			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014
$Q(\beta^{-}) = -147.4 \ 12; \ S(n) = 6$	154.3 <i>13</i> ; S(p)=7:	507 13; $Q(\alpha)=4269.7\ 29$	2012Wa38	
Additional information 1.				
Discovery of ²³⁸ U: 2013Fr	03.			
²³⁸ U double-beta decay: 2	013St19, 2012Ko	10, 2012Zu07, 2011Ba28	8, 2010Ba07, 2008RaZX,	, 2006Ba35, 2006BaZZ, 2005Tr
2004Ra13, 2003Cr04,	2003Fi13, 2002B	a52, 2002Hi09, 2002Tr04	4.	
Cluster decay:				
²³⁸ U(³⁰ Mg): 2012Ku29, 20	010Ni13.			
238 U(20 O, 22 Ne, 24 Ne, 25 N	le, ²⁶ Ne, ²⁸ Mg, ²	⁹ Mg, ³⁰ Mg): 2012Sa31.		
²³⁸ U(³⁴ Si): 2013Ta07, 201	2Ta10, 2010Si12	, 2009Ar11.		
²³⁸ U(²⁸ Mg): 2011Wa30.				
²³⁸ U(p,p'): Measured σ (2	010Ha06).			
238 U(p,p'): E=20, 26, 65 N	MeV (2005YuZZ)			
238 U(p,p'): E=20-65 MeV	(2004Su12).			
²³⁸ U(p,p'): Others: 2011M	la89, 2008Li05.			
²³⁸ U(SF): 2010Sa09, 2008	Sa24.			
Nuclear Structure:				
2014Lu01, 2014Ne03, 201	4Vi01.			
2013Af01, 2013Ag06, 201	3Bo24, 2013G106	5, 2013J005, 2013L130, 2	2013N102, 2013Ra05, 201	13Se17, 20131012, 2013Z002.
2012Bu08, 2012Fr06, 20122012Na04, 2012Pr00, 2012	2G013, 2012H111	, 20121808, 2012Ja08, 20	J12J002, 2012K006, 201	2Ku23, 2012Lu02, 2012Na10,
20121 Ne04, 2012 F109, 1000 and 10000 and 100000 and 10	1Cb65 2011Du30	0.29, 2012 K034.	2011Ko35 2011Le21 20	111 j44 20111 j53 2011Na24
2011Ni05, 2011No04, 201	2011Pe01, 2011F	R_{105} , 2011 W_{a30} , 2011 W_{1}	u03. 2011Zh36.	11L1++, 2011L135, 20111(a2+,
2010Ab21, 2010Ab23, 201	0Bo25, 2010Bu0	2, 2010Ko36, 2010Ku17	, 2010Pi02, 2010Ra10, 2	010To07, 2010Tr08, 2010Vr01,
2010Wa13, 2010Zh09.				
2009Bu09, 2009De32, 200	9Go05, 2009Ku1	3, 2009Ni06, 2009Pa46,	2009Ru12, 2009So12, 2	009Ve07, 2009Wa01.
2008Bh07, 2008Bu11, 200	8Ch15, 2008Ju06	5, 2008K103, 2008Pr05, 2	2008Sh06, 2008Sk02, 200	08So03, 2008Te01, 2008Us02.
200/Ad24, 200/Ba18, 200 2006Da25, 2006Er21, 200	1/B046, 200/Bu2	0, 200/D003, 200/D006 $0, 2006NE17, 2006P_{0}21$, 200/Gh11, 200/Ne04.	
$2000De23, 2000Fr21, 20002005\Delta140, 2005Cb12, 2000$	50007, 2000 Ne10	1, 2000 INT 7, 2000 Ka21.	2005La04 2005Ma41 (2005Na44 2005Po01 2005Sh05
2005Sh57, 2005Sw02.	2005Za02	1, 2005Ell01, 2005G005,	, 2005Ed0+, 2005Wid+1, 2	2003114+4, 20031001, 20035103
2004Ad15, 2004Ad30, 200)4Ba16, 2004Ga0	3, 2004Hu05, 2004Is05,	2004Ja03, 2004Mo06, 20	004Ne12, 2004Ro01, 2004Sa55,
2004Sh47.				
2003Ad31, 2003Ad32, 200)3Ad34, 2003Bu1	1, 2003Bu27, 2003De20	, 2003Li01, 2003Li25, 2	003Mb02, 2003Ne06, 2003Po15
2003Ra17, 2003Sh02,	2003Za01.	200014 05 0000D 1(2002D 25 2002T 12 2	
2002Bu13, 2002Ga34, 200	2G111, 2002Ka5: 1Da45, 2001Ea07	3, 2002Ma85, 2002Po16,	2002Ra25, 2002Tr12, 20001Mi24,	0027s01, $001Me28$, $2001Se54$
2001A112, 2001B002, 2002001Tr10, 2001Tr23	1De45, 2001Fa07	, 2001G007, 2001Ic02, 2	2001101000, 2001101134, 20	JULINIO13, 2001MIO28, 2001Sa34
Antineutrino calculated spe	ectrum: 2012Fa12).		
Compilations: 2011Ch65	2011He12 2001F	2. Re&1		
X-ray energies: 2003De44	2002Ob01			
Systematics of alpha decay	v 2006De05 200	6Xu08		
Calculated nuclear momen	ts: 2006Sh37 20	03Ho07		
Alpha decay theory: 2010	Wa23, 2010Wa31	, 2006De05.		

Energies of vibrational states (K=0⁺,2⁺,4⁺,1⁻,2⁻,3⁻) were calculated in 1965So04, 1970Ne08, 1971Ko31, 1969B113, 1974Du09, 1975IvZZ, 1975LeZR.

²³⁸U Levels

For calculations of levels see 1994Mi14,1994Tr09. For calculated rotational level energies, see 1976Az01, 1976Ra04, 1968Ho28, 1978BeYR, 1978To13, 1978Ba46 for example. High-spin rotational states were calculated in 1977Ma23.

Cross Reference (XREF) Flags

A B C D E	²³⁸ Pa β ⁻ decay ²⁴² Pu α decay ²³⁸ U(n,n'γ) Coulomb excitation ²³⁸ U(d,d')	F G H I	238 U(γ, γ') 236 U(t,p) 238 U(n,n') 238 U IT decay (280 ns)
-----------------------	--	------------------	--

Octupole-vibrational band:

Ratios of reduced transition intensities are in agreement with Alaga
rule for K=0:
 B(E1)(680γ)/B(E1)(635γ)=0.60 5 observed in Coul. ex.

=0.50 theory for K=0 =2.0 theory for K=1. B(E1)(687γ)/B(E1)(583γ)=0.78 3 observed in Coul. ex. =0.75 theory for K=0 =1.33 theory for K=1. Negative-parity yrast states were calculated by 1976Vo01. The states with low spin were interpreted as octupole states, but the higher spin states become two-quasiparticle decoupled states. Octupole-vibrational states were calculated by 1978Ko03. Levels in yrast band were calculated by 1977Ra25.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0 ^e	0+	4.468×10 ⁹ y 6	ABCDEFGHI	%SF=5.45×10 ⁻⁵ 7; % α =100 %SF: from recommended T _{1/2} (SF) of 2000Ho27. Intrinsic electric-quadruple moment: Q ₀ =13.9 20 deduced by 1978Ge10 from optical isotope shift. Other measurement: Q ₀ =11.12 7 (from Coulomb excitation). Other: 2002Ob01. $\Delta < r^2 > (^{233}U - ^{238}U) = -0.432 \text{ fm}^2 43$ (1996El03).
				T _{1/2} : Weighted average (CHI**/N-1=4.0) of 4.468×10^9 y 5, specific activity method (1971Ja07); 4.457×10^9 y 4, specific activity method (1959St45); 4.51×10^9 y 2, specific activity of natural uranium (1955Ko13); and 4.495×10^9 y 18, specific activity of enriched uranium (1949Ki26), recommended in 2004Sc03.
				$\begin{array}{l} T_{1/2}: \mbox{ Other values: } 4.51 \times 10^9 \ y \ (1957Cl16), \ 4.56 \times 10^9 \ y \ 3 \ (1957Le21), \\ T_{1/2}: \ Half-life \ ratio \ T_{1/2}(^{238}U)/T_{1/2}(^{235}U) = 6.351 \ 31 \ (2008Po06). \\ T_{1/2}(SF) = 9.86 \times 10^{15} \ y \ 15 \ (1968Ro15), \ 8.1 \times 10^{15} \ y \ 3 \ (1952Se67), \ 7.19 \times 10^{15} \ y \ 4 \ (1967Is04), \ 8.23 \times 10^{15} \ y \ 10 \ (1967Sp12), \ 8.19 \times 10^{15} \ y \ 6 \ (1970Ga27), \end{array}$
				11×10 ¹⁵ y 2 (1971Co35), 10.2×10 ¹⁵ y 9 (1971K114), 9.50×10 ¹⁵ y 21 (1971Le11), 8.7×10 ¹⁵ y 10 (1971Sa08), 8.0×10 ¹⁵ y 4 (1971Th17), 9.9×10 ¹⁵ y 5 (1972Ni19), 10.2×10 ¹⁵ y 8 (1973Kh10), 9.73×10 ¹⁵ y 44 (1974Iv04), 9.6×10 ¹⁵ y 3 (1975Em03), 8.0×10 ¹⁵ y 6 (1975Wa37), 8.09×10 ¹⁵ y 40 (1976Th12), 8.43×10 ¹⁵ y 21 (1978Ka40), 6.77×10 ¹⁵ y 15 (1978Ri07)
				$\begin{array}{l} (17/61112), 3.45\times10^{-1} \text{ y } 21 \ (17/610440), 0.77\times10^{-1} \text{ y } 15 \ (19761017), \\ 8.8\times10^{15} \text{ y } 4 \ (1980Po09), 7.48\times10^{15} \text{ y } 15 \ (1980Sp10), 10.5\times10^{15} \text{ y } 3 \\ (1981Ba70), 5.9\times10^{15} \text{ y } 4 \ (1982De22), 8.3\times10^{15} \text{ y } 4 \ (1983Be66), \\ 8.42\times10^{15} \text{ y } 44 \ (1984Va35), 8.29\times10^{15} \text{ y } 27 \ (1985Iv01). 8.30\times10^{15} \text{ y } 16 \\ (\text{weighted average}). \ 2000Ho27 \ \text{recommend } T_{1/2}(\text{SF})=8.2\times10^{15} \text{ y } 1 \ \text{based on} \end{array}$

Continued on next page (footnotes at end of table)

²³⁸U Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
44.916 ^e 13	2+	206 ps <i>3</i>	ABCDEFGHI	a weighted average of a selected set of the above values. Other values: 8.00×10^{15} y 35 (2003Gu18); 8.15×10^{15} y 17, "Solid State Nuclear Track Detectors (SSNTD)" (2005Yo12). Calculated T _{1/2} (SF): 2005De44, 2005Re16, 2005Xu01, 1976Ra02. Other T _{1/2} (SF) measurements: 2010Sa09, 2003Ha06, 1966Ra25, 1964Fl07, 1963Me14, 1959Ku81, 1959Ge30, 1984Va34. The effects of boron and lithium on the ratio of induced to spontaneous fission in natural uranium were measured by 1979At01. μ =0.51 3 (1998Ts13) μ : 1998Ts13 quote μ =0.254 15 in the abstract, but in the body of the paper, this same value is given as the g factor. Q(²³⁸ U)/Q(²³⁴ U)=1.13 10; μ (²³⁸ U)/ μ (²³⁴ U)= 0.94 9 (1974Me18). T _{1/2} : from B(E2)=12.30 15 in Coul. ex. and α =609. Other: 225 ps 20 from (α)(ce 45 γ)(t) in ²⁴² Pu α decay (1960Be25).
148.38 ^e 3	4+		ABCDE GH	
307.18 ^e 8	6+		ABCDE H	
518.1 ^e 3	8+	23 ps 3	CDE	$T_{1/2}$: from BE2=4.7 6 in Coulomb excitation.
680.11 ^f 4	1-	35 fs +19-9	A CDEF HI	T _{1/2} : from B(E1)=0.00049 17 in Coulomb excitation and %I γ (680 γ)=43 3.
731.93 ^f 3	3-		A CDEF H	B(E3)↑=0.570 36 (1994Mc03)
775.9 ^e 4	10^{+}	9.0 ps 10	CD	$T_{1/2}$: from BE2=5.6 2 in Coulomb excitation.
826 64 ^f 11	5-	1	A CDE H	1/2
927.21 ⁰ 19	0^{+}		CD F	J^{π} : member of K=0 band.
930.55 9 9	(1^{-})		A CDEF H	J ^{π} : gammas to 0 ⁺ ,2 ⁺ ,1 ⁻ levels, γ from 3 ⁻ level, fit to a band.
950.12 ^g 20	2-		A CD F	J^{π} : fit to a band.
966.13 ⁰ 4	2+	2.4 ps +17-7	A CD F	T _{1/2} : from B(E2)=0.017 7 and I γ (967 γ)=12.0% 5. J ^{π} : 921.19 γ to 2 ⁺ is E0+M1+E2. The ratio of reduced transition intensities of 966, 818 gammas is in better agreement with the Alaga rule for K=0 than for K=1 or K=2: B(E2)(966 γ)/B(E2)(818 γ)=0.118 8 observed in Coul. ex., 0.389 theory for K=0, 0.875 theory for K=1, 14.0 theory for K=2.
966.31 ^J 21	7-		CD	
997.23 ^P 24	0^{+}		CD H	J^{π} : E0 transition to g.s.
997.584 7	3-		A CDEF H	$B(E3)\uparrow=0.184 \ 18 \ (1994Mc03)$ J^{π} : from (d,d'), fit to a band.
1028 ⁸	4 ⁻	1.12 12	CD	
1037.25 F 7	2.	1.13 ps 12	A CDEF H	$I_{1/2}$: from B(E2)=0.0645 64 in Coulomb excitation and %Iy(1037y)=30.8 8. I^{π} : 993 (by to 2 ⁺ is E0+M1+E2
1056.38 ⁰ 21	4+		CD G	J^{π} : fit to a band. E2 γ to 6 ⁺ .
1059.66 ⁿ 17	(3^{+})		ACF	J^{π} : γ' s to 2 ⁺ .4 ⁺ levels: suggested as 3 ⁺ bandhead in β^- decay.
1060.27 ^k 14	2+	0.64 ps 4	A CDEF H	$T_{1/2}$: from B(E2)=0.133 8 in Coulomb excitation and %I γ (1060 γ)=40.0 7.
1076.7 ^e 5	12+	4.4 ps 4	D	$T_{1/2}$: weighted average of 4.5 ps 5 from B(E2) and 4.2 ps 6 from DSA in Coulomb excitation.
1105.71 ^j 7	3+		A CD	J^{π} : fit to a band.
1128.84 ^m 7	(2 ⁻)		A CD F	J^{π} : gammas to $2^+, 1^-, 3^-$ levels, fit to a band.
1130.75 ^p 24	4+		A CDE H	
1135.7? 4			A C	
1150.7 ^{<i>f</i>} 4	9-		D	
1151 <mark>8</mark>	6-		D	
1163 ^k	(4^{+})		D	

Continued on next page (footnotes at end of table)

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
1167.99 9	4+		A CD gH	 J^π: from γ(θ) and yield in Coulomb excitation. Assigned by 1994Mc04 as the 4⁺ member of the K=2 γ-vibrational band; however, 1996Wa11 show that this band member has an energy of 1163. J^π: fit to a band.
1168.88 ^m 23	3-		A CDE g	B(E3) \uparrow =0.166 23 J ^π : from (d,d'), fit to a band.
1209.3 <i>3</i>			С	
1223.78 14	2 ⁺ <i>d</i>	3.5 ps 4	A CD	$T_{1/2}$: from B(E2)=0.0123 <i>12</i> in Coulomb excitation and %I γ (1224 γ)=41.6. The evaluators assume that the uncertainty in the branching is negligible compared with that in the B(E2) value.
1232 ^J	5+		D	
1239.3? 2			C	
1242.9?			A	
1260.972 $1269.2^{P}10$	6+		CD CD	I^{π} , fit to a hand
1209.2- 10	2 + d	2 9 ps 3		$B(E2) \uparrow = 0.0043 A$
1278.34 12	Ζ	2.9 ps 5	A CD	$T_{1/2}$: from B(E2)=0.00428 43 in Coulomb excitation and $\% I\gamma(1278\gamma)=15.0$. The evaluators have assigned an uncertainty of 5% to this branching to get an uncertainty on $T_{1/2}$.
1311 ^k	6+		CD	
1318 ⁸	8-		D	
1354.79 24	$(1,2^{+})$		C	J^{n} : γ 's to $0^{+}, 2^{+}$ levels.
1373	11-		E	
1378.8 5	11		AC	Additional information 2
1403	7+			The existence of this level in $(n n'\alpha)$ is not definite since it is based on the
1403*	1		CD	observation of an 885.8 2 transition that is doubly placed.
1414.0 6	2 ^{+d}	1.18 ps <i>13</i>	A CD	T _{1/2} : from B(E2)=0.00549 55 in Coulomb excitation and $\%$ I γ (1413.3 γ)=12.9. The evaluators have assigned an uncertainty of 5% to this branching to get an uncertainty for T _{1/2} .
1415.5 ^e 6	14+	2.55 ps 20	D	$T_{1/2}$: weighted average of 2.54 ps 23 from B(E2) in Coul Ex and 2.56 ps 28 from DSA (1981Gr10).
1446.4 ¹ 9	(7^{-})		D	
1455.39 18			С	
1482.41 8			C	
1504 ^{<i>k</i>}	8+		D	
1516.5? 2	10-		C	
1530.2 <i>4</i>	2^{+d}	0.150 ps 15	CDE	T _{1/2} : from B(E2)=0.0105 <i>11</i> in Coulomb excitation and $\%$ I γ (1530 γ)=4.67. The evaluators have assigned an uncertainty of 5% to this branching to get an uncertainty for T _{1/2} .
1545.8 ^r 14	8+		D	5 1/2
1561.6			A C	
1594.80 12	(4^{+})		C	
1617.5			Α	
1619	9⁺		D	
1630 ⁴			E	
1643./3 12	(0-)		C	
1644° 1645 0	(9)			
1043.0	12-		AL	
1049.2^{j} 3	15		D _	
1672.01 <i>15</i>			C	

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
1675.7 <i>3</i> 1712 ⁱ			A C E	
1741 ^k	10^{+}		D	
1760.9 4	(4 ⁺)		CE	J^{π} : γ 's to 2 ⁺ ,6 ⁺ levels.
1774.7#	(3-,4,5-)		ACE	J^{π} : γ 's to 3 ⁻ ,5 ⁻ .
17/88	12		D	
1782 ^a	$a^{\pm d}$	33° is 4	1	
1/82.34 4	2.4	0.39 ps 4	CD	$\Gamma_{1/2}$: from B(E2)=0.0179 78 in Coulomb excitation, and $\% I\gamma(1782.0\gamma)$ =44.8. The evaluators have assigned an uncertainty of 5% to the branching to get an uncertainty for $T_{1/2}$.
1786.7 ^r 15	10^{+}		D	
1788.4 ^e 6	16+	1.74 ps 13	D	
1793	1&	80° fs +40-20	C F	
1846	1&	31 ^c fs 4	C F	
1866 ¹	(11 ⁻)		D	
1875 ^j	11^{+}		D	
1934.3	(3 ⁻)		A C	
1959.2 ^J 6	15-		D	
1992.2	(3)		AC	E(level): level proposed in β decay, but two common transitions suggest population in $(n,n'\gamma)$ also; however, the branchings are not in agreement. The evaluators have added several transitions from $(n,n'\gamma)$ based on energy fit alone.
1996.7 <mark>b</mark> 3	1-		F	
2017.7 ^b 4	1^{+}		F	
2018^{k}	12+		D	
2033 ⁱ	(12^{+})		D	
2048.7 ^r 15	12+		D	
2063.9	(2^{-})		Α	
2066 ^g	14-		D	
2079.3 ^b 4	1+		F	
2080.7 ^b 4	1-		F	
2093.3 ^b 4	1-		F	
2122 ¹	(13-)		D	
2125.3 6	2+		C	
2145.6° 3	1-		F	
2103.55	12+			
$21/1^{3}$	$13_{1+@}$	0.0596 -37.5	U F	
$21/5.8^{\circ} 5$ 2191 1 ^e 7	18 ⁺	$1.058^{\circ} eV 3$	г D	$T_{\rm tot}$: From DSA (1981Gr10)
2191.1 / 2208.8^{b} 3	1 ⁺ @	1.10 ps 11	C F	1/2. Hom Dork (19010110).
$2200.0 \ 3$	1 1+@	0.00142 ^C eV 3	г Э F	
$2244.4 \ 3$	1 1+@	0.00142 eV 5	F	
2297.1 5 2306 7 f 7	1 17 ⁻	0.00+0 64 5	r D	
2300.7	17		Ē	
2332.1 3	1 1.4+		r D	
2335 2346.4 ^r 16	14 14 ⁺		ע	
2356 ⁱ	(14^{+})		- D	
2365.6 ^b 3	1-		F	
2389 ⁸	16-		D	

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
2410.0 ^b 3	1+ @	0.011 eV 2	F	
2418 ¹	(15 ⁻)		D	
2422.8 ^b 3	1 ^{-@}	0.0062 ^c eV 7	F	
2467.8 ^b 5	1 ⁺ @	0.048 ^c eV 5	F	
2491.5 ^b 5	1-		F	
2499.4 <mark>b</mark> 3	1^{+}		F	
2502 ^j	15+		D	
2529.0 ^b 3	1-		F	
2557.9 5	0+	280 ns 6	СНІ	%IT=97.4 4; %SF=2.6 4 Intrinsic electric quadrupole moment=29 3 (1979Ul01). %ternary fission ≈0.1 (1989Ma54) %α<0.5 (1971Be62). J^{π} : 2558γ to 0 ⁺ is E0. $T_{1/2}$: from IT DECAY.
2578.5 3	2+		C	
2593.7° 6	1-		F	
2602.5° 4	1^{-}	0.01 mg 8	F	T . from Coulomb arcitotion
2624.6 6	20 4 ⁺	0.91 ps 8	c	$1_{1/2}$. Hom Coulomb excitation.
2638.3 ^b 3	1^{+}		F	
2645 ^h	(14^{+})		D	
2647.3 ^b 8	1+		F	
2675.2 ^r 17	16+		D	
2683 ^k	16+		D	
2689.4 ^{<i>f</i>} 8	19-		D	
2702.2 ^b 3	1^{+}		F	
2712 ¹	(16 ⁺)		D	
2738.9 ⁰ 9	1+		F	
2/448	18		D	
$2/51^{\circ}$	(1/)		D E	Additional information 2
2730.4° 3	1 1+		r F	Additional Information 5.
$2775.0^{\circ}5$	1 1+		r F	
$2810.8 + 2844 2^{b} 9$	1 1 ⁻		F	
$2862.2^{b}5$	1-		T T	
2868^{j}	17+		D	
2877.1^{b} 3	1-		F	
2881.4 ^b 5	1+		F	
2896.6 ^b 3	1-		F	
2908.9 ^b 3	1-		F	
2910.0 ^b 4	1-		F	
2932.6 ^b 6	1^{+}		F	
2951.2 ^b 3	1^{+}		F	
2963.9 ^b 8	1^{+}		F	
2991 ^h	(16 ⁺)		D	
3005.9 ^b 4	1-		F	
3014.5 ^b 3	1^{+}		F	
3018.9 ^b 3	1-		F	

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
3030.6 ^b 3	1^{+}		F	
3031.2 ^r 19	18^{+}		D	
3037.7 <mark>6</mark> 3	1^{+}		F	
3042.5 ^b 6	1^{+}		F	
3043.6 ^b 3	1-		F	
3046.9 ^b 3	1-		F	
3051.7 <mark>6</mark> 3	1-		F	
3057.1 4	1-		F	
3060.6 ⁰ 3	1-		F	
3065 ^K	18^{+}	0.76 10	D	
3068.1° 9	1-	0.76 ps 10	Д	$I_{1/2}$: from Coulomb excitation.
3080.7° 3	1 1-		r	
3091.0° 3	I (10+)		r	
3095°	(18)		U F	
3090.4° 3	1 1-		r	
$3101.7^{\circ} 4$	1		г	
5104.5° 12 2117 7 ^b 4	21 1 ⁻		U F	
3117.7° 4	(10^{-})		г	
3120 3128 <mark>8</mark>	(19) 20^{-}		ע ח	
3135.0 ^b 3	1 ⁺		F	
3153.7 ^b 3	1+		F	
3172.9 ^b 3	1+		F	
3207.8^{b} 4	1-		F	
3217.6 ^b 6	1^{+}		F	
3234.5 ^b 7	1+		F	
3239.6 ^b 3	1-		F	
3253.194 ^b 15	1-	0.24 ps 8	F	J ^{π} : J=1 from angular correlation, π =– based on the relative intensities of the deexciting γ transitions.
3265 <i>j</i>	19+		D	
3274.4 ^b 3	1-		F	
3297.2 ^b 4	1-		F	
3303.6 ^b 3	1-		F	
3307.32 ^b 3	1^{+}		F	
3329.1 ⁰ 6	1-		F	
3348.33 ⁰ 3	1^{+}		F	
3366.0 ⁰ 5	1+		F	
3368 ⁿ	(18^{+})		D	
3384.3 ⁰ 3	1-		F	
3397.9° 8	1^{-}		F	
5411.2' 22	20*		ע	
$5416.0^{\circ} 4$	1		F	
$5421.5^{\circ} 5$	1 1-		F	
3441.0° 9 2449.2 ^h \leq	1 1+		r	
$3448.5^{\circ} 0$	1-		r	
5454.1° 4	1		F	

²³⁸U Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
3460.7 <mark>b</mark> 3	1+		F	
3467.8 <mark>b</mark> 6	1-		F	
3470.7 <mark>b</mark> 3	1-		F	
3474 ^k	20^{+}		D	
3475.2 ^b 3	1-		F	
3479.0 <mark>b</mark> 3	1-		F	
3489.0 <mark>b</mark> 3	1-		F	
3500.5 ^b 3	1-		F	
3502 ⁱ	(20 ⁺)		D	
3509.1 ^b 9	1-		F	
3521 ^l	(21 ⁻)		D	
3528.0 ^b 4	1-		F	
3535.3° 12	24 ⁺ 22 ⁻	0.51 ps 8	D	$T_{1/2}$: from B(E2) in Coulomb excitation.
35477f 13	22		ע	
$3548.0^{b}6$	1-		F	
3562.8 ^b 3	1		F	
3594.9 ^b 5	1-		F	
3608.7 ^b 3	1-		F	
3615.9 ^b 3	1-		F	
3623.9 <mark>b</mark> 3	1-		F	
3640.1 ^b 3	1-		F	
3650.5 <mark>b</mark> 3	1-		F	
3659.7 <mark>b</mark> 6	1-		F	
3673.7 <mark>b</mark> 6	1-		F	
3686 ^j	21+		D	
3728.0 <mark>b</mark> 9	1-		F	
3738.5 <mark>6</mark> 8	1-		F	
3759.9 ⁶ 3	1-		F	
3773 ⁿ	(20 ⁺)		D	
3805.1 ⁰ 3	1-		F	
3809 ⁰	$(1,2^+)$		F	
$3811.2^{\circ} 24$	1-		D F	
$3819.0^{\circ} 0$	1 1-		r F	
3006k	1 22+		r D	
3947 ^l	(23^{-})		ם	
$39657^{b}4$	(25)		F	
3971 ⁸	24-		D	
3990.7 <mark>b</mark> 9	1-		F	
3995.8 ^b 3	1-		F	
4017 f	25-		D	
4018.1 ^e 16	26^{+}	0.40 ps 7	D	$T_{1/2}$: from Coulomb excitation.
4023.7 ⁰ 7	1-		F	
4031.4 ⁰ 7	1-		F	
4046.7 ⁰ 3	1-		F	

Continued on next page (footnotes at end of table)

²³⁸U Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
4065.3 ^b 3	1-		F	
4072.1 ^b 6	1-		F	
4088.9 <mark>b</mark> 7	1-		F	
4093.4 ^b 3	1-		F	
4100.2^{b} 3	1-		F	
4105.2 ^b 3	1-		F	
4122.9 ^b 5	1-		F	
4127 <i>j</i>	23+		י ח	
4138.9 ^b 7	1-		F	
4145.8 ^b 3	1-		- F	
4151 3 ^b 6	1-		- F	
$4155 4^{b} 3$	1-		- F	
4175 8 ^b 4	1-		- F	
4181.5 ^b 7	1-		F	
4205 ^h	(22^{+})		D	
4217.3 <mark>b</mark> 8	1-		F	
4232 ^r 3	24^{+}		D	
4239.1 ^b 3	1-		F	
4358 ^k	24+		D	
4393 ¹	(25 ⁻)		D	
4424 <mark>8</mark>	26-		D	
4495 ^b	$(1,2^+)$		F	
4504 ^{<i>f</i>}	27^{-}		D	
4517 ^e	28^{+}	0.36 ps 9	D	$T_{1/2}$: from Coulomb excitation.
4586 ^J	25^{+}		D	
4592 ^b	$(1,2^+)$		F	
46/// 3	26+		D	
48070	(1)		F	Additional information 4.
4825	26 ⁺		D	
48958	28		D	
5003 ^J 5035 1 ^e 21	29 30+	<0.0 ps	ע ח	
5055.1 21	30 27+	<0.9 ps	ע	
5140b	21		U F	
5144^{r} 3	28^{+}		D	
5206 ^b	(1.2^+)		F	
5513 <i>f</i>	31-		D	
5581 ^e 3	32+		D	
6037 f 3	33-		D	
6146 ^e 4	34+		D	

 † Level energies are from a least-squares fit to the γ energies.

^{\ddagger} From excitation in Coulomb excitation, γ deexcitation pattern, and assignment to a rotational band. Band assignments are mainly from 1996Wa11. [#] Data are from ²³⁸Pa β^- decay. This level may be populated also in (n,n' γ); however, the agreement in branchings is poor. From

²³⁸U Levels (continued)

 $(n,n'\gamma)$ one has E γ =606.6 2, 647.7 4, 1043.0 10, and 1627.8 6 with I γ values of 100 12, 24 8, 4 4, and 12 4. The 1094.5 (placement in the decay scheme is uncertain) and 1730 γ 's have not been observed.

- ^(e) From $\gamma(\theta)$ in (γ, γ') and form factor in (e,e') (1988He02).
- & From $\gamma(\theta)$ in (γ, γ') (1995Zi02).
- ^{*a*} J=1 for a 1782 level in (γ, γ') , and J=2 for a 1782 level in Coulomb excitation, both spins determined by $\gamma(\theta)$. Both reactions report transitions to the 45 level and the g.s. It is possible that both reactions are exciting both levels, in which case the branching ratios may be incorrect.
- ^{*b*} From ²³⁸U(γ, γ').
- c From Γ data in (γ,γ') and adopted branching ratios.
- ^d Level is Coulomb excited and J=2 from $\gamma(\theta)$ in Coulomb excitation.
- ^{*e*} Band(A): $K^{\pi}=0^+$ ground-state band. Coulomb excitation. Member of ground-state rotational band based on γ -deexcitation pattern and energy fit to rotational formula.
- ^{*f*} Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band. Coulomb excitation. Member of octupole-vibrational band based on γ deexcitation pattern and energy fit.
- ^g Band(C): $K^{\pi}=1^{-}$, $\alpha=0$. Coulomb excitation. Member of $K^{\pi}=1^{-}$, $\alpha=0$ band based on γ deexcitation pattern and energy fit.
- ^h Band(D): Unassigned, but possibly built on the 1414 or 1530 2⁺ levels.
- ^{*i*} Band(E): Possibly associated with the 1037 2+ level, assigned by 1994Mc03 as the second K=0 β -vibrational bandhead.
- ^{*j*} Band(F): $K^{\pi}=2^+ \gamma$ -vibrational band. $\alpha=1$.
- ^{*k*} Band(G): $K^{\pi}=2^+ \gamma$ -vibrational band. $\alpha=0$.
- ^{*l*} Band(H): Probably associated with the octupole band built on the 1129 2- level, and thus probably $K^{\pi}=2^{-}$ with $\alpha=1$.
- ^{*m*} Band(I): $K^{\pi}=2^{-}$.
- ^{*n*} Band(J): $K^{\pi}=3^+ v 1/2(631)+v 5/2(622)$.
- ^{*o*} Band(K): $K^{\pi}=0^+$ band.
- ^{*p*} Band(L): $K^{\pi}=0^+$ second β -vibrational band.
- ^{*q*} Band(M): $K^{\pi}=1^{-}$. $\alpha=1$.
- ^{*r*} Band(N): Band based on $J^{\pi}=8^+$ (2010Zh09).

							γ ⁽²³⁸ U)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{r}	Comments
44.916	2+	44.915 ^{&} <i>13</i>	100	0.0	0+	E2	609	$\alpha(L) = 444; \ \alpha(M) = 123$ B(E2)(W.u.)=281 4 α : theoretical values of α , $\alpha(L)$, and $\alpha(M)$ are reduced by 2% (see 1987Ra01).
148.38	4+	103.50 ^{&} 4	100	44.916	2^{+}	[E2]	11.6	$\alpha(L)=8.405; \alpha(M)=2.332; \alpha(N+)=0.878$
307.18	6+	159.018 ^{&} 16	100	148 38	Δ^+	[F2]	1 871	$\alpha(K) = 0.2135; \alpha(L) = 1.201; \alpha(M) = 0.333; \alpha(N+) = 0.1239$
518.1	8 ⁺	210.6 4	100	307.18	6 ⁺	[E2]	0.626	$\alpha(K) = 0.143; \ \alpha(L) = 0.351; \ \alpha(M) = 0.096; \ N + = 0.0357$ B(E2)(W.u.)=410 60
680.11	1-	635.3 ^a 3	100.0 20	44.916	2+	[E1] ^{dp}	0.020 4	α (K)exp=0.016 4; B(E1)(W.u.)=0.011 4 E _{γ} : From Coulomb excitation.
		680.2 ^{<i>a</i>} 5	79 4	0.0	0^{+}	[E1] ^{<i>dp</i>}	0.020 5	α (K)exp=0.016 5; B(E1)(W.u.)=0.0070 24 E _{γ} : From Coulomb excitation.
731.93	3-	51.8 ⁰		680.11	1-			
		583.55 <i>3</i>	81.4 16	148.38	4+	E1 ^P	0.01003	$\alpha(K)=0.00812; \ \alpha(L)=0.00144$
		686.99 <i>3</i>	100.0 20	44.916	2^{+}	[E1]		
775.9	10+	257.8 ^{<i>a</i>} 4	100	518.1	8+	[E2]	0.313	α (K)= 0.101; α (L)= 0.154; α (M)= 0.0419; N+= 0.0156 B(E2)(W.u.)=480 60
826.64	5-	519.46 8	50 <i>3</i>	307.18	6+	[E1]		
		678.3 ^a 3	100 6	148.38	4^{+}	[E1]		
927.21	0^{+}	882.3 6	100	44.916	2^{+}	[E2]		
930.55	(1^{-})	251.2 7	13.1 14	680.11	1-			
		885.46 ^a 10	100 4	44.916	2^{+}	[E1]	0.00465	α (K)=0.00379; α (L)=0.00065
		931.1 2	25.2 13	0.0	0^{+}	[E1]	0.00426	α (K)=0.00347; α (L)=0.00059
950.12	2^{-}	218.1 3	53 6	731.93	3-			
		270.1 4	48 8	680.11	1-			
		905.5 5	100 6	44.916	2^{+}	[E1]	0.00447	$\alpha(K)=0.00365; \ \alpha(L)=0.00062$
966.13	2+	234.5 ^a 10	13.9 14	731.93	3-	[E1]	0.0689	α (K)= 0.0544; α (L)=0.01092; α (M)=0.00263; α (N+)=0.00093
								$B(E1)(W.u.)=3.5\times10^{-4}$ 15
		286.3 ^a 10	8.1 7	680.11	1^{-}	[E1]	0.0438	α (K)= 0.0348; α (L)=0.00679; α (M)=0.00163; α (N+)=0.00058
								$B(E1)(W.u.)=1.1\times10^{-4} 5$
		818.06 13	100 4	148.38	4+	[E2] ^{<i>p</i>}	0.0166	$\alpha(K) = 0.0121; \ \alpha(L) = 0.00341$ B(E2)(W.u.)=3.3 14 $\alpha(K) \approx -0.012.8$
		921.19 ^{<i>a</i>} 3	60 <i>3</i>	44.916	2+	E2+M1+E0 ^{<i>p</i>}	0.23 4	$\alpha(K) \exp[-0.012 \circ]$ B(M1) $\downarrow = 1.1 \times 10^{-4} \ 8;$ B(E2)(W.u.)=1.0 4 $\alpha(K) \exp[-0.191 \ 30]$
				0.0	0+		0.0120	α : from α (K)exp and α/α (K)=1.19 (E0 theory). δ : δ (E2/M1)=+4.1 + $6-5$ from Coulomb excitation (1994Mc03). ρ^2 =0.0099 18 from Coulomb excitation (2001Ga55).
0.66.01	-	900.9 3	21.3 14	0.0	0'	[E2]	0.0120	$\alpha(\mathbf{K}) = 0.0090; \ \alpha(\mathbf{L}) = 0.00226$ B(E2)(W.u.)=0.38 <i>16</i>
966.31	7-	449		518.1	8+			E_{γ} , I_{γ} : from Coulomb excitation. E=448.4 9 is reported in (n, n' γ), but the

From ENSDF

 $^{238}_{92}\mathrm{U}_{146}$ -11

L

						Adopted Leve	els, Gammas (co	ntinued)	
						$\gamma(^{23})$	⁸ U) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{r}	Comments
									transition is multiply placed with most of the intensity being placed from the 1129 2- level.
966.31 997.23	$7^{-}_{0^{+}}$	$659.1^{f} 2$ 952.06 5	100 14	307.18 44.916	6^+ 2^+ 0^+	E0 ^D			
007 58	3-	997.23^{-24}		0.0	(1^{-})	EUr			
991.30	5	318.0 ^{<i>a</i>} 10	8.0 4	680.11	1^{-}	[E2]		0.1611	$\alpha(K)=0.0682; \ \alpha(L)=0.0678; \ \alpha(M)=0.01827; \ \alpha(N+)=0.00679$
		849.1 ^{<i>a</i>} 4	100 <i>3</i>	148.38	4+	E1 <i>p</i>		0.00502	B(E2)(W.u.)=2.8 5 (1994Mc03) α (K)=0.00409; α (L)=0.00070 α (K)exp=0.0046 27
		952.65 7	56.8 13	44.916	2+	[E1]		0.00409	$\alpha(K)=0.00334; \ \alpha(L)=0.00057$ I _{γ} : I(952.7 γ)/I(849 γ)=1.1 4 from (n,n' γ).
1028	4-	78.1 ^{<i>f</i>} 4	64 ^{<i>g</i>} 42	950.12	2-				
		295.86 ^f 6	<190 ⁸	731.93	3-				
		879.63 [†] 11	100 ^g 6	148.38	4+				
1037.25	2+	305.5 ⁴ 6	11.8 5	731.93	3-	E1		0.0379	$\alpha(K) = 0.0302; \ \alpha(L) = 0.00584; \ \alpha(M) = 0.00140; \ \alpha(N+) = 0.00050$
		357.5 ^a 6	9.5 4	680.11	1-	E1		0.0270	$\begin{array}{l} \alpha(K) = 0.02161; \ \alpha(L) = 0.00408; \ \alpha(M) = 0.00097; \\ \alpha(N+) = 0.00038; \ \alpha(M) = 0.0009; \\ \alpha(N+) = 0.00038; \ \alpha(M) = 0.000$
		888.9 ^{<i>a</i>} 3	71.7 15	148.38	4+	E2		0.0141	B(E1)(W.u.)=1.00×10 + 12 α (K)= 0.0104; α (L)=0.00277 B(E2)(W.u.)=2.28 23
		992.32 ^{<i>a</i>} 7	72.9 15	44.916	2+	E2+M1+E0 ^{<i>p</i>}		0.78 4	B(E2)(W.u.)=1.23 14; B(M1)(W.u.)= $3.4 \times 10^{-4} 6$ α (K)exp=0.653 33 δ : δ (E2/M1)=+ $3.50 + 20 - 25$ from Coulomb excitation (1994McO3)
		1037.3 2	100.0 21	0.0	0^{+}	E2		0.0105	$ ρ^2 = 0.175 \ 26 \text{ from Coulomb excitation (2001Ga55).} $ <i>α</i> : from <i>α</i> (K)exp and <i>α</i> / <i>α</i> (K)=1.19 (E0 theory). <i>α</i> (K)=0.00795: <i>α</i> (L)=0.00192
									B(E2)(W.u.)=1.47 <i>16</i>
1056.38	4+	$749.2\ 2$	100	307.18	6^+	E2		0.01978	$\alpha(K)=0.01409; \ \alpha(L)=0.00428$
1059.66	(3+)	911.3 ^e 2 1015 ^c	+1	148.38 148.38 44.916	4^+ 2^+				
1060.27	2^{+}	911.9 ^a 4	3.57 20	148.38	4+	E2		0.0134	$\alpha(K) = 0.0100; \ \alpha(L) = 0.00260$
		1015.3 ^{ac} 2	100.0 20	44.916	2+	M1+E2 ^{<i>p</i>}	10.0 +15-14	0.0109	B(E2)(W.u.)=0.5555 $\alpha(K)=0.00826; \ \alpha(L)=0.00202$ $B(E2)(W.u.)=5.34; \ B(M1)(W.u.)=2.0\times10^{-4}6$ $\alpha(K)\exp=0.00757$
		1060.3 ^{ai} 2	69.8 14	0.0	0^{+}	E2		0.0101	$\alpha(K)=0.00765; \alpha(L)=0.00182$ B(E2)(W.u.)=3.04 18

From ENSDF

 $^{238}_{92}\mathrm{U}_{146}\text{-}12$

L

	Adopted Levels, Gammas (continued)											
							γ ⁽²³⁸ U) (contin	ued)				
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f J	π f	Mult. [#]	$\delta^{@}$	α^{r}	Comments			
1076.7	12+	300.6 ^{<i>a</i>} 9	100	775.9 10)+	[E2]		0.191	α (K)= 0.0758; α (L)= 0.0841; α (M)= 0.0227; N+=0.00844 B(E2)(W.u.)=500 50			
1105.71	3+	957.80 ^{<i>f</i>} 4	30 2	148.38 4+								
		1060.32^{fi} 2	100	44.916 24								
1128.84	(2 ⁻)	68.1 ^h		1060.27 2+								
		68.8 ^h		1059.66 (3	+)							
		130.7 ^h		997.58 3-								
		178.2 ^h	36	950.12 2-	·	[M1]		4.51	$\alpha(K)$ = 3.58; $\alpha(L)$ = 0.699; $\alpha(M)$ = 0.1692; $\alpha(N+)$ = 0.0616			
		198.6 ^{<i>f</i>} 3	15	930.55 (1	-)				I _γ : masked by an impurity line in Coulomb excitation. From $I\gamma/I\gamma(1084\gamma)=0.18$ in β decay.			
		396.3 2	26.0 13	731.93 3-								
		448.1 ¹ 2	100 ¹ 4	680.11 1								
1120 75	4+	1084.087	81 4 100	44.916 2								
1125.72	4	$982.44^{\circ} 24$	100 20	146.36 4								
1155.77		208.5 J = 10	71 6	927.21 0								
1150.7	0-	$1090.9^{45} = 2$ 184 ^a	/1 0	44.910 2 ⁻ 966.31 7 ⁻								
1150.7	/	374.8 ^{<i>a</i>} 4		775.9 10)+							
		632.6 ^{<i>a</i>} 4		518.1 8+								
1151	6-	123 ^a		1028 4-								
		324^{a}		826.64 5								
1163	(4^{+})	843 ^a 855 ^a		307.18 6 ⁺								
1105	(+)	1015 ^a		148.38 4								
1167.99	4+	861 ^{<i>a</i>}	13.5	307.18 6+	· 1	E2		0.01504	α (K)=0.01105; α (L)=0.00300			
		1018.88 ^{fk} 3	100	148.38 4+	· 1	E2		0.01085	$\alpha(K)=0.00820; \ \alpha(L)=0.00200$			
		1123 <i>ak</i>	6.8	44.916 24	·]	E2		0.00904	$\alpha(K)=0.00691; \alpha(L)=0.00160$			
1168.88	3-	41.4 <mark>/</mark>		1128.84 (2	-)							
		109.4 ^{hu}		1059.66 (3	+)							
		172 ^a	44.3	997.58 3-	·	[M1]		5.05	$\alpha(K)$ = 4.00; $\alpha(L)$ = 0.783; $\alpha(M)$ = 0.1894; $\alpha(N+)$ = 0.0690			
		202.6 ^{<i>a</i>}	16.8	966.13 24		[E1]		0.0957	α (K)= 0.0751; α (L)=0.01547; α (M)=0.00374; α (N+)=0.00132			
		436.9 3	100	731.93 3-	.]	M1+E2	+0.23 +11-8	0.366 17	$ \begin{aligned} \alpha(\text{K}) &= \ 0.291 \ 15; \ \alpha(\text{L}) &= \ 0.0567 \ 20; \ \alpha(\text{M}) &= \ 0.0137 \ 5; \\ \alpha(\text{N}+) &= \ 0.00498 \ 17 \end{aligned} $			
		489.0 ^{<i>a</i>} 10	23.4	680.11 1	.]	E2		0.0505	α (K)= 0.0303; α (L)=0.01482; α (M)=0.00389; α (N+)=0.00143			
		1021 ^{<i>ak</i>}	49.6	148.38 44	·	[E1]		0.00362	α (K)=0.00296; α (L)=0.00050			
		1123 ^{ak}	27.0	44.916 24	۱ ا	[E1]		0.00307	$\alpha(K)=0.00251; \ \alpha(L)=0.00042$			

 $^{238}_{92}\mathrm{U}_{146}\text{--}13$

L

 $^{238}_{92}\mathrm{U}_{146}\text{--}13$

From ENSDF

$\gamma(^{238}\text{U})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_{f}	J_f^π	Mult. [#]	α^{r}	Comments
1209.3		282.2 ^{<i>f</i>} 8	100 <mark>8</mark> 43	927.21	0^{+}			
		1060.98 ^{<i>f</i>} 3	<1014 <mark>8</mark>	148.38	4+			
		1209.3 ^{<i>f</i>} 3	86 <mark>8</mark> 14	0.0	0^{+}			
1223.78	2+	258 ^a	4.7	966.13	2+	E2	0.312	$\alpha(K) = 0.1009; \ \alpha(L) = 0.1537; \ \alpha(M) = 0.0418; \ \alpha(N+) = 0.01552$ B(E2)(W.u.)=32
		274 ^{<i>a</i>}	17.8	950.12	2^{-}	E1	0.0483	$\alpha(K) = 0.0383; \ \alpha(L) = 0.00753; \ \alpha(M) = 0.00181; \ \alpha(N+) = 0.00064$ B(E1)(W n) = 1.8×10 ⁻⁴
		293 ^a	7.2	930.55	(1-)	E1	0.0416	$\alpha(\mathbf{K}) = 0.0331; \ \alpha(\mathbf{L}) = 0.00644; \ \alpha(\mathbf{M}) = 0.00154; \ \alpha(\mathbf{N}+) = 0.00055$
		296 ^a	8.0	927.21	0^+	E2	0.2004	$\alpha(K) = 0.0781; \alpha(L) = 0.0893; \alpha(M) = 0.02414; \alpha(N+) = 0.00897$
		1076 ^a	3.2	148.38	4+	E2	0.00980	B(E2)(W.L.)=27 $\alpha(K)=0.00745; \alpha(L)=0.00176$ B(E2)(W.L.)=0.0177
		1179.3 <i>3</i>	96	44.916	2+	M1+E2		E_{γ} : weighted average of 1179.2 4 from Coulomb excitation, and 1179.4 2 from 1984BIZS, 1179.6 3 from 1978De41, and 1179.0 2 from 1972Mc19 in (n,n' γ).
		1223.3 2	100	0.0	0^{+}	E2	0.00770	δ: δ=+7.0 + 14-10 or -0.295 from γ(θ) in Coulomb excitation. α(K)=0.00594; α(L)=0.00132 B(E2)(W,u,)=0.29
1232	5+	69 ^a 127 ^a 925 ^a		1163 1105.71 307.18	(4 ⁺) 3 ⁺ 6 ⁺			
		1084 ^a		148.38	4+			
1239.3?		932.30 ^f 7	≤156 <mark>8</mark>	307.18	6+			
		$1090.9^{fu} 2$	100	148.38	4+			
1242.9?		1094.5 <i>shu</i>	S	148.38	4+			
1260.9?		1112.0 ^{<i>u</i>} 5	29 3	148.38	4+			
		1215.31 ^u 5	100 6	44.916	2+			
1269.2	6+	962.0 ^J 10	100	307.18	6+			
1278.54	2+	546.93 ^J 10	48	731.93	3-	E1	0.01136	$\alpha(K)=0.00917; \ \alpha(L)=0.00164$ B(E1)(W.u.)=4.8×10 ⁻⁵ 7
		1130.31 ^{<i>f</i>} 12	60 4	148.38	4+	E2	0.00893	$\alpha(K)=0.00684; \alpha(L)=0.00158$ B(E2) $\downarrow=0.29 \ 3$ E _{γ} : from 1994Mc03.
		1233.65 ^{<i>f</i>} 7	82	44.916	2+	E2	0.00758	$\alpha(K)=0.00586; \alpha(L)=0.00130$ B(E2)(W.u.)=0.37 5 E _y : E=1233 in Coulomb excitation.
		1278.57 ^{<i>f</i>} 7	100 60	0.0	0^+	E2	0.00709	$\alpha(K)=0.00550; \ \alpha(L)=0.00120$ B(F2)(W n)=0.098.9
1311	6+	79 ^a		1232	5+			

From ENSDF

							Adopt	ted Levels,	Gammas (continued)
								γ (²³⁸ U)	(continued)
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	α r	Comments
	1311	6+	149 ^a 793 ^a 1004 ^a		1163 518.1 307.18	(4 ⁺) 8 ⁺ 6 ⁺			
	1318	8-	167^{a} 352^{a}		1151 966.31	6 ⁻ 7 ⁻			
	1354.79	(1,2 ⁺)	$\begin{array}{c} 405.8^{f} \ 10\\ 423.8^{f} \ 3\\ 1310.5^{f} \ 4\end{array}$	40 20 100 20 50 10	950.12 930.55 44.916	2 ⁻ (1 ⁻) 2 ⁺			
	1378.8	11-	$ \begin{array}{r} 1354.5^{fl} \ 10 \\ 228.1^{a} \ 4 \\ 302.3^{a} \ 4 \\ 602.9^{a} \ 4 \end{array} $	30 10	0.0 1150.7 1076.7 775.9	0 ⁺ 9 ⁻ 12 ⁺ 10 ⁺			
	1381.19		554.28 ^{<i>f</i>} 7 1073.82 ^{<i>f</i>} 11	100	826.64 307.18	5- 6+			
	1403	7+	92 ^a 171 ^a		1311 1232	6^+ 5^+			
1 7	1414.0	2+	^{885a} 354 ^a	4.3	518.1 1060.27	2^{+}	E2	0.1194	$\alpha(K) = 0.0562; \ \alpha(L) = 0.0462; \ \alpha(M) = 0.01240; \ \alpha(N+) = 0.00460$ B(E2)(W.u.)=36
			1370 ^a	100	44.916	2+			
			1413.4 ^{<i>f</i>} 2	15.5	0.0	0^{+}	E2	0.00589	$\alpha(K)=0.00461; \ \alpha(L)=0.00096$ B(E2)(W.u.)=0.125
	1415.5	14+	338.8 ^{<i>a</i>} 4	100	1076.7	12+	[E2]	0.134	α (K)= 0.0605; α (L)= 0.0534; α (M)= 0.0143; N+=0.00533 B(E2)(W.u.)=491 <i>38</i>
	1446.4	(7-)	480 ^{<i>a</i>}	100	966.31	7-			
	1455.39		1306.5 ^J 1	81 9	148.38	4+			
			1410.1 ^J 1	100 9	44.916	2+			
	1482.41		422.1 ^J 3	4	1060.27	2+			
			551.63 ^J 8	21	930.55	(1 ⁻)			
			802.9 ^J 2	32	680.11	1-			
	1504	0+	1437.39 8	100	44.916	2+ 7+			
	1504	8	102 ^a		1405	6 ⁺			
	1516 52		$1367 3 \frac{sl}{2}$	95 <mark>5</mark>	148 38	0 4+			
	1510.5.		1470.56 10	100	44.916	2+			
	1528	10-	210 ^a 377 ^a		1318 1150.7	8- 9-			
	1530.2	2^{+}	400.6 ^{<i>a</i>}	8.5	1128.84	(2 ⁻)	E1	0.0213	$\alpha(K)=0.0171; \ \alpha(L)=0.00317$
			564 ^{<i>a</i>}	17.8	966.13	2+	[E2]	0.0362	B(E1)(W.u.)= 6.4×10^{-4} α (K)=0.02342; α (L)=0.00958 B(E2)(W.u.)=55

L

Adopted Levels, Gammas (continued)											
							γ (²³⁸ U) (continued)			
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	$J^{\pi}_{\mathfrak{L}}$	Mult. [#]	α^{r}	Comments			
1530.2	$\frac{1}{2^{+}}$	599 ^a	41.7	930.55	$\frac{J}{(1^{-})}$	[E1]	0.00955	$\alpha(K)=0.00773; \alpha(L)=0.00137$ B(E1)(Wu)=9.4×10 ⁻⁴			
		798.4 ^{<i>a</i>}	23.9	731.93	3-	[E1]	0.00560	$\alpha(K)=0.00456; \ \alpha(L)=0.00079$ B(E1)(W.u.)=2.3×10 ⁻⁴			
		1382.11 ^{<i>f</i>} 12	100 8	148.38	4+	E2	0.00615	α (K)=0.00480; α (L)=0.00101 B(E2)(W.u.)=3.57 43 (1994Mc03)			
		1485.3 ^{<i>f</i>} 3 1530 ^{<i>a</i>}	35 6 11.3	44.916 0.0	2^+ 0^+	M1+E2 E2	0.00401	δ: δ=-30 10 or -0.51 from γ(θ) in Coulomb excitation. α(K)=0.00401 B(E2)(W.u.)=0.240 24 (1994Mc03)			
1545.8	8+	1028 ⁹	100	518.1	8+						
1561.6		501.9 ^h	100	1059.66	(3^{+})						
		1413 ^h	12	148.38	4+						
		1516.5 ^h	<15	44.916	2^{+}						
1594.80	(4^{+})	768.40 ¹ 7	<50	826.64	5-						
		1287.0 ^{<i>f</i>} 5	22 5	307.18	6+						
		1446.12 ^{<i>f</i>} 11	≤100	148.38	4+						
		1549.88 ^{<i>f</i>} 12	100 8	44.916	2^{+}						
1617.5		448.3 ^{thu}	$\approx 7^{t}$	1168.88	3-			I_{γ} : most of the intensity belongs with the 1129 level.			
		489.0 ^h	100	1128.84	(2 ⁻)						
1619	9+	557.9 ^h 114 ^a 216 ^a	≈25	1059.66 1504 1403	(3 ⁺) 8 ⁺ 7 ⁺			I_{γ} : estimated by evaluators.			
		843 ^a		775.9	10^{+}						
1643.73 1644	(9 ⁻)	1336.34^{f} 12 197 ^a 493 ^a	100	307.18 1446.4 1150.7	6 ⁺ (7 ⁻) 9 ⁻						
1645.0		476.2 ^h	100 <mark>m</mark>	1168.88	3-						
		1496.6 ^h	42 ^m	148.38	4+						
		1600 ^h	16 <mark>m</mark>	44.916	2+						
1649.2	13-	234 ^{<i>a</i>}		1415.5	14^{+}						
		270.5 ^{<i>a</i>} 4		1378.8	11-						
		572.4 ^{<i>a</i>} 4		1076.7	12+						
1672.01		566.20 ^J 11	50	1105.71	3+						
		1523.63 ^J 15	100 8	148.38	4+						
		1627.0 ^J 2	<53	44.916	2+						
1675.7		547.0 ^J 3	100'''	1128.84	(2 ⁻)						

 $^{238}_{92}\mathrm{U}_{146}$ -16

 $^{238}_{92}\mathrm{U}_{146}$ -16

From ENSDF

						Adopted	Levels, Gam	mas (con	tinued)
							$\gamma(^{238}\text{U})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{r}	Comments
1675.7		943.5 ^{h} 995.4 ^{h} 1527.1 ^{h} 1630.5 ^{h}	17.5^{m} 25^{m} 9^{m} 7.5^{m}	731.93 680.11 148.38 44.916	3 ⁻ 1 ⁻ 4 ⁺ 2 ⁺				
1741	10+	122^{a} 237 ^a	1.5	1619 1504	2 9 ⁺ 8 ⁺				
1760.9	(4+)	655.3 <i>3</i> 701.9 2 1454.8 2 1613.2 <i>3</i> 1716.2 <i>4</i>	<1.4 0.5 <0.4 0.6 100 <i>15</i>	1105.71 1059.66 307.18 148.38 44.916	3^+ (3 ⁺) 6^+ 4^+ 2^+				
1774.7	(3 ⁻ ,4,5 ⁻)	$\begin{array}{c} 605.7^{h} \\ 646.4^{h} \\ 1042.4^{h} \\ 1094.5^{sh} \\ 1626^{h} \end{array}$	100^{m} 90^{m} 80^{m} $\leq 50^{sm}$ 30^{m}	1168.88 1128.84 731.93 680.11 148.38	3 ⁻ (2 ⁻) 3 ⁻ 1 ⁻ 4 ⁺				Placement in level scheme is uncertain.
1778	12-	1730 ^h 250 ^a 399 ^a	30 ^m	44.916 1528 1378.8	2+ 10- 11-				
1782	1	1737 ⁿ 1782 ⁿ	$55^{n} 5$ 100^{n}	44.916 0.0	2^+ 0^+				
1782.3	2+	1737.8 ^f 5	89 10	44.916	2+	M1+E2	11 +19-4		B(E2)(W.u.)=0.57 6 B(M1)(W.u.)= $5 \times 10^{-5} + 7 - 4$
1786.7	10+	$ \begin{array}{r} 1782.3^{f} \ 4 \\ 241^{q} \\ 259^{q} \\ 408^{q} \\ 636^{q} \\ 1011^{q} \end{array} $	100 11	0.0 1545.8 1528 1378.8 1150.7 775.9	0 ⁺ 8 ⁺ 10 ⁻ 11 ⁻ 9 ⁻ 10 ⁺	E2			B(E2)(W.u.)=0.41 4
1788.4	16+	372.9 ^{<i>a</i>} 4	100	1415.5	14 ⁺	[E2]		0.102	$\alpha(K) = 0.0505; \ \alpha(L) = 0.0376; \ \alpha(M) = 0.0101; \ N + = 0.00373$ B(E2)(W,u)=490 21
1793	1	1748 ⁿ 1793 ⁿ	100^{n} 90 ⁿ 23	44.916 0.0	$2^+_{0^+}$				
1846	1	1802 ⁿ 1846 ⁿ	$51^{n} 5$ 100^{n}	44.916 0.0	2^+ 0^+				
1866	(11 ⁻)	222 ^a 487 ^a		1644 1378.8	(9 ⁻) 11 ⁻				
1875	11+	134 ^a 256 ^a		1741 1619	10 ⁺ 9 ⁺				

L

From ENSDF

$\gamma(^{238}\text{U})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
1875	11^{+}	798 ^a		1076.7	12^{+}	
1934.3	(3^{-})	289.1 ^h	9 ^m	1645.0		
	(-)	317.0^{h}	16 ^m	1617 5		
		373h	$< 14^{m}$	1561.6		
		765 3h	$_{0}m$	1168.88	3-	
		$r_{05.5}$	7 100 ^m	1100.00	(2^{-})	
		803.7	20^{m}	1050.66	(2^+)	
		$8/4.4^{h}$	201	1059.00	(3)	
		984.6 ⁿ	16'''	950.12	2	
		1003.6"		930.55	(1-)	
		1785.7"		148.38	4+	
		1889.1 ^{<i>n</i>}	39 ^m	44.916	2+	
1959.2	15-	309.9^{a} 4		1649.2	13-	
1002.2	(2^{-})	543.7°° 4 375		1415.5	14	F. I. reported only in β^- decay. $I_{2}/I_{2}/(863.5\alpha) < 0.11$
1992.2	(3)	768 3 2		1223 78	2^{+}	E_{γ}, i_{γ} . reported only in β^- decay. $i_{\gamma}/i_{\gamma}(803.5\gamma) < 0.11$. E_{γ}, I_{γ} : $E=769$ is seen in β^- with $I_{\gamma}/I_{\gamma}(863.5\gamma) \approx 0.02$ unplaced by authors
		823.2		1168.88	3-	$E_{\gamma}I_{\gamma}$: reported only in β^- decay. $I_{\gamma}/I_{\gamma}(863.5\gamma)=0.17$.
		863.7 2		1128.84	(2^{-})	E_{γ}, I_{γ} : from (n,n' γ). E=863.3 in β^- decay.
		932.30 7		1059.66	(3+)	$E_{\gamma}I_{\gamma}$: from (n,n' γ), with $I_{\gamma}/I_{\gamma}(863.5\gamma) < 10$. E=932.5 in β^- decay, with $I_{\gamma}/I_{\gamma}(863.5\gamma) < 0.11$.
1996.7	1-	1951.8 ⁿ	18 ⁿ 2	44.916	2+	
2017 7	1+	1996.7 ⁿ 3	100 ⁿ	0.0	0^+	
2017.7	1,	$19/2.8^{n}$	18/" 4/	44.916	21	
2018	12+	$2017.7^{\circ} 4$ 143°	100	1875	0 11+	
2010	12	277^{a}		1741	10^{+}	
2033	(12^{+})	957 ^a	100	1076.7	12^{+}	
2048.7	12+	262 ⁹		1786.7	10^{+}	
		271 9		1778	12^{-}	
		400 9		1649.2	13-	
		670 ⁹		1378.8	11-	
20(2.0	(2-)	9734	-	10/6./	12.	
2063.9	(2)	1332.0 ⁿ	70	731.93	3	
		1383.9"	100	680.11	1-	
2000	1.4-	2019 ⁿ	100	44.916	2+	
2006	14 1+	288" 2070 2 ⁿ 1	100 100 ⁿ	1//8	12 0 ⁺	
2079.3	1 1 ⁻	$2079.5^{\circ} 4$ 2035.8 ⁿ	150^{n} 19	0.0 44 916	$\frac{0}{2^+}$	
2000.7	1	2035.0^{n} 2080.7 ⁿ 4	100^{n}	0.0	$\tilde{0}^{+}$	
2093.3	1-	2093.3 ⁿ 4	100 ⁿ	0.0	0^{+}	
2122	(13-)	257 <mark>a</mark>		1866	(11^{-})	

L

Adopted Levels, Gammas (continued)											
							$\gamma(^{238}$ L	J) (continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	α^{r}	Comments			
2122	(13^{-})	473 ^a		1649.2	13-						
2125 3	2+	1394 1 <i>1</i> 9	51 <mark>8</mark> 27	731 93	3-						
2120.0	-	1076.7f	1008 26	1/8/38	<i>∆</i> +						
		1970.75 0	07 ⁹ 25	140.30	+ 2+						
		2080.9 ^J 6	8/8/23	44.916	2'						
		2124.9 6	408 11	0.0	0+						
2145.6	1-	2145.6 ⁿ 3	100"	0.0	0^{+}						
2163.5		1857.1 ^J 4	100 <mark>8</mark> 13	307.18	6+						
		2015.8 ^f 2	78 <mark>8</mark>	148.38	4+						
2171	13+	153 ^a		2018	12+						
		296 ^a		1875	11^{+}						
		755 ^a		1415.5	14^{+}						
2175.8	1^{+}	2130.9 ⁿ	54 ⁿ 3	44.916	2^{+}						
		2175.8 ⁿ 3	100 ⁿ	0.0	0^{+}	[M1]		B(M1)(W.u.)=0.173 16			
2191.1	18^{+}	402.6 ^{<i>a</i>} 4	100	1788.4	16+	[E2]	0.0828	α (K)= 0.0437; α (L)= 0.0286; α (M)=0.00763; N+=0.00283			
		12	12					$B(E2)(W.u.) = 480 \ 30$			
2208.8	1+	2163.9 ⁿ 3	21" 8	44.916	2+						
		2208.8 ⁿ 3	100"	0.0	0+	[M1]		$B(M1)(W.u.)=0.162\ 20$			
2244.4	1+	2199.5 ⁿ	14 ⁿ 1	44.916	2+						
		2244.4 ⁿ 3	100"	0.0	0^+	[M1]		B(M1)(W.u.)=0.087 9			
2294.1	1+	2249.2 ⁿ	103" 6	44.916	2*	E (1)					
0007 7	17-	2294.1^{n} 3	100"	0.0	0'	[M1]		B(M1)(W.u.)=0.035 6			
2306.7	1/	$34/.5^{a}$ 4		1959.2	15						
0000 7	1-	518.3° 4	120 1 0	1/88.4	10						
2332.7	1	2287.8°	132" 9	44.916	2 · 0+						
2222	14+	2552.7 5 162 <mark>0</mark>	100	2171	0 13+						
2333	14	315 ^{<i>a</i>}		2018	13 12 ⁺						
2346.4	14^{+}	2819		2016	$12 \\ 14^{-}$						
2340.4	17	201 ⁻ 298 <mark>9</mark>		2000	17^{+}						
		387 <mark>9</mark>		1959.2	15-						
		698 <mark>9</mark>		1649.2	13-						
		931 <u>9</u>		1415.5	14^{+}						
2356	(14^{+})	323 ^a		2033	(12^+)						
	· · /	941 ^{<i>a</i>}		1415.5	14+ ′						
2365.6	1-	2365.6 ⁿ 3	100 ⁿ	0.0	0^{+}	[E1]					
2389	16-	323 a	100	2066	14-						
2410.0	1^{+}	2365.1 ⁿ	170 ⁿ 9	44.916	2^{+}						
		2410.0 ⁿ 3	100 ⁿ	0.0	0^{+}	[M1]		B(M1)(W.u.)=0.061 7			
2418	(15 ⁻)	296 ^a		2122	(13 ⁻)						
2422.8	1-	2422.8 ⁿ 3	100 ⁿ	0.0	0^{+}						

²³⁸₉₂U₁₄₆-19

From ENSDF

²³⁸₉₂U₁₄₆-19

								,	
							$\gamma(^{238}$ U	J) (continu	ned)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{r}	$I_{(\gamma+ce)}$	Comments
2467.8	1+	2467.8 ⁿ 5	100 ⁿ	0.0	0^{+}	[M1]			B(M1)(W.u.)=0.066 9
2491.5	1-	2446.6 ⁿ	66 ⁿ 28	44.916	2+				
		2491.5 ⁿ 5	100 ⁿ	0.0	0^{+}				
2499.4	1+	2454.5 ⁿ	47 ⁿ 5	44.916	2+				
2502	1.5+	2499.4 ⁿ 3	100"	0.0	0^+				
2502	15	1694		2333	14'				
		332^{a}		21/1	13' 16 ⁺				
2520.0	1-	715^{n}	28^{n} 0	1/00.4	10 2+				
2327.0	1	2+0+.1 2529 0 ^{<i>n</i>} 3	100^{n}	-++.910 0.0					
2557.9	0^{+}	1879 ⁰	490 13	680.11	1-	IE11			$B(E1)(W_{II}) = 3.1 \times 10^{-11} 8$
2331.7	0	2512.70 5	100^{0} 10	44 916	2+	[E2]			$B(E^2)(W_{\rm H}) = 1.54 \times 10^{-7} 19$
		2558.2	100 17	0.0	0^{+}	E0		0 34 6	$I(\mu,\mu,\mu)$: from IT decay
2578 5	2+	2430 of 3	97 18	148 38		20		0.510	(y+ce). 11 accuj.
2310.3	4	2730.0° 3	100 15	140.00					
2503 7	1-	2333.0^{3} 3 2548.9 ⁿ	100 IS $17^{n} \Lambda$	44.910 11 016	∠ · 2+				
2393.1	1	2540.0^{-1}	1/2 4 100^{n}	44.910 0.0	$\overset{\scriptscriptstyle {\scriptscriptstyle \angle}}{}_{0^+}$				
2602 5	1-	2595.6 0 2557 6 ⁿ	38 ⁿ a	<u>4</u> 4 916	2+				
2002.5	T	2602.5^{n} 4	100^{n}	0.0	$\tilde{0}^{+}$				
2619.1	20^{+}	427.9^{a} 4	100	2191.1	18+	[E2]	0.0707		$\alpha(K) = 0.0390; \ \alpha(L) = 0.0232; \ \alpha(M) = 0.00616; \ N + = 0.00228$
						[——]			$B(E2)(W.u.)=460 \ 40$
2624.6	4+	2317.3 ^f 9	62 23	307.18	6+				
	•	$2476.2f_{6}$	100 23	148 38	<u>4</u> +				
2638 3	1+	$2593 4^{n}$	$133^{n} 9$	44 916	$\frac{1}{2^{+}}$				
2050.5	1	$2638.3^{n}.3$	100 ⁿ	0.0	$\tilde{0}^{+}$				
2645	(14^{+})	857 ^a	100	1788.4	16+				
2647.3	1+	2602.4 ⁿ	80 ⁿ 8	44.916	2+				
		2647.3 ⁿ 8	100 ^{<i>n</i>}	0.0	0^{+}				
2675.2	16^{+}	329 9		2346.4	14^{+}				
		368 <mark>9</mark>		2306.7	17^{-}				
		716 <mark>9</mark>		1959.2	15-				
2683	16^{+}	182 <mark>a</mark>		2502	15+				
	10-	350 ^a		2333	14+				
2689.4	19-	382.7^{4} 4		2306.7	17				
2702.2	1+	498.3°	1001	2191.1	18 ⁺				
2702.2	(16^{+})	2102.2° 3	100"	0.0	(14^{\pm})				
2112	(10.)	924 ^a		2330 1788 /	(14^{+}) 16^{+}				
2738.9	1+	2694.0^{n}	143 ⁿ 48	1/00.4 <u>4</u> 4 016	2 ⁺				
2150.7	T	$2738.9^{n}9$	100^{n}	0.0	$\tilde{0}^{+}$				
			100	0.0	0				

From ENSDF

 $^{238}_{92}\mathrm{U}_{146}\text{--}20$

L

 γ (²³⁸U) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ [‡]	E_f	\mathbf{J}_f^{π}
2751	(17^{-})	333 ^a	100	2418	(15^{-})
2756.4	1+	2756.4 ⁿ 3	100 ⁿ	0.0	0+
2773.0	1^{+}	2728.1 ⁿ 3	105 ⁿ 29	44.916	2+
		2773.0 ⁿ 3	100 ⁿ	0.0	0^{+}
2816.8	1^{+}	2816.8 ⁿ 4	100 ⁿ	0.0	0^{+}
2844.2	1-	2844.2 ⁿ 9	100 ⁿ	0.0	0^{+}
2862.2	1-	2817.3 ⁿ	143 <mark>n</mark> 29	44.916	2+
		2862.2 ⁿ 5	100 ⁿ	0.0	0^{+}
2868	17^{+}	184 ^a		2683	16+
		365 ^a		2502	15^{+}
		677 ^a		2191.1	18^{+}
2877.1	1-	2877.1 ⁿ 3	100 ⁿ	0.0	0^{+}
2881.4	1^{+}	2836.5 ⁿ	134 <mark>n</mark> 29	44.916	2^{+}
		2881.4 ⁿ 5	100 ⁿ	0.0	0^{+}
2896.6	1-	2851.7 ⁿ	76 <mark>n</mark> 19	44.916	2+
		2896.6 ⁿ 3	100 ⁿ	0.0	0^{+}
2908.9	1-	2864.0 ⁿ	76 ⁿ 19	44.916	2+
		2908.9 ⁿ 3	100 ⁿ	0.0	0^{+}
2910.0	1-	2865.1 ⁿ	105 ⁿ 10	44.916	2+
		2910.0 ⁿ 4	100 ⁿ	0.0	0^{+}
2932.6	1+	2887.7 ⁿ	143 ⁿ 38	44.916	2+
		2932.6 ⁿ 6	100"	0.0	0^{+}
2951.2	1+	2906.3 ⁿ	86 ⁿ 10	44.916	2+
		2951.2 ⁿ 3	100"	0.0	0+
2963.9	1+	2963.94 8	100"	0.0	0+
2991	(16 ⁺)	346 ^a		2645	(14+)
		8004		2191.1	18+
2005.0	1-	1203 ^d	can ac	1788.4	16-
3005.9	1	2961.0 ⁿ	6/1 /6	44.916	21
2014.5	1 +	3005.9^{n} 4	100"	0.0	0^{+}
3014.5	1'	2969.6^{n}	38" 10	44.916	2
2019.0	1-	3014.5° 3	100^{n}	0.0	0^{+}
3018.9	1	$29/4.0^{10}$	96 ⁿ 29	44.916	2 · 0+
2020 (1 +	$3018.9^{10} 3$	100"	0.0	0.
3030.0	10+	3030.0 3	100"	0.0	0^{+}
3031.2	18	330 ⁴		20/5.2	10
2027 7	1+	724^{1}	115 <mark>1</mark> 10	2500.7	$\frac{1}{2^+}$
5057.7	1	2992.0 3037 7 <mark>n</mark> 2	100^{n}	44.910	$^{2}_{0^{+}}$
3042.5	1+	$3037.7 \ 3037.7 \ 3042 \ 5^{n} \ 6$	100 100 ⁿ	0.0	0+
3042.5	1-	3042.5 0	100 ⁿ	0.0	0^{+}
3046.9	1-	3046.9^{n} 3	100 ⁿ	0.0	0^{+}
50-10.7	1	JU T U.7 J	100	0.0	0

21

	Adopted Levels, Gammas (continued)												
							γ (²³⁸ U) (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{r}	Comments					
3051.7	1-	3006.8 ⁿ 3051.7 ⁿ 3	67 ⁿ 10 100 ⁿ	44.916 2	2^+								
3057.1	1-	3012.2^{n} $3057.1^{n}.4$	3^{n} 1	44.916 2	$\frac{5}{2^+}$								
3060.6	1-	3015.7^{n} 3060.6^{n} 3	$55^n 5$	44.916 2	$\frac{5}{2^+}$								
3065	18+	197 ^a 382 ^a	100	2868 1 2683 1	17+ 16+								
3068.1	22+	448.9 ^{<i>a</i>} 4	100	2619.1	20 ⁺	[E2]	0.0626	$\alpha(K) = 0.0357; \ \alpha(L) = 0.0198; \ \alpha(M) = 0.00522; \ N + = 0.00193 B(F2)(Wu) = 490.75$					
3086.7	1-	3041.8^{n} 3086.7^{n} 5	$\frac{28^{n}}{100^{n}}$	44.916 2	2^+								
3091.0	1-	$3046.1^{n} 4$ $3091.0^{n} 4$	$23^{n} 2$ 100^{n}	44.916 2	$\frac{5}{2^+}$								
3095	(18 ⁺)	383^{a} 904 ^a		2712 (2191.1 1	(16 ⁺) 18 ⁺								
3096.4	1-	3051.5^n 3096.4^n 3	105 ⁿ 29 100 ⁿ	44.916 2	2^+								
3101.7	1-	3056.8^{n} $3101.7^{n}.4$	$62^{n} 6$	44.916 2	2^{+}								
3104 3	21-	$415 1^{a} 4$	100	2689.4 1	19-								
3117.7	1-	3072.8 ⁿ	96^{n} 10	44.916)+								
5117.7	1	3072.0 2117 7 ⁿ A	1001		2)+								
2120	(10-)	2(0)	100.	0.0 ((17-)								
3120	(19)	3094	100	2751 ((1/)								
3128	20	384	100	2744	18								
3135.0	1+	3090.1 ["]	86 ⁿ 29	44.916 2	2+								
		3135.0 ⁿ 3	100 ⁿ	0.0 ()+								
3153.7	1+	3108.8 ⁿ	37 <mark>n</mark> 5	44.916 2	2+								
		3153.7 ⁿ 3	100 <mark>1</mark>	0.0 ()+								
3172.9	1+	3128.0^{n}	105^{n} 10	44 916 3	2+								
5172.7	1	2172.0^{n} 2	100^{10}	0.0 (<u>-</u> +								
2207.0	1-	5172.9 5	100	0.0 () >+								
3207.8	1	3162.9"	40" 6	44.916 2	2'								
		3207.8 ⁿ 4	100"	0.0 ()+								
3217.6	1+	3172.7 <mark>n</mark>	58 ⁿ 19	44.916 2	2+								
		3217.6 ⁿ 6	100 ⁿ	0.0 ()+								
3234 5	1+	3189.6 ⁿ	163 ⁿ 38	44 916	2+								
5251.5	1	$37345^{n}7$	100 ⁿ	0.0 0	+								
2220 6	1-	3234.37	$240^{11} < 7$) +								
3239.6	1	3194./"	249" 0/	44.916 2	2'								
		3239.6" 3	100"	0.0 ()+								
3253.194	1-	2125 ⁿ	44 ⁿ	1128.84 ((2 ⁻)								
		2217 ⁿ	9 ⁿ	1037.25 2	2+	[E1]		$B(E1)(W.u.)=4.2\times10^{-7}$					

 $^{238}_{92}\mathrm{U}_{146}\text{--}22$

L

 $^{238}_{92}\mathrm{U}_{146}\text{--}22$

From ENSDF

γ (²³⁸U) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Iγ [‡]	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
3253,194	1-	2256 ⁿ	8 ⁿ	997.58 3-	[E2]	$B(E_2)(W_{\rm H})=0.0025.9$
02001171	-	2288^{n}	91 ⁿ	966.13 2+	[E1]	$B(E1)(Wu) = 3.8 \times 10^{-6} I3$
		2303^{n}	16 ⁿ	950.12 2	[[]]	
		2323 ⁿ	32^n	930.55 (1-)	
		2327 ⁿ	33 ⁿ	927.21 0+	, [E1]	$B(E1)(W.u.)=1.3\times10^{-6}.5$
		2522 ⁿ	14 ⁿ	731.93 3-	[E2]	$B(E_2)(W.u.)=0.0025$ 9
		2574 ⁿ	28 ⁿ	680.11 1-	ĽJ	
		3209 ⁿ	22 ⁿ	44.916 2+	[E1]	$B(E1)(W.u.)=3.3\times10^{-7}$ 12
		3253 ⁿ	100 ⁿ	$0.0 0^+$	[E1]	$B(E1)(W.u.) = 1.5 \times 10^{-6} 5$
3265	19+	397 <mark>a</mark>	100	2868 17+		
3274.4	1-	3229.5 <mark>n</mark>	86 <mark>n</mark> 10	44.916 2+		
		3274.4 ⁿ 3	100 ^{<i>n</i>}	$0.0 0^+$		
3297.2	1-	3297.2 ⁿ 4	100 ⁿ	$0.0 0^+$		
3303.6	1-	3258.7 <mark>n</mark>	106 ⁿ 10	44.916 2+		
		3303.6 ⁿ 3	100 ⁿ	$0.0 0^+$		
3307.32	1^{+}	3262.4 ⁿ	58 ⁿ 19	44.916 2+		
		3307.3 ⁿ 3	100 ⁿ	$0.0 0^+$		
3329.1	1-	3284.2 ⁿ	85 ⁿ 9	44.916 2+		
	. +	3329.1 ⁿ 6	100 ⁿ	$0.0 0^+$		
3348.33	1+	3303.4 ⁿ	192 ⁿ 19	44.916 2+		
2266.0	1 +	3348.3 ⁿ 3	100 ⁿ	$0.0 0^{+}$		
3366.0	1'	3321.1^{n}	55''' 0	44.916 2		
2260	(10+)	3300.0° 3	100.	$0.0 0^{-1}$	+ \	
5506	(18)	$\frac{377^{2}}{740^{2}}$		2991 (10 2610.1 20 ⁺)	
		149 ^a		2019.1 20 $2101.1 18^+$		
338/1 3	1-	$3330 \sqrt{n}$	$A1^{n}$ 5	2191.1 10 14.016 2 ⁺		
5504.5	1	$33843^{n}3$	100^{n}	$0.0 0^+$		
3397.9	1-	3353.0 ⁿ	$37^{n} 4$	44.916 2+		
	-	3397.9 ⁿ 8	100 ⁿ	$0.0 0^+$		
3411.2	20^{+}	380 ⁹	100	3031.2 18+		
3416.0	1-	3371.1 ⁿ	384 ⁿ 38	44.916 2+		
		3416.0 4	100	$0.0 0^+$		
3421.5	1-	3421.5 ⁿ 5	100 ⁿ	$0.0 0^+$		
3441.0	1-	3396.1 <mark>n</mark>	48 ⁿ 19	44.916 2+		
		3441.0 ⁿ 9	100 ⁿ	$0.0 0^+$		
3448.3	1^{+}	3403.4 ⁿ	106 ⁿ 10	44.916 2+		
		3448.3 ["] 6	100"	$0.0 0^+$		
3454.1	1-	3409.2 ["]	250 ⁿ 29	44.916 2+		
2460 7	1+	3454.1" 4	100 ⁿ	$0.0 0^+$		
3460.7	1'	3415.8"	56" /	44.916 2*		

23

²³⁸₉₂U₁₄₆-23

From ENSDF

	Adopted Levels, Gammas (continued)												
							γ (²³⁸ U	J) (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{r}	Comments					
3460.7	1+	3460.7 ⁿ 3	100 ⁿ	0.0	0^{+}								
3467.8	1-	3422.9 ⁿ	58 ⁿ 10	44.916	2+								
		3467.8 ⁿ 6	100 ⁿ	0.0	0^{+}								
3470.7	1-	3425.8 ⁿ	29 ⁿ 29	44.916	2+								
		3470.7 ⁿ 3	100 ⁿ	0.0	0^{+}								
3474	20^{+}	409 ^{<i>a</i>}	100	3065	18^{+}								
3475.2	1-	3430.3 ⁿ	58 ⁿ 29	44.916	2+								
		3475.2 ⁿ 3	100 ⁿ	0.0	0^{+}								
3479.0	1-	3434.1 ⁿ	43 ⁿ 9	44.916	2+								
		3479.0 ⁿ 3	100"	0.0	0^+								
3489.0	1-	3444.1 ⁿ	144 ⁿ 58	44.916	2								
2500 5	1-	3489.0^{n} 3	100"	0.0	0^{+}								
3500.5	(20^{\pm})	3500.5" 3	100"	0.0	(10^{+})								
3502	(20^{-1})	408		3095	(18^{-})								
3500 1	1-	3464.2^{n}	67 <mark>n</mark> 10	2019.1 44.016	20*								
3309.1	1	3404.2	100^{n}	44.910	2 0+								
3521	(21^{-})	$\frac{3309.1}{401^{a}}$	100	3120	(10^{-})								
3528.0	(21)	$3528 0^{n} 4$	100 ⁿ	0.0	(19)								
3535 3	24^{+}	467^{a} 1	100	3068.1	22+	[E2]	0.0568	$\alpha(K) = 0.0332; \ \alpha(L) = 0.0173; \ \alpha(M) = 0.00457; \ N + = 0.00168$					
555515	2.	107 1	100	5000.1		[22]	0.0200	B(E2)(W.u.) = 530.85					
3538	22^{-}	410 ^{<i>a</i>}	100	3128	20^{-}								
3547.7	23-	443.6 ^a 4	100	3104.3	21-								
3548.0	1-	3503.1 ⁿ	193 <mark>n</mark> 29	44.916	2+								
		3548.0 ⁿ 6	100 ⁿ	0.0	0^{+}								
3562.8	1-	3517.9 ⁿ	125 ⁿ 29	44.916	2+								
		3562.8 ⁿ 3	100 ⁿ	0.0	0^{+}								
3594.9	1-	3550.0 ⁿ	116 ⁿ 19	44.916	2+								
		3594.9 ⁿ 5	100 ⁿ	0.0	0^{+}								
3608.7	1-	3563.8 ⁿ	48 ["] 8	44.916	2+								
2615.0	1-	3608.7 ⁿ 3	100"	0.0	0^+								
3615.9	1-	3571.0"	250 ⁿ 48	44.916	2+								
2(22.0	1-	3615.9^n 3	100"	0.0	0^{+}								
3623.9	1	$35/9.0^{n}$	144" 29	44.916	2								
3640.1	1-	$3023.9^{11}3$ 3505.2^{11}	$\frac{100^{11}}{77^{11}}$ 10	0.0	0 ⁺								
3040.1	1	3595.2°	100^{n}	44.910	∠ 0+								
3650.5	1-	3605.6^{n}	87 ⁿ 10	0.0 44 916	2+								
5050.5	T	3650 5 ⁿ 3	100 ⁿ	0.0	$\tilde{0}^{+}$								
3659 7	1-	3614 8 ⁿ	67^{n} 10	44 916	2^{+}								
5557.1	1	3659.7 ⁿ 6	100 ⁿ	0.0	$\tilde{0}^{+}$								
3673.7	1-	3628.8 ⁿ	193 ^{<i>n</i>} 39	44.916	2+								

I

Adopted Levels, Gammas (continued) $\gamma(^{238}\text{U})$ (continued)										
3673.7	1-	3673.7 ⁿ 6	100 ⁿ	0.0	0^{+}					
3686	21+	421 ^{<i>a</i>}	100	3265	19+					
3728.0	1-	3683.1 ⁿ	87 <mark>n</mark> 29	44.916	2+					
		3728.0 ⁿ 9	100 ⁿ	0.0	0^{+}					
3738.5	1-	3693.6 <mark>n</mark>	77 ⁿ 19	44.916	2^{+}					
		3738.5 <mark>n</mark> 8	100 ⁿ	0.0	0^{+}					
3759.9	1-	3715.0 ⁿ	87 <mark>n</mark> 19	44.916	2+					
		3759.9 ⁿ 3	100 ⁿ	0.0	0^{+}					
3773	(20^{+})	405 ^{<i>a</i>}		3368	(18^{+})					
		1154 ^a		2619.1	20^{+}					
3805.1	1-	3760.2 ⁿ	87 <mark>n</mark> 10	44.916	2^{+}					
		3805.1 ⁿ 3	100 <mark>n</mark>	0.0	0^{+}					
3809	$(1,2^{+})$	2882 ⁿ	55 <mark>n</mark> 22	927.21	0^{+}					
		3128 ⁿ	28 ⁿ 22	680.11	1-					
		3764 ⁿ	96 <mark>n</mark> 14	44.916	2+					
		3809 ⁿ	100 ⁿ	0.0	0^{+}					
3811.2	22^{+}	400 9	100	3411.2	20^{+}					
3819.0	1-	3774.1 ⁿ	106 ⁿ 19	44.916	2^{+}					
		3819.0 ⁿ 6	100 ⁿ	0.0	0^{+}					
3828.7	1-	3828.7 <mark>n</mark> 3	100 <mark>n</mark>	0.0	0^{+}					
3906	22^{+}	432 ^{<i>a</i>}	100	3474	20^{+}					
3947	(23^{-})	426 ^{<i>a</i>}	100	3521	(21^{-})					
3965.7	1-	3920.8 ⁿ	47 <mark>n</mark> 4	44.916	2^{+}					
		3965.7 <mark>n</mark> 4	100 <mark>n</mark>	0.0	0^{+}					
3971	24-	433 ^a	100	3538	22^{-}					
3990.7	1-	3945.8 <mark>n</mark>	116 <mark>n</mark> 10	44.916	2+					
		3990.7 <mark>n</mark> 9	100 <mark>n</mark>	0.0	0^{+}					
3995.8	1-	3950.9 ⁿ	58 <mark>n</mark> 39	44.916	2^{+}					
		3995.8 ⁿ 3	100 ⁿ	0.0	0^{+}					
4017	25^{-}	469 ^a		3547.7	23^{-}					
		481 ^{<i>a</i>}		3535.3	24^{+}					
4018.1	26^{+}	482.8 ^{<i>a</i>} 10	100	3535.3	24^{+}	[E2]	0.0524	$\alpha(K)= 0.0312; \ \alpha(L)= 0.0156; \ \alpha(M)=0.00410; \ N+=0.00151$		
								B(E2)(W.u.)=585 60		
4023.7	1-	3978.8 <mark>n</mark>	97 <mark>n</mark> 10	44.916	2+					
		4023.7 ⁿ 7	100 ⁿ	0.0	0^{+}					
4031.4	1-	3986.5 ⁿ	48 ⁿ 10	44.916	2^{+}					
		4031.4 ⁿ 7	100 ⁿ	0.0	0^{+}					
4046.7	1-	4001.8 ⁿ	126 <mark>n</mark> 39	44.916	2+					
		4046.7 ⁿ 3	100 ⁿ	0.0	0^{+}					
4065.3	1-	4020.4 ⁿ	164 ⁿ 39	44.916	2+					
		4065.3 ["] 3	100"	0.0	0^{+}					
1070 1	1-	4027 2 ⁿ	58 ⁿ 10	44 916	2+					

 $^{238}_{92}\mathrm{U}_{146}\text{--}25$

 $^{238}_{92}\mathrm{U}_{146}$ -25

From ENSDF

Adopted Levels, Gammas (continued)											
$\gamma(^{238}\text{U})$ (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	α^{r}	Comments			
4072.1	1-	4072.1 ⁿ 6	100 ⁿ	0.0	0^{+}						
4088.9	1-	4044.0 ⁿ	97 <mark>n</mark> 29	44.916	2+						
		4088.9 ⁿ 7	100 ⁿ	0.0	0^{+}						
4093.4	1-	4048.5 ⁿ	39 ⁿ 4	44.916	2+						
		4093.4 ⁿ 3	100 ⁿ	0.0	0^{+}						
4100.2	1-	4055.3 ⁿ	174 ["] 19	44.916	2+						
		4100.2 ^{<i>n</i>} 3	100"	0.0	0+						
4105.2	1-	4105.2 ⁿ 3	100"	0.0	0^+						
4122.9	1-	4078.0 ⁿ	81 ⁿ 9	44.916	2+						
4107	aa+	4122.9" 5	100"	0.0	0'						
4127	23	441	100	3686	21						
4138.9	1	4094.0^{n}	40^{n} /	44.916	2						
1115 9	1-	4138.9^{n} /	100" 501 50	0.0	0^{+}						
4143.8	1	4100.9°	1001	44.910	2 0+						
4151.3	1-	$4145.8^{\circ}5$ 4106.4°	$07^{n} 20$	44 916	$\frac{0}{2^+}$						
4151.5	1	4150.4	100^{n}	-4.910	$\frac{2}{0^{+}}$						
4155.4	1-	$4151.5 \ 0$ $4155 \ 4^{n} \ 3$	100^{n}	0.0	0^{+}						
4175.8	1-	4130.9^{n}	27^{n} 3	44 916	2+						
11/5.0	1	4175.8 ⁿ 4	100^{n}	0.0	$\tilde{0}^{+}$						
4181.5	1-	4136.6 ⁿ	97 ⁿ 10	44.916	2 ⁺						
		4181.5 ⁿ 7	100 ⁿ	0.0	0^{+}						
4205	(22^{+})	432 ^{<i>a</i>}	100	3773	(20^{+})						
4217.3	1-	4172.4 <mark>n</mark>	107 ⁿ 10	44.916	2+						
		4217.3 ⁿ 8	100 ⁿ	0.0	0^{+}						
4232	24+	421 9	100	3811.2	22^{+}						
4239.1	1-	4239.1 ⁿ 3	100 ⁿ	0.0	0^{+}						
4358	24^{+}	452 ^{<i>a</i>}	100	3906	22^{+}						
4393	(25 ⁻)	446 ^{<i>a</i>}	100	3947	(23 ⁻)						
4424	26-	453 ^a	100	3971	24-						
4495	$(1,2^{+})$	4450 ^{nu}	32 ⁿ 28	44.916	2+						
		4495 ⁿ	100"	0.0	0^{+}						
4504	27-	487 ⁴	100	4017	25-		0.0400				
4517	28+	499.3 ^{<i>u</i>} 8	100	4018.1	26+	[E2]	0.0483	α (K)= 0.0293; α (L)= 0.0140; α (M)=0.00367; N+=0.00135 B(E2)(W.u.)=540 <i>130</i>			
4586	25^{+}	459 ^a	100	4127	23^{+}						
4592	$(1,2^+)$	4546 <mark>n</mark>	190 ⁿ	44.916	2+						
		4592 ⁿ	100 ⁿ	0.0	0+						
4677	26^{+}	445 9	100	4232	24+						
4807	(1)	3840 ["]	47 ⁿ 17	966.13	2+						
1005	0.01	4807"	100"	0.0	0+						
4825	26+	46 ⁷ / ⁴	100	4358	24+						

 $^{238}_{92}\mathrm{U}_{146}\text{--}26$

L

$\gamma(^{238}\text{U})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{r}	Comments
4895	28-	471 ^{<i>a</i>}	100	4424	26-			
5003	29-	499 <mark>a</mark>	100	4504	27^{-}			
5035.1	30^{+}	517.7 <mark>a</mark> 10	100	4517	28^{+}	[E2]	0.0436	B(E2)(W.u.)=185 2
5063	27^{+}	477	100	4586	25^{+}			
5140		5140 ⁿ	100 ⁿ	0.0	0^{+}			
5144	28^{+}	467 <mark>9</mark>	100	4677	26^{+}			
5206	$(1,2^+)$	4148 <mark>nu</mark>	33 ⁿ 26	1059.66	(3^{+})			
		5160 ⁿ	90 ⁿ 28	44.916	2^{+}			
		5206 ⁿ	100 ⁿ	0.0	0^{+}			
5513	31-	510 ^a	100	5003	29-			
5581	32^{+}	542 ^a	100	5035.1	30^{+}			
6037	33-	524 ^a	100	5513	31-			
6146	34+	565 ^a	100	5581	32+			

[†] Weighted average from Coulomb excitation and $(n,n'\gamma)$, except where noted otherwise.

 ‡ From Coulomb excitation, except where noted otherwise.

[#] From $\alpha(K)$ exp, except where noted otherwise.

[@] From Coulomb excitation (1994Mc03).

& From ²⁴²Pu α decay.

27

^{*a*} From Coulomb excitation.

^b From Coulomb excitation. Transition not directly observed, but required to account for the yield of transitions from the J-2 member of this band.

^c E=1015.06 2 in $(n,n'\gamma)$ for a transition placed from the 1060 3⁺ and 1060 2+ levels. The division of the intensity between these two levels cannot be determined.

^d Anomalous E1 transition. $\alpha(K)$ exp is larger than E1 theory and agrees with E2 theory. Similar anomalous E1 transitions have been observed in ²³⁶U. See 1983Fa15.

^{*e*} E=911.3 2 in $(n,n'\gamma)$ for a transition placed from the 1060 3⁺ and 1060 2+ levels. From branching in Coulomb excitation, most of the intensity belongs with the 1060 3+ level.

^{*f*} From $(n,n'\gamma)$.

^g From $(n,n'\gamma)$.

^{*h*} From ²³⁸Pa β decay.

^{*i*} From Coulomb excitation. E=1060.98 3 is reported in $(n,n'\gamma)$ for a transition placed from the 1060 2+ and 1106 3+ levels.

^j From Coulomb excitation. Transition not directly observed, but required to account for the yield of transitions from the J-1 member of this band.

^k E=1019.61 8 and 1123.1 2 in $(n,n'\gamma)$ for transitions doubly placed from the 1169 4+ and 1169 3- levels. From branching in Coulomb excitation, most of the intensity of the 1019 γ belongs with the 1169 4+ level. The 1123 γ is more evenly divided between the two levels.

¹ The 1368.3 γ 2 is placed by 1984BIZS from the 1368 level. It may belong also with the 1414 and/or 1515 level, as suggested by 1978De41, all from (n,n' γ).

^{*m*} Branching is from ²³⁸Pa β^- decay.

^{*n*} From (γ, γ') .

^o From ²³⁸U IT decay.

 $\gamma(^{238}\text{U})$ (continued)

^{*p*} From Coulomb excitation.

^{*q*} From Coulomb excitation (2010Zh09).

^{*r*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^s Multiply placed with undivided intensity.

^t Multiply placed with intensity suitably divided.

^{*u*} Placement of transition in the level scheme is uncertain.

Legend

Level Scheme (continued)

Legend

►

$I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ Intensities: Type not specified 1 *105₂ 100 4100.5.2 125.3 100 123.3 174 \$ E 4105.2 1 1-4100.2 -0's '2'' 1-1-4093.4 -8:8 4088.9 -8:5 405. 405.3 1-4072.1 -0.8 1-1-9707 9707 4065.3 -8.8--8 4046.7 1 1-4031.4 1.8.1 1.8.1 1.8.1 $\frac{1^{-}}{26^{+}}$ 4023.7 0.40 ps 7 4018.1 25-4017 3995.8 1--&--<u>8</u>:4 $\frac{1^{-}}{24^{-}}$ 3990.7 \$33 3971 8 (23⁻) 3965.7 -00-8 -8 3947 -⁶, - ⁶, - -6.6 $\frac{(23^{+})}{22^{+}}$ $\frac{1^{-}}{22^{+}}$ $(1,2^{+})$ 3906 1.678E 3828.7 300 - 100 - -\$-3819.0 3811.2 $\begin{bmatrix} 1 & 3^{2}, 9 \\ 1 & 3^{2}, 9 \\ 3^{2}, 9^{2}, 1^{2}, 0^{2}, 0^{2} \\ 3^{2}, 8^{2}, 1^{2}, 0^{2}, 0^{2} \\ 1^{2}, 0^{2}, 0^{2}, 0^{2} \\ 1^{2}, 0^{2}, 0^{2}, 0^{2} \end{bmatrix}$ 3809 $\frac{1^{-}}{(20^{+})}$ 1154 3805.1 3773 $\frac{(23^{-})}{1^{-}}$ $\frac{1^{-}}{23^{-}}$ $\frac{22^{-}}{24^{+}}$ (21^{-}) 23^{+} 3759.9 3738.5 ¥ 3547.7 3538 ¥ • • 0.51 ps 8 3535.3 ¥ 3521 20^{+} 3474 $\frac{20^+}{(18^+)}$ 3411.2 ¥ 3368 <u>2619.1</u> 0.91 ps 8 20^{+} 927.21 0^{+} <u>680.11</u> 35 fs +19-9 1ŧ 44.916 206 ps *3* $\frac{2^+}{0^+}$ 4.468×10⁹ y 6

 $^{238}_{92}U_{146}$

Legend

Adopted Levels, Gammas

 $^{238}_{\ 92}U_{146}$

 $^{238}_{\ 92}U_{146}$

Legend

Adopted Levels, Gammas

Band(L): $K^{\pi}=0^+$ second β -vibrational band

Band(K): $K^{\pi}=0^+$ band	6+	1269.2			
4+ 1056 38	$\frac{4^+}{2^+}$	1130.75	Ban	d(M): Κ ^π	=1-
$\frac{\frac{1}{2^+}}{0^+} \frac{966.13}{927.21}$	0+	997.23	$\frac{3^{-}}{(1^{-})}$	<u> </u>	97.58 30.55