243 Bk α decay 1966Ah02,1991Ry01

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 122, 293 (2014)	30-Jun-2013					

Parent: ²⁴³Bk: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=4.5$ h 2; $Q(\alpha)=6874$ 4; $\%\alpha$ decay ≈ 0.15

Additional information 1.

αγ: 1956Ch77, 1966Ah02.

K x ray: $I\gamma = 8 3$.

2013Ni13: calculated branching ratios to three rotational bands. Others: 2011Zh36, 2010Ni02.

²³⁹Am Levels

E(level)	J^{π}	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0 [‡]	(5/2)-	11.9 h <i>1</i>	187.1 [#] 5	$(5/2^+)$	≈370 [#]	$(13/2^+)$
40.7 [‡] 7	$(7/2^{-})$		220 [#] 6	$(7/2^+)$	557 [@] 6	$(3/2^{-})$
94 [‡] 6	$(9/2^{-})$		260 [#] 6	$(9/2^+)$	586 [@] 6	$(5/2^{-})$
156 [‡] 7	$(11/2^{-})$		317 [#] 7	$(11/2^+)$		

[†] From Adopted Levels.

[±] Band(A): g.s. rotational band. calculated α branching=29.8% (2013Ni13).

[#] Band(B): rotational band built on 187 level. Calculated α branching=52.8% (2013Ni13).

[@] Band(C): favored rotational band built on 557 level calculated α branching=17.5% (2013Ni13).

α radiations

$E\alpha^{\dagger}$	E(level)	Ια ^{‡@}	HF [#]	$E\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\ddagger@}$	HF#
6185 4	586	3.9 5	≈10	6577 4	187.1	25.6 16	≈111
6213 4	557	13.6 9	≈4.1	6608 5	156	≈0.7	≈5560
≈6397	≈370	≈0.2	≈2120	6669 4	94	≈1.2	≈6060
6449 5	317	0.7 2	≈1060	6721 4	40.7	12.5 9	≈982
6505 4	260	6.9 7	≈195	6761 4	0.0	15.4 10	≈1190
6545 4	220	19.4 <i>13</i>	≈104				

[†] From 1966Ah02 (semi) recalibrated by 1991Ry01.

[‡] From 1966Ah02. Intensity per 100 α decays. [#] Using $r_0(^{239}Am)=1.496$, average of $r_0(^{238}Pu)=1.5013$ 10, $r_0(^{240}Pu)=1.4979$ 7, $r_0(^{238}Cm)=1.490$ 20, and $r_0(^{240}Cm)=1.495$ 12 (1998Ak04). HF values are approximate because of the imprecise value of≈0.15% for the alpha-particle branching.

[@] For absolute intensity per 100 decays, multiply by ≈ 0.0015 .

						γ ⁽²³⁹ Am)	
E_{γ}^{\ddagger}	Ιγ #&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
42 ^b 3	4	40.7	(7/2 ⁻)	0.0 (5/2)-	[M1]	79 20	$ \begin{array}{c} \alpha(\text{L}) = 59 \ 15; \ \alpha(\text{M}) = 15 \ 4; \ \alpha(\text{N}+) = 5.2 \ 13 \\ \alpha(\text{N}) = 4.0 \ 10; \ \alpha(\text{O}) = 1.00 \ 25; \ \alpha(\text{P}) = 0.19 \ 5; \ \alpha(\text{Q}) = 0.012 \\ 3 \end{array} $
							I_{γ} : is inconsistent with decay scheme; $I_{\gamma} \le 0.3$ from transition intensity balance.
146.4 5	8 <i>3</i>	187.1	$(5/2^+)$	40.7 (7/2 ⁻)	(E1) [@]	0.215 4	α (K)=0.164 3; α (L)=0.0384 7; α (M)=0.00943 16; α (N+)=0.00329 6

Continued on next page (footnotes at end of table)

				²⁴³ Bł	$\mathbf{x} \alpha \mathbf{deca}$	y 1966 A	h02,1991Ry0	1 (continued)
						γ ⁽²³⁹ Am)	(continued)	
E_{γ}^{\ddagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult.	α^{\dagger}	Comments
								α (N)=0.00255 5; α (O)=0.000622 11; α (P)=0.0001077 18; α (Q)=4.53×10 ⁻⁶ 8
187.1 <i>5</i>	40 10	187.1	(5/2+)	0.0	(5/2)-	(E1) [@]	0.1220 19	$\alpha(K)=0.0943 \ 15; \ \alpha(L)=0.0208 \ 4; \\ \alpha(M)=0.00509 \ 8; \ \alpha(N+)=0.00178 \ 3 \\ \alpha(N)=0.001380 \ 22; \ \alpha(O)=0.000338 \ 6; \\ \alpha(P)=5.96\times10^{-5} \ 10; \ \alpha(Q)=2.68\times10^{-6} \ 4$
536 ^{ab} 10	<10 ^a	557	(3/2 ⁻)	40.7	(7/2 ⁻)	[E2]	0.0473 22	$\alpha(K)=0.0283 \ 11; \ \alpha(L)=0.0139 \ 9; \ \alpha(M)=0.00369 \ 24; \ \alpha(N+)=0.00131 \ 9 \ \alpha(N)=0.00101 \ 7; \ \alpha(O)=0.000248 \ 16; \ \alpha(P)=4.4\times10^{-5} \ 3; \ \alpha(Q)=1.30\times10^{-6} \ 6 \ E_{\gamma}: \ \text{probable unresolved doublet to g.s. and} \ 40.7 \ \text{levels. Iy has not been divided.}$
536 ^{<i>ab</i>} 10	<10 ^{<i>a</i>}	557	(3/2 ⁻)	0.0	(5/2)-	[M1,E2]	0.16 11	$\alpha(K)=0.12 \ 10; \ \alpha(L)=0.028 \ 15; \ \alpha(M)=0.007 \ 4; \ \alpha(N+)=0.0025 \ 12 \ \alpha(N)=0.0019 \ 9; \ \alpha(O)=0.00048 \ 23; \ \alpha(P)=9.E-5 \ 5; \ \alpha(Q)=5.E-6 \ 4 \ E_{\gamma}: \text{ probable unresolved doublet to g.s. and} \ 40.7 \text{ levels. I} \gamma \text{ has not been divided.}$

[†] Additional information 2.
[‡] From 1966Ah02 (αγ-semi), 1956Ch77 (αγ-scin).
[#] Photon intensity per 100 α decays (1966Ah02,1956Ch77).
[@] Multipolarity is E1 or E2 from relative photon and K x ray intensities. However, the ratio of reduced transition probabilities suggests E1 multipolarity.

[&] For absolute intensity per 100 decays, multiply by ≈ 0.0015 . ^{*a*} Multiply placed with undivided intensity. ^{*b*} Placement of transition in the level scheme is uncertain.

243 Bk α decay 1966Ah02,1991Ry01

Decay Scheme

	Intensities: $I_{(\gamma+ce)}$ per 100 parent decays
	& Multiply placed: undivided intensity give
$\langle I_{\nu}^{max} \rangle$	

Legend

intensity given

²³⁹₉₅Am₁₄₄

²⁴³Bk α decay 1966Ah02,1991Ry01

		Band(C): rotational ba 557 level cal branching (2013N	Band(C): Favored rotational band built on 557 level calculated α branching=17.5% (2013Ni13)		
		(5/2-)	586		
	Band(B): Rotational band built on 187 level (13/2 ⁺) ≈370	<u>(3/2⁻)</u>	557		
	(11/2 ⁺) 317				
	<u>(9/2⁺) 260</u>				
	(7/2 ⁺) 220				
Band(A): g.s. rotational band (11/2 ⁻) 156	(5/2 ⁺) 187.1				
<u>(9/2⁻) 94</u>					
(7/2 ⁻) 40.7 42 (5/2) ⁻ 0.0					

²³⁹₉₅Am₁₄₄