²³⁸U IT decay (280 ns)

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014						

Parent: ²³⁸U: E=2557.9 5; $J^{\pi}=0^+$; $T_{1/2}=280$ ns 6; %IT decay=97.4 4

Additional information 1.

Shape isomer.

Conversion electrons from electromagnetic transitions preceding the fission decay of the shape isomer have been measured. A highly converted transition is observed which is tentatively interpreted as the decay of the lowest β -vibrational band, via E0 transition, at excitation energy of 647.8 9 (1982Go02).

See 1983Ha29 for other γ transitions that are tentatively interpreted as deexcitation of the β -vibrational band in the second minimum.

Isomer not excited by muon capture (3% limit) (1976Ka37).

²³⁸U Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0 44.916 <i>13</i> 680.11 <i>4</i>	0^+ 2^+ 1^-	4.468×10 ⁹ y 6 206 ps 3	
2557.9 5	0+	280 ns 6	%IT=97.4 4; %SF=2.6 4 Intrinsic electric-quadruple moment: $Q_0=29 \ 3 \ (1979U101)$. J ⁷ : 2558 γ to 0 ⁺ is E0. $\sigma(d, pn\gamma)/\sigma(d, pnSF)=15$ to 25 (1975Ru03). $\Gamma(45\gamma)/\Gamma(SF)=10 \ (1976Be55)$. See 1972We09 for predicted $T_{1/2}(SF)$ and $T_{1/2}(\gamma)$. $T_{1/2}$: weighted average of (n,n') values of 270 ns 40 (1974WoZW), 300 ns 32 (1977VoZU), 290 ns 30 (1983Dm04), 267 ns 13 (1989Ma54), 274 ns 10 (1991Ku23) and (d,pn) values of 295 ns 15 (1974WoZW), and 298 ns 18 (1992St05). Others: (d,pn) values of 200 ns 70 (1970Po01), 195 ns 30 (1970Wo06), 191 ns 44 (1975Ru03), 184 ns 13 (reference 13 of 1991Ku23) and 211 ns 60 (1982Go02) cluster around 200 ns, and (d,pn) values of 110 ns 30 (1970Re05) and 130 ns 50 (reference 13 of 1991Ku23), the (n,n') value of 125 ns 35 (1977ArZZ) and the (γ,γ') values of 146 ns 22 (1983Dr14) and 155 ns 33 (1985Dr01) are lower still. See 1991Ku23 for a discussion of these data. These authors argue against the earlier suggestions that there could be two isomers. See also the discussion in 1992St05 of the $T_{1/2}$ discrepancies. For calculated energy, see 1969Ni13, 1971Pa33, 1972Mo27, 1972Ma11, 1972We09, 1994Kr06. %SF: 1992St05 report $\sigma(\mu b)(1879\gamma+2513\gamma)=132 26$, and 1975Ru03 report 130 32. 1992St05 estimate $\sigma(\mu b)=80 \ 30$ for unobserved decay to the six known 1 ⁻ and 2 ⁺ states and 1975Ru03 estimate 70 20. 1983Ka11 report 0.230 $\mu b \ 50$ for decay of the 2558 E0 transition via ce(K). A weighted average for decay from the isomer based on these data is 206 $\mu b \ 28$. With σ =5.4 $\mu b \ 4$ for delayed fission as quoted by 1992St05 from 1980Ti03 and 1970Wo06, one gets %SF=2.6 4 and %IT=97.4 4. Other: 1983Ka11 report $\sigma(2513\gamma) < 50 \ \mu b$, and 1984Ka10 report 42 $\mu b \ 12$.

[†] From Adopted Levels, unless otherwise noted.

[‡] From Adopted Levels.

²³⁸U IT decay (280 ns) (continued)

$\gamma(^{238}\text{U})$

I γ normalization: From $\Sigma(1879\gamma + 2513\gamma + 2558\gamma) = 97.4 \% 4$.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	$I_{(\gamma+ce)}^{\dagger}$	Comments
(44.915)		44.916	2+	0.0	0+	E2		L and M conversion lines were observed following the photofission reaction on 238 U. They were identified by 1976Be55 as belonging to the 44.9 γ from decay of the 44.9 level following IT decay of the shape isomer. They showed a half-life of 300 ns. Half-life = 202 ps, calculated value (2008Pa04).
(635.18 3)		680.11	1-	44.916	2^{+}	[E1]		
(680.1 3)		680.11	1-	0.0	0^{+}	[E1]		
1879	49 <i>13</i>	2557.9	0+	680.11	1-	[E1]		E _γ : from 1975Ru03, also confirmed by 1992St05. I _γ : weighted average from 1975Ru03 and 1992St05 is 43 μb 11. $%\gamma$ = 32 7.
2512.7 5	100 <i>19</i>	2557.9	0+	44.916	2+	[E2]		%γ = 65 7. E _γ : from 1984Ka10, also confirmed by 1992St05. I _γ : weighted average from 1975Ru03 and 1992St05 is 88 μb 17.
2558 2		2557.9	0+	0.0	0+	E0	0.34 6	%e=0.22 6. E_{γ} : from 1983Ka11. Energy of the E0 K-conversion electrons is 2442.4 20. No photons were observed. $I_{(\gamma+ce)}$: 1983Ka11 report $\sigma(ce(K))=0.230 \ \mu b \ 50$. The authors add 16% to account for the higher shell conversion electrons, and 15% to account for internal pair production. The total ce intensity is thus 0.30 $\mu b \ 5$.

 † For absolute intensity per 100 decays, multiply by 0.65 11.

