Adopted Levels, Gammas

			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014
$Q(\beta^{-})=-2258.3 51; S(n)$	=6999.8 13; S(p)=5	i997.5 <i>4</i> ; Q(α)=5593.20	<i>19</i> 2012Wa38	
Additional information 1	•			
Energies of vibrational st	tates (K= 0^+ , 2^+ , 0^-	, 1 ⁻ , 2 ⁻ , 3 ⁻), and B(E2)	, B(E3) values for the ex	citation of 2^+ , 3^- levels have been
calculated by 1965Sc	04, 1970Ne08, 197	1Ko31, 1975LeZR, 1975	IvZZ. See also 1969B11	3, 1992Ra14, 1993Sa15, 1994Mi14 see
1964So02 for calcula	ated energies of two	-quasiparticle states in 23	³⁸ Pu and also for structur	e of some collective states.
Discovery of ²³⁸ Pu: 2013	3Fr02.			
Alpha Decay: 2014Ba07	, 2013De12, 2013Fe	e03, 2013Is13, 2013Se17	, 2012Is08, 2011Ni11, 2	011Qi06, 2011Zh36, 2010Le01,
2010Ni02, 2010Wa23	3, 2010Wa31, 2009I	De32, 2009Dr05, 2009N	i06, 2009Wa01, 2009Zh2	.8, 2006Ch34, 2006De05, 2006Ha20,
2006Ha53, 2006Xu0	8, 2006Xu15, 2005	Sh42, 2004Ca24, 2004Cl	nZY, 2004Le07, 2003Ba	54, 2003Jo04.
Nuclear reactions: 2013E	3029, 2010Wa07, 20)02Be08, 2002Lo18.		
²³⁹ Pu(n,2n): 2002Be08.				
2500β - β Decay: 2012Z	Cu07,2010Ba07, 200	6Ba35, 2005 Ir01, 2004	Ra13, 2003Cr04, 2002Hi	09.
Cluster Decay.				
²³⁸ Pu(³² S1): 2014Ba09, 2	2013Q104, 2013Zd0	1, 2013Zd02, 2012Ku23	, 2012Ba35, 2012Mi17, 2	2012Sa31, 2012So15, 2012Ta10,
2010S112, 2010Zh51	, 2009Ar11, 2009Q	i07, 2009Ro16, 2008Bh	15, 2005Bh02, 2005Ku04	, 2005Ku32, 2004Ba64, 2004Re22,
2002Ba80. 238Dy(28Ma), 2012Na25	20128-21 20128-	15 20115-12 20105-20	$-2010751 - 2000 A_{\pi}11$	20000:07 2000B-16 2008B-05
-10000 - 10000 - 100000 - 100000 - 100000 - 1000000 - 100000000	, 2012 5 851, 2012 5 0	15, 201151115, 20105825	7, 2010ZIIS1, 2009AI11,	2009Q107, 2009K010, 2008B1103,
2002Ba80, 2002Du10 238Pu(30Mg), 2013Oi04). 20137401 201374	02 2012Ba25 2012Ku2	$0.2012K_{\rm H}16.2012O(0)$	20125-31 20125:01 20125-15
10(102).2013Q104,	20105:12 2000 Ar	02, 2012Da33, 2012Ku2	5, 2012 Ku10, 2012 Q101, $5, 2008$ Ph05, 2005 Ku22, 7	20123a51 20125011 20125015
20115115, 20105a29, 2002Ba80	, 20103112. 2009AI	05, 2009A111, 2009K010	J 2006DII05 2005Ku52, .	2004Da04, 2004He10, 2002Du10,
238 Pu(34 Si): 2009Oi07.				
Nuclear Structure: 2014I	u01. 2013Af01. 20	13Bo24, 2013Li30, 2013	Ni02, 2013To12, 2012Ib	02. 2012Ko06. 2012Lu02. 2012Mi06.
2012Pr09, 2012Ro29	, 2012Ro34, 2011A	f04, 2011Bo12, 2011In0	3, 2011Li44, 2011Ri05,	2011Wa30, 2010Bu02, 2010Is01,
2010Ko36, 2010Ra10), 2010Vr01, 2009S	o02, 2008Bu11, 2007Ba	18, 2007Bo46, 2007Sh17	7, 2006De23, 2006Ra21, 2006Sa35,
2005A140, 2005Bu38	8, 2005Du18, 2005L	.a04, 2005Za02, 2004Go	33, 2004Sa55, 2003Bu11	l, 2003Bu27, 2003Mi18, 2003Ra17,
2003Za01, 2002Do15	5, 2002Ma85, 2002l	Ra25, 2002Re31.		
Isomer energy calculation	ns – 1992Bh03. Ot	ner: 2011He12.		
Fission Isomers and Supe	er Deformed Bands:	: 2002Si26.		

Quadrupole moments calculations – 1992Bh04.

²³⁸Pu Levels

Cross Reference (XREF) Flags

E(level)	J ^π ^ℓ	T _{1/2}	XREF	Comments							
0.0†	0+	87.7 y <i>1</i>	ABCDEFGHI	$\frac{1}{2} \text{Comments} \\ \% \alpha = 100; \ \% \text{SF} = 1.9 \times 10^{-7} \ 1 \\ \text{T}_{1/2}, \% \text{SF}: \text{ recommended by 1986LoZT.} \\ \text{T}_{1/2}: \ 86.41 \ \text{y} \ 30 \ \text{specific activity} \ ^{238} \text{Pu}^{/242} \text{Cm} \ (1957\text{Ho71}), \ 87.77 \ \text{y} \ 2 \ \text{by calorimetry} \\ (1973\text{JoYT}), \ 86.98 \ \text{y} \ 39 \ \text{by specific activity} \ (1976\text{Po08}), \ 87.71 \ \text{y} \ 3 \ \text{specific activity} \\ \frac{238}{7} \text{Pu}^{/242} \text{Cm} \ (1977\text{Di04}), \ 87.98 \ \text{y} \ 51 \ \text{relative activity using} \ \text{T}_{1/2}(^{239}\text{Pu}) = 24110 \ \text{y} \\ (1981\text{Ag06}). \\ \end{cases}$							

Continued on next page (footnotes at end of table)

²³⁸Pu Levels (continued)

E(level)	Jπ e	T _{1/2}	XREF	Comments		
				$T_{1/2}(SF)=4.77 \times 10^{10}$ y <i>14</i> (1972Ha11), 4.63×10 ¹⁰ y <i>12</i> (1975GaZX), 5.1×10 ¹⁰ y 6 (1961Dr04).		
44.065 [†] 15	2+	175 ps 3	ABCDEFGHI	J^{π} : E2 to g.s.		
		1		T _{1/2} : weighted average of 177 ps 5 from aga9ta0 in ²⁴² Cm α decay, and 174 ps 3 from B(E2) in Coulomb excitation.		
145.936 [†] 21	4+		ABCDEFGH	B(E4) \uparrow =1.9 7 J ^{π} : E2 to 2 ⁺ . Coul. ex. B(E4) \uparrow : from Coul. ex.		
303.36 [†] 6	6+		BC FGHI			
512.55 [†] <i>15</i>	8+		C GHI	J^{π} : E2 γ to 303 level.		
605.18 [‡] 3	1-		ABC	J^{π} : E1 to g.s The intensity ratio for the transitions to 0 ⁺ and 2 ⁺ agree with theory for K=0, not with K=1.		
661.44 [‡] 4	3-		ABCD	B(E3) $\uparrow=0.71 \ 12$ J ^{π} : E1+M2 γ 's to 2 ⁺ and 4 ⁺ . B(E3) \uparrow : from Coul. ex.		
763.24 [‡] 11	5-		BC	J^{π} : M1+E2 γ from (4) ⁻ determines π = γ 's to 4 ⁺ and 6 ⁺ then give J=5. Member of K=0 octupole band.		
771.9 [†] 5	10^{+}		GHI			
911.6 [‡] 8	7-		Н			
941.47 [#] 8	0^{+}		ABC EF	J^{π} : E0 to g.s.		
962.783 [@] 23	1-		ABC	J^{π} : E1 to g.s The configuration was proposed by 1972Ah04 on the basis of log <i>ft</i> ratios in ε decay and energy calculations of 1964So02.		
968.2? 4	(2-)	<8.5 ns	В	J ^{π} : 114.4 γ from (4) ⁻ is probably E2. γ to 2 ⁺ . 1972Wi22 propose K=2, J ^{π} =2 ⁻ .		
082.00# 7	2^+	0.55	ADCDEE	$I_{1/2}$. from delayed cey coincidence.		
983.09" /	2.	0.55 ps + 15 - 11	ABCDEF	J^{*} : E0+E2 to 2 [*] . T _{1/2} : from B(E2) in Coulomb excitation.		
985.45 [@] 5	2-		AB	J^{π} : M1 to 3 ⁻ . log ft=7.5 (log $f^{1u}t=8.2$) from 1 ⁺ rules out 3 ⁻ and 4 ⁻ M1. The log ft for the ε feeding rules out $J^{\pi}=3^{-},4^{-}$.		
1018.6? 3			С			
1028.537 2 16	2^{+}		ABC F	J^{π} : E2 to g.s.		
1069.929 ^{&} 22	3+		В	J^{π} : M1+E2 γ 's to 2 ⁺ and 4 ⁺ log ft for the β^{-} feeding, photon intensity ratios, and band parameter suggest K=2, $J^{\pi}=3^{+}$.		
$1077.7^{\dagger f} 5$	12^{+}		GHI			
1082.55 [°] 6	(4) ⁻	8.5 ns 5	В	J^{π} : E1+M2 to 4 ⁺ . Configuration proposed by 1972Wi22. T _{1/2} : from $\beta\gamma$ (t) in ²³⁸ Np decay (1970Be57).		
$1102.4^{\ddagger f} 5$	9-		Н			
1125.75 ^{&} 17	(4+)		С	J^{π} : γ 's to 2 ⁺ and 4 ⁺ . Possible member of K=2 band.		
1134 4	(0^+)		F	J^{π} : L(p,t)=(0).		
11/4.4 4	(21)		A	J^{*} : from γ transitions to 0 ⁺ , 2 ⁺ states $J^{*}=1\pm,2^{+}$. Intensity ratio is not in good agreement with Alaga rule for J=1, but it agrees well for J=2.		
1202.45 ^d 8	(3)-		В	J^{π} : M1(+E2) to (4) ⁻ . γ to 2 ⁺ .		
1228.65 ^a 18 1252 2	0^{+}		ACE F	J^{π} : E0 to g.s.		
1264.20 ^{<i>a</i>} 15	2+		ACE	J^{π} : E0+E2+M1 to 2 ⁺ .		
1310.3? <i>3</i>	1+,2+		Α	J [*] : M1 to 2^+ . log <i>ft</i> =7.4 from 1^+ rules out 3^+ .		
1340.4 ⁺ <i>J</i> 6	11-		Н			
1426.4 6	14+		GHI			

Continued on next page (footnotes at end of table)

²³⁸Pu Levels (continued)

E(level)	Jπe	T _{1/2}	XREF	Comments
1426.61 ^{<i>bf</i>} 24	0+		A	J^{π} : E0 to g.s.
1447.24 19	1-		Α	J^{π} : E0 to 1^{-} intensity ratio of gammas to g.s. band suggests K=0.
1458.29 ^b 22	2+		A	J^{π} : E0+E2+M1 to 2 ⁺ energy spacing of the 1426 and 1458 levels and the ratio of ft's for the ε feedings to these levels suggest that they are members of a band
1559.82 14	1-		Α	J^{π} : M1+E2 to 2 ⁻ . γ to g.s. gammas to 0 ⁺ , 1 ⁻ , 2 ⁺ levels.
1596.3 <i>3</i>	(2 ⁺)		A	J^{π} : gammas to 0 ⁺ , 2 ⁺ , and possibly 4 ⁺ . J=1 is not ruled out if the placement of 1450 γ to 4 ⁺ is not correct.
1621.29 12	1-		A	J^{π} : E1 to 0 ⁺ E0+M1+E2 transitions with about equal intensity to K, $J^{\pi}=0,1^{-}$ and 1,1 ⁻ states imply that the configuration of the 1621 state is probably a mixture of K=0 and K=1.
1621.8 [‡] 6	13-		Н	
1636.40 <i>13</i>	1-		A	J^{n} : E1 to 0 ⁺ E0 transitions with about same intensity to K, $J^{n}=0,1^{-}$ and 1,1 ⁻ states imply that the configuration of the 1636.6 state is a mixture of K=0 and K=1.
1651.2 4	$1,2^{+}$		Α	J^{π} : γ 's to 0^+ and 2^+ .
1726.34 22	$1,2^+$		A	J^{π} : γ 's to 0 ⁺ and 2 ⁺ .
1/85.55	1,2		A	J^{*} : γ s to 0 and 2.
1815.5 5	2-		A	$I_{\pi} M_{\nu} \gamma$ to 1^{-} and 3^{-}
$1944.6^{\ddagger f} 4$	15-			
$2241.7^{\dagger f} 6$	18+		GH	т
$2308.2^{\ddagger f}$ 5	17^{-}		Н	-
≈2400	17	0.6 ns 2		%SF≤100
				%SF: only SF decay observed. $T_{1/2}$: 0.5 ns 2 ²³⁶ U(α ,2n) (1973Li01), 0.7 ns 2 ²³⁸ Pu(d,pn) (1974MeYP). 1972We09 calculated $T_{1/2}$ (SF)=0.95 ns, $T_{1/2}(\gamma)$ =7.0 μ s. E=2400 200 from thresholds (1973Li01). Calculated energies are: E=2250 (1972We09), E=2000 (1971Pa33), E=1800 (1972Ma11). Assignment: ²³⁶ U(α ,2n) excit (1973Li01).
$2702.3^{\dagger f} 8$	20^{+}		Н	I
2708.7 [‡] <i>f</i> 6	19-		Н	
3143.8 [‡] <i>f</i> 8	21-		Н	
3195.4 [†] <i>f</i> 8	22+		Н	I
≈3500	(0^{+})	6.0 ns 15		%SF≤100
				%SF: only SF decay observed.
				$1_{1/2}$: 6.5 ns 15 ²⁵⁶ U(α ,2n) (19/0Bu02,19/1Br39), 5.0 ns 20 ²⁵⁶ U(α ,2n) (1973Li01) Other measurements: 1973Na35 1969Me11
				E=3700 200 from $^{236}U(\alpha,2n)$ thresholds (1973Li01), E=3400 400 estimated from excitation functions (1973Br38).
				Angular distribution of fission fragments following 232 Th(α ,F) and
				²³⁶ U(a,2nf) reactions were measured, and possible spin assignments were proposed from measured anisotropy by 1974SpZS. See also 1975Kh06 for a discussion on spin of this isomeric state.
$a_{c10} c^{\dagger} f$	a 2-			Assignment: $200 U(\alpha, 2n)$ excit (19/1Br39,19/3Li01).
3610.6^{+J} 10	23		Н	,
$\frac{3}{1}$, $\frac{1}{1}$, $\frac{1}{10}$	24		Н	1
4105.2^{+J} 11	25		H	T
4203.11 II	20'		н	1
4023.2^{+1} 13	21		н	
4855.5 7 13	28'		Н	

²³⁸Pu Levels (continued)

E(level)	Jπe	XREF	
5161.3 [‡] <i>f</i>	(29 ⁻)	Н	
5426.5? [†] <i>f</i> 9	(30 ⁺)	Н	

[†] Band(A): $K^{\pi}=0^+$ g.s. band.

[‡] Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band.

[#] Band(C): $K^{\pi}=0^{+}\beta$ -vibrational band.

^(a) Band(D): $K^{\pi}=1^{-} v 7/2(743)-v 5/2(622)$ band. & Band(E): $K^{\pi}=2^{+}$.

^{*a*} Band(E): $K^{\pi}=0^+$. ^{*b*} Band(G): $K^{\pi}=0^+$. ^{*c*} Band(H): $K^{\pi}=4^- \nu 7/2(743)+\nu 1/2(631)$ state.

^d Band(I): $K^{\pi}=3^{-} \nu 7/2(743)-\nu 1/2(631)$ state.

^{*e*} From an energy fit to the g.s. band in addition to other arguments as given. ^{*f*} From 239 Pu(207 Pb, 208 Pb γ).

γ ⁽²³⁸ Pu)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α &	$I_{(\gamma+ce)}$	Comments	
44.065	2+	44.06 2	100	0.0	0^{+}	E2		775		$\alpha(L) = 566; \alpha(M) = 157$	
										B(E2)(W.u.)=285 5 $\alpha,\alpha(L),\alpha(M)$: values given are the E2 theory values lowered by 3% (see 1987Ra01).	
145.936	4+	101.88 <i>3</i>	100	44.065	2^{+}	E2		14.8		$\alpha(L) = 10.7; \alpha(M) = 2.99; N = 1.15$	
303.36	6+	157.42 5	100	145.936	4+	E2		2.24		$\alpha(K) = 0.197; \ \alpha(L) = 1.48; \ \alpha(M) = 0.412; \ N + = 0.157$	
512.55	8+	209.20 14	100	303.36	6+	E2		0.73		E_{γ} : From ²⁴⁸ Cm a decay. Mult.: from ce(L2)/ce(L3) in (α,4nγ).	
605.18	1-	561.17 5	100	44.065	2+	E1		0.0116		$\alpha(K) = 0.0093; \ \alpha(L) = 0.00170$	
((1))	2-	605.18 5	73 2	0.0	0^+	El	0 114 17	0.0101			
661.44	3-	515.53 7	55 1	145.936	4-	E1+M2	0.114 17	0.023 3		I_{γ} : from ε decay. Values of ≈0.64 from β ⁻ decay and 0.67 from α decay depend on splitting the intensity of the doubly placed 713γ on the basis of model-dependent arguments.	
		617.41 ^a 5	100 ^a	44.065	2^{+}	E1+M2	0.077 17	0.0122 13			
763.24	5-	459.80 20	≈3.4	303.36	6+					I _{γ} : from ε and α decay, see comment on 515 γ from the 661 level.	
		617.36 ^{<i>a</i>}	100 ^{<i>a</i>}	145.936	4+						
771.9	10^{+}	259.4 [‡] 5	100	512.55	8+	E2					
911.6	7-	608.7 <mark>6</mark> 5	100	303.36	6+						
941.47	0^{+}	336.38 15	2.8 16	605.18	1-	[E1]				I _{γ} : from ²⁴² Cm α decay, if I(897.33 γ)=100.	
		897.33 10	100 7	44.065	2+	(E2)		0.0154		229	
		941.5 2		0.0	0+	E0			59 7	$I_{(\gamma+ce)}$: from ²³⁸ Am ε decay, $I(\gamma+ce)/I\gamma(897\gamma)=0.62$ from 1960As10 in α decay. The value of 1.4 2 in β ⁻ decay appears to be discrepant.	
962.783	1-	301.5 1	1.68 9	661.44	3-	E2		0.213		α (K)= 0.0780; α (L)= 0.098; α (M)= 0.0269; N+= 0.0103	
		357.62 7	7.80 16	605.18	1-	M1+E2	2.43 20	0.224 15			
		918.69 4	82.0 8	44.065	2+	E1		0.00471			
		962.77 3	100.0 8	0.0	0^{+}	E1		0.00434		$\alpha(K)=0.00353; \ \alpha(L)=612\times10^{-6}$	
968.2?	(2 ⁻)	924 ⁰	100	44.065	2^{+}	[E1]				$B(E1)(W.u.)>2.0\times10^{-8}$	
		968.9 <mark>6</mark> 4	12 6	0.0	0^+	[M2]		0.122		B(M1)(W.u.)>0.016	
983.09	2^{+}	321.75 20	1.8 7	661.44	3-	[E1]		0.036		$B(E1)(W.u.) = 4.7 \times 10^{-5} 24$	
		378.05 13	4.4 7	605.18	1-	[E1]		0.0255		$B(E1)(W.u.) = 6.8 \times 10^{-5} 22$	
		837.11 15	35 2	145.936	4+	[E2]		0.0176		B(E2)(W.u.)=3.1 10	
		938.95 10	43 3	44.065	2^+	E0+E2		4.4 4			
085 45	2-	983.0 <i>3</i>	100 30	0.0	0' 2-	[E2] M1+E2	288	0.0129		B(E2)(W.u.)=3.9 12	
703.43	Z	323.90 9 380 29 13	2.01	605.18	3 1-	M11+E2	2.0 0	0.29 0		Mult · From 1981Le15	
		0/1 38 5	2.22	44.065	2+		0.17 + 1.2	0.000		WILL. ITUII 1701LA13.	

S

From ENSDF

 $^{238}_{94}\mathrm{Pu}_{144}\text{-}5$

L

					Adopted Lev	vels, Gammas (co	ontinued)		
					$\gamma(2)$	³⁸ Pu) (continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_{f} J	\int_{f}^{π} Mult. [@]	$\delta^{@}$	α ^{&}	$I_{(\gamma+ce)}$	Comments
1018.6? 1028.537	2+	974.5 ^b 3 882.63 3 984.45 2 1028.54 2	3.19 2 100 <i>1</i> 72.6 <i>3</i>	44.065 2 145.936 4 44.065 2 0.0 0	+ E2 + M1+E2 + E2	>+23	0.0159 0.00129 0.0119		$\alpha(K) = 0.0115; \ \alpha(L) = 0.00328$ $\alpha(K) = 0.0089; \ \alpha(L) = 0.00226$ Mult - from 1081L ol 5
1069.929	3+	923.98 2 1025.87 2	30.0 <i>2</i> 100	145.936 4 ⁻ 44.065 2 ⁻	+ M1+E2 + M1+E2	+44 +72-8 >+31	0.00145 0.00119		Muit., from 1981Le13.
1077.7 1082.55	12 ⁺ (4) ⁻	305.9 [‡] 5 114.4 4 319.29 11 421.14 11	100 1.51 27 2.3 3 6.0 2	771.9 10 968.2? (2 763.24 5 661.44 3	0 ⁺ 2 ⁻) (E2) - M1+E2 - [M1]	1.0 5	8.67 0.66 <i>23</i> 0.29		B(E2)(W.u.)=0.46 6
1102.4	9-	936.61 <i>6</i> 190.8 ^{\ddagger} <i>6</i> 330.5 ^{$\ddagger b$} <i>6</i>	100.0 <i>14</i> 60 <i>19</i> 35 <i>11</i>	145.936 4 ⁻ 911.6 7 ⁻ 771.9 10	+ E1+M2 - 0 ⁺	-0.24 4	0.009 5		B(E1)(W.u.)= 2.01×10^{-8} 12
1125.75	(4+)	589.9 [‡] 5 979.80 20 1081.7 3	100 24 100 19 7	512.55 8 ⁻ 145.936 4 ⁻ 44.065 2 ⁻	+ E1 + +				
1174.4	(2 ⁺)	1130.2 <i>5</i> 1174 5 5	100 83 22	44.065 2	+ +				
1202.45	(3)-	1194.9 <i>J</i> 119.9 <i>I</i> 132.49 <i>II</i> 174.0 <i>2</i>	$ 100 4 \\ 2.4 2 \\ 22.0 5 $	1082.55 (4 1069.929 3 ⁻ 1028.537 2 ⁻	4) ⁻ M1(+E2) + [E1] + [E1]	<0.38	3.81 <i>21</i> 0.271 0.143		α (L)= 2.69; α (M)= 0.657; N+= 0.246
1228.65	0+	1184.55 <i>21</i> 1228.7 <i>3</i>	100	44.065 2 ⁻ 0.0 0 ⁻	+ E2 + E0		0.0091	9.2 12	$\alpha(K)=0.00695; \alpha(L)=0.00163$
1264.20 1310.3? 1340.4	2 ⁺ 1 ⁺ ,2 ⁺ 11 ⁻	1118.25 <i>21</i> 1220.15 <i>21</i> 1266.2 <i>3</i> 238.0 6	100 81 <i>15</i> 100 74 25	$ \begin{array}{r} 145.936 & 4^{\circ} \\ $	+ [E2] + E0+E2+M1 + M1 - E2		0.0102 0.26 <i>3</i> 0.0268		$\alpha(K)$ = 0.0213; $\alpha(L)$ =0.00413
1340.4	11	262.6 ^b 568.5 6	100 29	1077.7 12 771.9 10	2 ⁺ 0 ⁺ E1				E_{γ} : From authors' figure, not in their table.
1426.4 1426.61	14 ⁺ 0 ⁺	348.8 [‡] 5 821.5 4 1426.6 3	100 100	1077.7 12 605.18 1 0.0 0	2 ⁺ - E1 + E0		0.00574	8.5 12	$\alpha(K)=0.00465; \ \alpha(L)=818\times 10^{-6}$
1447.24	1-	841.9 <i>4</i> 1403.2 <i>3</i> 1447.3 <i>3</i>	100 <i>9</i> 62 <i>4</i>	605.18 1 44.065 2 0.0 0	- E0 + E1 + E1 + E1		0.00229 0.00217	4.4 5	$\alpha(K)=0.00187; \ \alpha(L)=316\times10^{-6}$ $\alpha(K)=0.00177; \ \alpha(L)=300\times10^{-6}$
1458.29	2 ⁺	1414.0 <i>3</i> 1458.5 <i>3</i> 574.0 3	≈23 100 77 10	$44.065 2^{\circ}$ 0.0 0^{\circ} 985.45 2^{\circ}	+ E0+E2+M1 + M1+F2	325	0.055.6		
1339.82	1	597.0 3 954.7 3 1515.9 3	100 12 ≈58 79 10	963.43 2 962.783 1 605.18 1 44.065 2	- [M1+E2] - [M1+E2] - [M1+E2]	5.2 5	0.035 0 0.12 8 0.035 22		

From ENSDF

 $^{238}_{94}\mathrm{Pu}_{144}\text{-}6$

L

$\gamma(^{238}Pu)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _f	J_f^{π}	Mult. [@]	α &	$I_{(\gamma+ce)}$	Comments
1559.82	1-	1560.0 3	65 10	0.0 0)+				
1596.3	(2^{+})	633.0 ^b 5	≈77	962.783 1					
		1450.4 ^b 5	≈77	145.936 4	1 +				
		1552.2 3	100 16	44.065 2	2+				
		1596.5 5	≈31	0.0 0)+				
1621.29	1-	658.4 2	6.2 7	962.783 1	_	E0+E2+M1	1.39 14		
		679.5 4	8.8 <i>9</i>	941.47 0)+	E1	0.00809		α (K)=0.00654; α (L)=0.00117
		1016.2 2	9.7 10	605.18 1	[-	E0+E2+M1	0.66 7		
		1577.3 3	100 8	44.065 2	2+	El			$\alpha(K) = 0.00154$
1621.9	12-	1621.4 4	≈0.6	0.0 0)' 1 —				
1021.8	15	281.3 0	73 33	1340.4 1	12+	F1			
1636.40	1-	653 3 5	~4 4	983.09 2)+	LI			
1050.40	1	673.4 2	~7.7	962.783 1	_ _	E0		3.3.4	
		1031.3 3		605.18 1	_	EO		4.2 4	
		1592.5 3	38 4	44.065 2	2+				
		1636.6 <i>3</i>	100 9	0.0 0)+	E1			
1651.2	$1,2^{+}$	1607.0 4	100	44.065 2	2+				
		1651.4 5	18 7	0.0 0)+				
1726.34	1,2+	1682.2 3	100	44.065 2	2+	E1,E2			
1792 5	1.0+	1/26.4 3	59 9	0.0 0)' >+				
1785.5	1,2	1783.6 1	48 15	44.003 2	2)+				
1015 5	16+	1705.07	100	1426.4 1	, 1.4+	E2			
1815.5	10	389.0^{11} 3	100	1420.4 1	4	E2			
1898.42	2	935.20 3	≈27 81.7	962.783 1	l 9 —	N/1	0.0295		(K) = 0.0227, (L) = 0.00440
		1237.0 3	81 / 100 0	605.18 1) -	M1 M1	0.0285		$\alpha(\mathbf{K}) = 0.0227; \ \alpha(\mathbf{L}) = 0.00440$ $\alpha(\mathbf{K}) = 0.0202; \ \alpha(\mathbf{L}) = 0.00301$
1944 6	15-	323.1.5	100 9	1621.8 1	3-	1411	0.0234		$u(\mathbf{K}) = 0.0202, u(\mathbf{L}) = 0.00391$
1744.0	15	518.3.5	57 29	1426.4 1	4+				
2241.7	18+	426.2 5	100	1815.5 1	6+	F2			
2308.2	17^{-}	363 5 5	100 48	1944.6 1	5-	E2			
2300.2	17	492.8 5	46 46	1815.5 1	6+	22			
2702.3	20^{+}	460.6 5	100	2241.7 1	8+				
2708.7	19-	400.5 5	100	2308.2 1	7-	E2			
		467.1 5	≈38	2241.7 1	8+				
3143.8	21-	435.1 5	100 49	2708.7 1	9-	E2			
		441.6 <mark>6</mark> 5	38 20	2702.3 2	20^{+}				
3195.4	22^{+}	493.10 [‡] <i>17</i>	100	2702.3 2	20^{+}				
3610.6	23-	415.7 <mark>b</mark> 5	40	3195.4 2	22+				
	-	466.8 5	100	3143.8 2	21-				
3717.1	24+	521.7 [‡] 5	100	3195.4 2	22^{+}				
	•								

From ENSDF

γ (²³⁸Pu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.@
4105.2	25-	494.6 6	100	3610.6 2	23-	E2
4263.7	26^{+}	546.6 [‡] 5	100	3717.1 2	24+	
4623.2	27-	518.0 [‡] 7	100	4105.2 2	25-	
4833.3	28^{+}	569.6 [‡] 6	100	4263.7 2	26+	
5161.3	(29 ⁻)	538.5 ^{‡b} 7	100	4623.2 2	27-	
5426.5?	(30^{+})	592.2 ^{‡b} 6	100	4833.3 2	28^{+}	

[†] From β^- decay, α decay, and ε decay, except where from in-beam studies as noted. [‡] From ²³⁹Pu(²⁰⁷Pb,²⁰⁸Pb γ).

[#] Branching ratios are from β^- decay, α decay, and ε decay. [@] From ce data in β^- , ε decay, and $\gamma(\theta)$ in ²³⁹Pu(²⁰⁷Pb,²⁰⁸Pb γ). [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with intensity suitably divided.
^b Placement of transition in the level scheme is uncertain.

²³⁸₉₄Pu₁₄₄

 $^{238}_{94}\rm{Pu}_{144}$

11

²³⁸₉₄Pu₁₄₄-11

From ENSDF

Adopted Levels, Gammas

²³⁸₉₄Pu₁₄₄

Adopted Levels, Gammas

²³⁸₉₄Pu₁₄₄

		Adopted Levels, Ga	ammas (co	ntinued)		
			Band(G)): K ^π =0 ⁺		
			<u>2</u> +	1458.29		
			0+	1426.61		
		Band(F): $K^{\pi}=0^+$				
		<u>2+</u> <u>1264.20</u>				
		0+ 1228.65				Band(I): $K^{\pi}=3^{-}v$
						7/2(743)-v 1/2(631) state
						(3)- 1202.45
	Band(E): $K^{\pi}=2^+$					
	(4+) 1125.75					
					Band(H): $K^{\pi} = 4^{-} v$	
					state	
					(4)- 1082.55	
	<u>3+</u> <u>1069.929</u>					
Band(D): $\mathbf{K}^{\pi} = 1^{-} \mathbf{v}$	<u>2+</u> 1028.537					
7/2(743)-v 5/2(622) band						
2- 985.45						
<u>1-</u> 962.783						

 $^{238}_{94}\rm{Pu}_{144}$