)=0.00557 8; α (O)=0.001329 <i>19</i> ; α (P)=0.000224 <i>4</i> ;
33/ 310 3	0.024.2	301 5847	7/2-	57 2750	5/2+	$F1(\pm M2)$	+0.006.6	0.0320.6	$\alpha(\mathbf{Q}) = 3.73 \times 10^{-6} 6$ $\alpha(\mathbf{K}) = 0.0261 5; \alpha(\mathbf{L}) = 0.00511 10; \alpha(\mathbf{M}) = 0.001238 24;$
554.510 5	0.02+2	571.5047	1/2	51.2150	5/2	L1(+1412)	10.000 0	0.0527 0	$\alpha(N)=0.02013, \alpha(E)=0.0031110, \alpha(M)=0.00123024, \alpha(N+)=0.0004329$
									α (N)=0.000334 7; α (O)=8.18×10 ⁻⁵ 16; α (P)=1.48×10 ⁻⁵ 3; α (Q)=7.91×10 ⁻⁷ 17
(392.4 ^{&} 5)		556.2	$(7/2^{-})$	163.755	9/2+				
(430.0 3)		505.56	$(5/2^{-})$	75.7055	7/2+				
(434.7 & 5)		492.1	3/2-	57.2750	5/2+				
(447.6 5)		505.56	$(5/2^{-})$	57.2750	$5/2^{+}$				
(461.9 ^{&} 5)		469.8	$(1/2^{-})$	7.8607	$3/2^{+}$				
(469.8 ^{&} 5)		469.8	$(1/2^{-})$	0.0	$1/2^{+}$				
(484.3 ^{&} 5)		492.1	3/2-	7.8607	$3/2^{+}$				
(492.3 ^{&} 5)		492.1	3/2-	0.0	$1/2^{+}$				
(497.8 3)		505.56	$(5/2^{-})$	7.8607	$3/2^{+}$				
(499 <mark>&</mark>)		556.2	$(7/2^{-})$	57.2750	5/2+				
$\approx 640^{ae}$									Uncertain transition.
≈680 ^a ~720 <mark>a</mark>									
$\approx 720^{a}$									
$\approx 760^{a}$									

[#] Measurements of 1959Ew90 (s ce), 1965Ma17 (cryst), 1972Po04 (s ce, semi), and 1979Bo30 (cryst), and 1982Ah04 (semi) observed in ²³⁹Np and ²³⁹Am decays, except as noted. Other measurements: 1953As14 (scin), 1955Sc08 (s ce), 1956Ne17 (pc, scin), 1964Ba31 ($\alpha\gamma$, semi).

From ENSDF

γ ⁽²³⁹Pu) (continued)

- [@] From 1972Ah02. Photon intensity per 100 α decays. Other measurements: 1956Ne17, 1964Ba31. [&] Transition was not observed in ²⁴³Cm α decay. E γ is from the decay of ²³⁹Np and ²³⁹Am.
- ^{*a*} From 1963Le17 ($\alpha\gamma$ and (α)(ce) coin).
- ^b From ce data in ²³⁹Am, ²³⁹Np, and ²⁴³Cm decays; and $\gamma(\theta)$ measurements by 1972Kr07, 1990Si12 from polarized ²³⁹Np, unless otherwise specified.
- ^c For absolute intensity per 100 decays, multiply by 0.9971 3.
- ^d Multiply placed with intensity suitably divided.
- ^e Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

From ENSDF

243 Cm α decay

 $^{239}_{94}\rm{Pu}_{145}$

8