²³⁷Np(\mathbf{n},γ) E=th:secondary γ 's 1990Ho02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014

Secondary γ -rays following thermal neutron capture in ²³⁷Np were measured with the curved-crystal spectrometers **GAMS1** and **GAMS2/3** at the **ILL**. The conversion electrons following thermal neutron capture in ²³⁷Np have been studied with the **BILL**

 β -spectrometer at the **ILL**.

E(n)=thermal.

²³⁸Np Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	2+	2.117 d 2	T1/2: from Adopted Levels.
26.427.2	3+	2.1.1.7 0 2	
62.330 3	4+		
86.674 3	3+		
106.164 14	5+		
121.645 16	4+		
136.044.5	3-		
165.59.3	5+		
179.156 6	4-		
182.878 3	2-		
215.521 4	3-		
217.949 10	0-		
218.57? 8	6+		
232.823 13	5-		
243.959 4	1^{+}		
250.385 14	2-		
258.855 8	4-		
275.515 11	5+		
277.642 17	2+		
298.368 8	3+		
299.789 19	1-		
312.707 19	5-		
315.068 7	$(4)^+$		
324.314 8	4-		
325.210 9	1-		
342.396 19	5-		
352.46 4	3-		
367.26 <i>3</i>	2-		
373.684 14	1-		
380.600 9	3-		
395.198 16	5+		
417.639 <i>13</i>	$2^+, 3^+$		
433.719 12	3+,4+		
442.24 3	4-		
473.3 4	$(3^{-}, 4^{-})$		
497.20 3	2-,3-		
523.87 3	5+,4+		
529.857 9	3		
543.23 3	4-		
56/.021 15	5 2+ 2+		
040./0 3	2',5'		

[†] From 1990Ho02. [‡] From Adopted Levels.

 $\gamma(^{238}\text{Np})$

In analyzing their ce data, 1990Ho02 used theoretical values directly from 1968Ha53. The ce(L2) subshell binding energy used by 1968Ha53 is incorrect, and consequently the values of α (L2) for Z=93 in that tabulation are also incorrect. The internal conversion program BRICC used by the NSDD network, and available from BNL, contains corrected values. Using this program, the evaluators have reanalyzed the ce data of 1990Ho02. None of the multipolarity assignments are changed as a result of this reanalysis, but several of the mixing ratios are revised from values given in 1990Ho02. (@B@0@0@@@@@B@0@1@@@@@1multipolarity assignments is changed as a result of this reanalysis,

${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E_i (level)	\mathbf{J}_i^{π}	E_f J	$\frac{\pi}{f}$ Mult. [@]	δ^{i}	$lpha^{\ddagger h}$	Comments
24.37 ^e 2	0.0064 ^e 10	86.674	3+	62.330 4	⁺ M1(+E2)	≤0.03 [†]	326 8	α (L)=244 6; α (M)=60.3 15 α (N)=16.3 4; α (O)=4.02 10; α (P)=0.779 17; α (Q)=0.0598 9 δ : From M2/M1=0.13 2.
^x 25.93 ^e 2	2.50 ^e 25				E1		4.41	M1:M2:M3=100:126 11:233 20 α (L)=3.27 5; α (M)=0.856 13 α (N)=0.226 4; α (O)=0.0499 7; α (P)=0.00712 10; α (Q)=0.000190 3
26.43 ^e 2	0.104 ^e 15	26.427	3+	0.0 2	⁺ M1+E2	0.097 [†] 6	333 12	α (L)=248 9; α (M)=62.7 23 α (N)=17.0 6; α (O)=4.13 15; α (P)=0.767 24; α (Q)=0.0469 7 δ : From M1:M2:M3=100:34 2:20 1\$.
^x 27.58 ^e 4	0.038 ^e 6				M1+E2	0.096 [†] 4	286 7	α (L)=214 5; α (M)=53.8 <i>14</i> α (N)=14.6 4; α (O)=3.55 9; α (P)=0.662 <i>15</i> ; α (Q)=0.0413 6 δ : From M2/M1=0.31 <i>1</i> \$.
32.67 ^e 3	0.026 ^e 4	215.521	3-	182.878 2	M1(+E2)	≤0.025 [†]	136.4 22	α (L)=102.6 <i>17</i> ; α (M)=25.0 <i>4</i> α (N)=6.77 <i>11</i> ; α (O)=1.67 <i>3</i> ; α (P)=0.324 <i>5</i> ; α (Q)=0.0251 <i>4</i> δ : From M2/M1=0.13 <i>1</i> .
34.97 ^e 3	0.082 ^e 11	121.645	4+	86.674 3	+ M1+E2	0.097 [†] 3	130.7 23	α (L)=97.8 <i>17</i> ; α (M)=24.3 <i>5</i> α (N)=6.60 <i>12</i> ; α (O)=1.61 <i>3</i> ; α (P)=0.304 <i>5</i> ; α (Q)=0.0204 <i>3</i> δ : From M2/M1=0.25 <i>1</i> .
35.07 ^e 3	0.0071 ^e 10	217.949	0-	182.878 2	E2		2.21×10 ³	M3/M2=1.10 3 α (L)=1611 24; α (M)=446 7 α (N)=121.7 18; α (O)=28.3 5; α (P)=4.58 7; α (Q)=0.00987 15
35.90 ^e 2	0.0109 ^e 15	62.330	4+	26.427 3	+ M1+E2	0.130 [†] 3	133.6 24	α (L)=99.8 <i>18</i> ; α (M)=25.1 <i>5</i> α (N)=6.81 <i>13</i> ; α (O)=1.65 <i>3</i> ; α (P)=0.307 <i>6</i> ; α (Q)=0.0188 <i>3</i> δ : From M1:M2:M3=100:35 <i>1</i> :19 <i>1</i> .
^x 37.371 ^e 2	0.26 ^e 3				M1+E2	0.094 [†] 4	104.5 <i>19</i>	$\alpha(L)=78.3 \ 14; \ \alpha(M)=19.4 \ 4$ $\alpha(N)=5.26 \ 10; \ \alpha(O)=1.285 \ 24; \ \alpha(P)=0.244 \ 5;$ $\alpha(Q)=0.01676 \ 24$ $\alpha(M1)\exp=5.9 \ 7 \ Evaluators \ believe \ EMC1=15.9 \ 7$ (typographical error). δ : From M1:M2:M3=100:28 \ 1:6.1 \ 4\$.

 \mathbf{N}

					237	Np(n,γ) E=	th:seconda	ryγ's 19	90Ho02 (continued)
							γ ⁽²³⁸ N _I	o) (continued	<u>4)</u>
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ^{i}	$\alpha^{\ddagger h}$	Comments
43.11 ^e 3	0.044 ^e 7	179.156	4-	136.044	3-	M1+E2	0.08 [†] 2	65 <i>3</i>	α (L)=48.5 21; α (M)=11.9 6 α (N)=3.23 16; α (O)=0.79 4; α (P)=0.152 6; α (Q)=0.01100 16 δ : From L2/L1=0.17 2: M1/L1=0.25 L
43.32 ^e 3	0.0046 ^e 7	258.855	4-	215.521	3-	M1+E2	0.391 20	156 9	L1:L2:L3=100:123 <i>17</i> :91 <i>11</i> ; M1/L1=0.59 7; M1:M2:M3=37 <i>11</i> :100:19 3 α (L)=115 7; α (M)=30.5 <i>19</i> α (N)=8.3 5; α (O)=1.97 <i>12</i> ; α (P)=0.339 <i>19</i> ; α (Q)=0.00996 <i>17</i> Mult.: from L-subshell ratios. The M-subshell values give inconsistent results. M1/M2 yields δ =0.60, M3/M2 yields δ =0.056, and M1/L1 requires an E4 component.
43.84 ^e 3	0.075 ^e 11	106.164	5+	62.330	4+	M1+E2	0.111 [†] 5	65.3 12	$\alpha(L)=48.9 \ 9; \ \alpha(M)=12.12 \ 24$ $\alpha(N)=3.29 \ 7; \ \alpha(O)=0.803 \ 15; \ \alpha(P)=0.152 \ 3; \ \alpha(Q)=0.01043 \ 15$ δ : From L1:L2:L3=100:21 $I:9.0 \ 5; \ M1/L1=0.31 \ 2; \ M1:M2:M3=100:23.6 \ I2:8 \ I.$ Mult.: authors' entry of I($\alpha(M1)$)=236 $I2$ relative to I($\alpha(M1)$)=100 in table ii is a misprint. The evaluators assume this should be 23.6 I2.
43.98 ^e 4	0.058 ^e 8	165.59	5+	121.645	4+	M1+E2	0.13 [†] 4	68 8	α (L)=51 6; α (M)=12.6 16 α (N)=3.4 5; α (O)=0.83 10; α (P)=0.157 17; α (Q)=0.01030 17 δ : From L1:L2:L3=100:20 1:11 1; M1/L1=0.35 2; M1:M2:M3=100:64 16:13 2. δ : M2/M1 yields an inconsistent value of 0.26 5 and is not used in arriving at the adopted value.
~45.197 4	0.133	100 070	2-	126.044	2-	M1 - E2	0.14	56.6	(1) 42.5. (0.0) 10.5.12
40.84* 3	0.111* 7/	182.878	2	130.044	3	MI+E2	0.14 + 4	50 0	$\alpha(L)=42.5; \alpha(M)=10.5.15$ $\alpha(N)=2.9.4; \alpha(O)=0.69.8; \alpha(P)=0.131.13; \alpha(Q)=0.00854.14$ δ : From L2/L1=0.17.1; M1/L1=0.20.1; M1:M2:M3=100:17.1:18.1. Additional information 2.
^x 46.97 ^e 3	0.0016 ^{eg} 2					E2		533	L3/L2=0.37 4; M2/L2=0.44 6; M3/M2=0.49 5 α (L)=388 6; α (M)=107.6 16 α (N)=29.4 5; α (O)=6.83 10; α (P)=1.111 16; α (Q)=0.00273 4 Mult.: authors' entry of I(ce(M1))=100 in table ii is probably a misprint. This entry should be blank.
48.50 ^{&} 3	0.0111 ^{&} 17	373.684	1-	325.210	1-	[M1]		42.3	$\alpha(L)=31.85; \alpha(M)=7.7411$ $\alpha(L)=2102; \alpha(C)=0.5172; \alpha(D)=0.1002, 15; \alpha(C)=0.00781, 11$
49.372 2	8.57 14	136.044	3-	86.674	3+	E1		0.820	$\alpha(1)=2.103, \alpha(0)=0.5173, \alpha(P)=0.1003173, \alpha(Q)=0.0078111$ $\alpha(L)=0.6159; \alpha(M)=0.153622$ $\alpha(N)=0.04086; \alpha(O)=0.0093914; \alpha(P)=0.00150822;$ $\alpha(O)=522\times10^{-5}8$
52.60 ^e 5	0.0035 ^{eg} 6	352.46	3-	299.789	1-				$L_{1:L_{2:L_{3}=13}}^{(Q)=3.32\times10^{-6}}$ M2/L2=0.32 2; M1:M2:M3=24 3:100:76 11 Mult.: the authors assign mult=E2 and place the transition from a 3 ⁻

ω

²³⁸₉₃Np₁₄₅-3

				2	²³⁷ N	$\mathbf{p}(\mathbf{n}, \gamma) \mathbf{E} =$	th:secondary	γ's 1990H	002 (continued)
							γ ⁽²³⁸ Np) (continued)	
$E_{\gamma}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	E_f J	\int_{f}^{π}	Mult. [@]	δ^{i}	$lpha^{\ddagger h}$	Comments
			_		<u> </u>				to a 1 ⁻ level; however, the data are not consistent with pure E2. All the ce ratios except M3/M2 require an M1 admixture; however, the deduced δ values are not self consistent. One gets δ >0.25 from M3/M2, and 1.44 8, 0.27 3, and 0.93 7 from L1/L2, L3/L2, and M1/M2, respectively.
52.98 ^{em} 7	0.029 ^e 4	218.57?	6+	165.59 5	5+	M1+E2	0.17 [†] 2	40.1 19	$\begin{array}{l} \alpha(L)=29.9 \ 14; \ \alpha(M)=7.5 \ 4\\ \alpha(N)=2.03 \ 11; \ \alpha(O)=0.494 \ 25; \ \alpha(P)=0.093 \ 4; \ \alpha(Q)=0.00589 \ 9\\ \delta: \ From \ L2/L1= \ 0.18 \ 2; \ M1/L1=0.20 \ 1; \ M2/M1=1.17 \ 7.\\ E_{\gamma}: \ unplaced \ by \ authors. \ Added \ by \ evaluators \ on \ the \ basis \ of \ E(level)=218.7 \ 6 \ for \ the \ 6^+ \ member \ of \ the \ band \ whose \ 5^+ \ member \ is \ at \ 165.59. \end{array}$
^x 53.562 9	0.15 5					E1+M2	0.022 [†] 7	1.27 45	α (L)=0.93 33; α (M)=0.249 93 α (N)=0.068 26; α (O)=0.0161 63; α (P)=0.0028 12; α (Q)=1.44×10 ⁻⁴ 73 δ : From α (L))exp=0.46 16.
53.70 ^e 7	0.038 ^e 6	232.823	5-	179.156 4	1-	M1+E2	0.271 4	48.3 9	Mult.: 1990Ho02 assign (E1). L1:L2:L3=100:50 2:29 <i>I</i> ; M1/L1=0.30 2; M2/M1=0.56 6 α (L)=35.9 7; α (M)=9.20 <i>I</i> 7 α (N)=2.50 5; α (O)=0.601 <i>I</i> 1; α (P)=0.1092 <i>I</i> 9; α (Q)=0.00549 8 α (L)exp=35.9 7 δ : from α (M)exp=9.20 <i>I</i> 7 and α (N+)exp=3.22 6.
53.88 ^e 4	0.017 ^e 3	312.707	5-	258.855 4	1-	M1+E2	0.22 [†] 4	42 5	$\alpha(L)=32 3; \alpha(M)=8.0 9$ $\alpha(N)=2.17 24; \alpha(O)=0.52 6; \alpha(P)=0.097 9; \alpha(Q)=0.00553 11$ Mult.: From L1:L2:L3=100:37 4:7 2; M1/L1=0.28 4\$M2/M1=0.71 15. δ : weighted average of 0.23 2, 0.13 2, and 0.33 5 from L2/L1,
^x 54.13 ^e 4	0.075 ^e 11					M1+E2	0.06 [†] 1	31.5 6	L3/L1, and M2/M1, respectively. $\alpha(L)=23.7 4$; $\alpha(M)=5.78 11$ $\alpha(N)=1.57 3$; $\alpha(O)=0.385 7$; $\alpha(P)=0.0744 13$; $\alpha(Q)=0.00563 8$ δ : From L1:L2:L3=100:19 1:1.8 2; M1/L1=0.27 1\$ M2/M1=0.051 14
54.40 ^e 4	0.0040 ^{eg} 6	298.368	3+	243.959 1	[+	E2		262	L3/L2=0.96 3; M2/L2= 0.20 2; M3/M2=0.89 11 α (L)=190 3; α (M)=52.9 8 α (N)=14.45 21; α (O)=3.36 5; α (P)=0.548 8; α (Q)=0.001445 21
^x 59.211 25	0.147 21					M1+E2	≤0.10 [†]	24.3 9	α (L)=18.3 6; α (M)=4.46 17 α (N)=1.21 5; α (O)=0.297 11; α (P)=0.0574 18; α (Q)=0.00432 7 δ : From M3/L3=0.31 5; M3/M2=0.49 10; α (M2)exp=0.62 11.
59.31 ^{&} 4	0.0082 ^{&} 13	121.645	4+	62.330 4	1 +	[M1]		23.4	α (L)=17.64 25; α (M)=4.29 6 α (N)=1.161 17; α (O)=0.286 4; α (P)=0.0556 8; α (Q)=0.00432 7
60.243 4	0.68 5	86.674	3+	26.427 3	3+	M1+E2	0.089 [†] 23	23.5 7	$ \begin{array}{l} \alpha(\text{L}) = 17.6 \ 6; \ \alpha(\text{M}) = 4.32 \ 15 \\ \alpha(\text{N}) = 1.17 \ 4; \ \alpha(\text{O}) = 0.287 \ 9; \ \alpha(\text{P}) = 0.0553 \ 15; \ \alpha(\text{Q}) = 0.00410 \ 6 \\ \delta: \ \text{From L1:L2:L3} = 100:17 \ 1:2.5 \ 1; \ \text{M1/L1} = 0.25 \ 2; \\ \text{M1:M2:M3} = 100:14 \ 1:3.7 \ 4; \ \alpha(\text{L}) \exp = 11.8 \ 8. \end{array} $

					237	$Np(n,\gamma) E =$	th:seconda	ary γ 's 1	1990Ho02 (continued)
							γ (²³⁸ N	p) (continu	ed)
Εγ #	Ι _γ # <i>j</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ ⁱ	$lpha^{\ddagger h}$	Comments
^x 62.18 ^{&} 5	0.07 ^{&} 3					[M1]		20.4	α (L)=15.36 22; α (M)=3.73 6
62.33 ^e 3	0.0132 ^{eg} 20	62.330	4+	0.0	2+	E2		136.0	$\alpha(N)=1.011$ 15; $\alpha(O)=0.249$ 4; $\alpha(P)=0.0484$ 7; $\alpha(Q)=0.00376$ 6 L1:L2:L3=3.1 4:100:86 10; M2/L2=0.31 2; M3/M2=0.80 6 $\alpha(L)=98.9$ 14; $\alpha(M)=27.5$ 4 $\alpha(N)=7.52$ 11; $\alpha(Q)=1.749$ 25; $\alpha(P)=0.285$ 4; $\alpha(Q)=0.000809$ 12
^x 65.10 ^e 4	0.017 ^e 3					M1+E2	0.28 [†] 1	24.6 6	$\alpha(1) = 1.32 11, \alpha(0) = 1.149 25, \alpha(1) = 0.265 4, \alpha(Q) = 0.000009 12$ $\alpha(L) = 18.3 5; \alpha(M) = 4.65 12$ $\alpha(N) = 1.26 4; \alpha(O) = 0.305 8; \alpha(P) = 0.0561 13; \alpha(Q) = 0.00310 5$ $\delta : \text{ From I 1:I 2:I 3 = 100.37 } 4:23 2$
66.919 <i>5</i>	0.23 3	342.396	5-	275.515	5 5+	E1		0.368	α(L2)exp<1.2 α(L)=0.277 4; α(M)=0.0684 10 α(N)=0.0182 3; α(O)=0.00425 6; α(P)=0.000709 10; α(Q)=2.82×10 ⁻⁵ 4 Mult.: the authors show mult=(E1,E2); however, α(L2)exp is consistent only with E1(+M2) with δ<0.24.
^x 67.17 ^{&} 4	0.028 ^{&} 14					[M1]		16.28	$\alpha(L)=12.26 \ 18; \ \alpha(M)=2.98 \ 5 \ \alpha(N)=0.807 \ 12; \ \alpha(O)=0.199 \ 3; \ \alpha(P)=0.0386 \ 6; \ \alpha(O)=0.00300 \ 5$
^x 70.15 ^e 2	0.0027 ^{eg} 4					E2		77.3	$\begin{array}{l} a(1) & 0.001 & 12, a(0) & 0.1375, a(1) & 0.00000, a(2) & 0.000000 & 1\\ L_3/L_2 = 0.76 & 10 & \\ \alpha(L) = 56.2 & 8; & \alpha(M) = 15.65 & 22 & \\ \alpha(M) = 4.27 & 6; & \alpha(M) = 0.005 & 14; & \alpha(D) = 0.1627 & 22; & \alpha(D) = 0.000404 & 7 \\ \end{array}$
x72.873 10	0.66 7					E1		0.294	$\alpha(N)=4.276; \alpha(O)=0.99574; \alpha(P)=0.162723; \alpha(Q)=0.0004947$ $\alpha(L1)\exp=0.092$ $\alpha(L)=0.2213; \alpha(M)=0.05468$ $\alpha(N)=0.0145521; \alpha(O)=0.003405; \alpha(P)=0.0005738;$ $\alpha(O)=235\times10^{-5}4$
^x 73.01 8									L1:L2:L3=100:84 8:78 7; M1/L1= 0.25 2; M1:M2:M3=100:43 10:40 9 Mult., I_{γ} : there is an inconsistency in the authors' $I\gamma$, ce, and mult. In the authors' table I, $I\gamma$ is given as 0.019 7 based on mult=M1 and α (L1)(M1)=9.1, implying I(ce(L1))=0.172. In table ii, however, the mult is given as E1+M2 with δ =0.022, based on L- and M-subshell ratios, and thus α (L1)(E1/M2) would be 0.172. If the above deduced I(ce(L1)) is correct, then for mult=E1+M2 one would get $I\gamma$ =1.0, a value large enough that it would have been seen in the photon spectrum. Note that the ce data are reasonably consistent with M1+E2. The L2/L1, L3/L1, M2/M1, and M3/M1 values giving δ =0.51 3, 0.61 3, 0.31 6, and 0.40 5, respectively. With mult=M1+E2 and δ =0.4, I(ce(L1))=0.172 gives $I\gamma$ =0.021. In view of these discrepancies, the evaluators have not given $I\gamma$ or mult for this unplaced transition
73.715 4	0.49 15	136.044	3-	62.330) 4+	E1		0.285	L1:L2:L3=100:86 <i>10</i> :61 8 α (L1)exp=0.08 2 α (L)=0.215 3; α (M)=0.0529 8 α (N)=0.01411 20; α (O)=0.00330 5; α (P)=0.000557 8; α (Q)=2.30×10 ⁻⁵ 4

S

					²³⁷ N	$\mathbf{p}(\mathbf{n}, \boldsymbol{\gamma})$ E=th:	secondary γ' s	1990Ho0	2 (continued)
							γ ⁽²³⁸ Np) (cont	inued)	
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ^{i}	$\alpha^{\ddagger h}$	Comments
^x 74.679 2	0.38 11		_			E1		0.276	Mult.: 1990Ho02 assign mult=E1+M2 with δ =0.022; however, the evaluators' reanalysis indicates that no M2 admixture is required. α (L1)exp<0.18 α (L)=0.207 3; α (M)=0.0511 8 α (N)=0.01364 19; α (O)=0.00319 5; α (P)=0.000539 8; α (O)=2.23×10 ⁻⁵ 4
74.975 2 75.97 ^e 7	0.27 7 0.0064 ^{eg} 10	442.24 258.855	4- 4-	367.26 182.878	2- 2-	E2		52.9	L3/L2=0.61 7 $\alpha(L)=38.4 6$; $\alpha(M)=10.71 16$ $\alpha(N)=2.93 5$; $\alpha(O)=0.681 10$; $\alpha(P)=0.1115 17$; $\alpha(Q)=0.000357$ 6 Mult.: the experimental L3/L2 value of 0.61 7 is slightly smaller than the E2 theory value of 0.73, suggesting E2+M1 with $\delta=0.45 + 27 - 11$; however, the placement of this transition requires $\Delta I = 2$
^x 76.646 <i>10</i>	0.46 10					E1		0.258	L2/L1=0.72 22; α (L1)exp=0.09 3 α (L)=0.194 3; α (M)=0.0477 7 α (N)=0.01273 18; α (O)=0.00298 5; α (P)=0.000505 7; α (O)=2.11×10 ⁻⁵ 3
79.483 17	0.17 3	215.521	3-	136.044	3-	E2(+M1)	5.8 2	41.7	$\alpha(L)=30.35; \alpha(M)=8.4512$ $\alpha(N)=2.314; \alpha(O)=0.5388; \alpha(P)=0.088213; \alpha(Q)=0.0003426$ $\delta: \text{ From } \alpha(L)\exp(0.9120)$
79.74 ^e 3	0.024 ^{eg} 4	106.164	5+	26.427	3+	E2		42.0	L3/L2=0.61 3 $\alpha(L)=30.65$; $\alpha(M)=8.51$ 12 $\alpha(N)=2.33$ 4; $\alpha(O)=0.542$ 8; $\alpha(P)=0.0888$ 13; $\alpha(Q)=0.000294$ 5 Mult.: the experimental L3/L2 value of 0.61 3 is slightly smaller than the E2 theory value of 0.72, suggesting E2+M1 with $\delta=0.49$ +10-7; however, the placement of this transition requires $\Delta I = 2$
82.232 4	0.57 8	315.068	(4)+	232.823	5-	E1+M2	0.025 +6-7	0.33 7	$\begin{array}{l} \alpha(L1)\exp=0.13 \ 3 \\ \alpha(L)=0.25 \ 5; \ \alpha(M)=0.063 \ 13 \\ \alpha(N)=0.017 \ 4; \ \alpha(O)=0.0041 \ 9; \ \alpha(P)=0.00072 \ 16; \\ \alpha(Q)=3.8\times10^{-5} \ 11 \end{array}$
^x 86.219 4	0.34 11					M1+E2	0.22 [†] 12	8.8 13	$\begin{array}{l} \alpha(L) = 6.6 \; g; \; \alpha(M) = 1.6 \; 3 \\ \alpha(N) = 0.45 \; 7; \; \alpha(O) = 0.109 \; 16; \; \alpha(P) = 0.0206 \; 25; \; \alpha(Q) = 0.00139 \; 8 \\ \delta: \; \mbox{From L1:L2:L3} = 100:18 \; 5:1.5 \; 7; \; \mbox{M1/L1} = 0.39 \\ 19; \mbox{M1:M2:M3} = 100:45 \; 22:8 \; 4; \; \alpha(L1) \exp = 6.7 \; 24. \\ \mbox{Mult.: the subshell ratios do not give a unique solution for } \delta, \\ \mbox{one gets } \delta = 0.08 \; + 3 - 4, \; 0.16 \; + 7 - 11, \; 0.06 \; + 3 - 6, \; 0.20 \; + 5 - 6 \; \mbox{from L3/L1, L2/L1, M3/M2, and M2/M1, respectively. Elic gives} \\ \delta \leq 5.9. \; \mbox{The authors assign mult} = \mbox{M1}(+\mbox{E2}). \end{array}$
86.676 2	2.3 4	86.674	3+	0.0	2^{+}	M1+E2	0.10 [†] 3	7.95 18	α (L)=5.98 13; α (M)=1.46 4

					237	$Np(n,\gamma) E =$	th:secondar	yγ's 1990	OHo02 (continued)
							γ ⁽²³⁸ Np)) (continued)	
${\rm E}_{\gamma}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ^{i}	$lpha^{\ddagger h}$	Comments
92.486 7	0.19 4	179.156	4-	86.674	3+	E1		0.1574	
93.67 5	0.19 4	352.46	3-	258.855	4-				
95.22 ^{&} 2	0.046 ^{&} 6	121.645	4+	26.427	3+	[M1]		5.90	α (L)=4.44 7; α (M)=1.078 <i>16</i> α (N)=0.292 4; α (O)=0.0719 <i>10</i> ; α (P)=0.01397 <i>20</i> ; α (Q)=0.001084 <i>16</i>
96.82 ^e 5	0.033 ^{eg} 5	232.823	5-	136.044	3-	E2		16.87	L3/L2=0.77 12 α (L)=12.26 18; α (M)=3.42 5 α (N)=0.934 14; α (O)=0.218 3; α (P)=0.0358 5; α (Q)=0.0001386 20 Mult.: the L3/L2 ratio gives mult=E2(+M1) with δ >1.4. Placement in the level scheme requires AL =2
97.22 ^e 5	0.055 ^{eg} 7	312.707	5-	215.521	3-	E2		16.54	M2/L2=0.25 4; M3/M2=0.80 18 α (L)=12.03 17; α (M)=3.35 5 α (N)=0.916 13; α (O)=0.213 3; α (P)=0.0351 5; α (Q)=0.0001365 20 Mult.: the M3/M2 ratio gives mult=E2(+M1) with δ>0.66. Placement in the level scheme requires Δ L=2.
^x 97.798 <i>10</i> ^x 106.137 <i>6</i>	0.31 8 0.135 24					M1(+E2)	≤0.23	4.48 18	α (L)=3.36 <i>I3</i> ; α (M)=0.82 <i>4</i> α (N)=0.223 <i>I1</i> ; α (O)=0.0548 <i>24</i> ; α (P)=0.0105 <i>4</i> ; α (Q)=0.000774 <i>21</i>
107.263 6	0.65 12	325.210	1-	217.949	0-	M1		4.18	o: From α(L1)exp=3.5 o. L2/L1=0.12 4; M1/L1=0.28 <i>I</i> ; M1:M2:M3=100:15 <i>I</i> :5.7 7 α(L1)exp=3.0 5 α(L)=3.15 5; α(M)=0.763 <i>I</i> 1 α(N)=0.207 3; α(O)=0.0509 8; α(P)=0.00990 <i>I</i> 4; α(Q)=0.000767 <i>I</i> 1 Mult.,δ: δ=0.09 +3-4 from M2/M1. α(L1)exp gives δ<0.46, L2/L1 gives δ<0.16, and M3/M1 gives an anomalously high value of 0.210 <i>I</i> 5
108.792 7	0.45 22	324.314	4-	215.521	3-				value of 0.210 15.
109.614 ^{<i>la</i>}	0.9 ^{<i>la</i>} 3	136.044	3-	26.427	3+	E1+M2	0.028 6	0.144 <i>21</i>	α (L1)exp=0.06 <i>I</i> α (L)=0.107 <i>I5</i> ; α (M)=0.027 <i>4</i> α (N)=0.0074 <i>I2</i> ; α (O)=0.0018 <i>3</i> ; α (P)=0.00032 <i>6</i> ; α (Q)=1.7×10 ⁻⁵ <i>4</i>

I

					²³⁷ Np(n, γ) E=th:secondary γ 's			1990Ho02	2 (continued)
							γ ⁽²³⁸ Np) (conti	nued)	
Ε _γ #	Ι _γ # <i>j</i>	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult.@	δ^{i}	$\alpha^{\ddagger h}$	Comments
109.614^{la}	$\leq 0.32^{la}$	342.396	5-	232.823	5-				
111.104 11	0.19 4	232.823	5-	121.645	4+				
116.90 ^{&} 2	0.095 ^{&} 14	299.789	1-	182.878	2-	[M1]		3.26	α(L)=2.45 4; α(M)=0.596 9 α(N)=0.1613 23; α(O)=0.0397 6; α(P)=0.00772 11; α(Q)=0.000598 9 Mult.: 1990Ho02 show mult=M1+E2 in table I; however, Iγ was deduced from I(ce(L1)) using the α(L1) value for mult=M1.
^x 117.359 5	0.62 13					E1		0.0847	α (L1)exp=0.041 7 α (L)=0.0637 9; α (M)=0.01559 22 α (N)=0.00417 6; α (O)=0.000990 14; α (P)=0.0001741 25; α (O)=8 40×10 ⁻⁶ 12
^x 118.532 21	0.41 6					M1+E2	0.72 8	4.32 19	$\begin{array}{l} \alpha(L) = 3.19 \ 14; \ \alpha(M) = 0.83 \ 4 \\ \alpha(N) = 0.227 \ 12; \ \alpha(O) = 0.054 \ 3; \ \alpha(P) = 0.0097 \ 4; \ \alpha(Q) = 0.00040 \\ 3 \\ 3 \\ 5 \end{array}$
121.69 ^e 4	0.088 ^{eg} 13	121.645	4+	0.0	2+	E2		6.04	12:22 5; $\alpha(L1)\exp=0.92$ 12. $\alpha(K)=0.179$ 3; $\alpha(L)=4.26$ 6; $\alpha(M)=1.186$ 17 $\alpha(N)=0.324$ 5; $\alpha(O)=0.0756$ 11; $\alpha(P)=0.01251$ 18; $\alpha(Q)=6.14\times10^{-5}$ 9 Mult.: L3/L2(E2 theory)=0.60, slightly inconsistent with the
122.76 7	0.019 8	258.855	4-	136.044	3-	[M1]		13.43	experimental value of 0.53 4. The placement requires $\Delta L=2$. $\alpha(K)=10.60 \ 15$; $\alpha(L)=2.13 \ 3$; $\alpha(M)=0.517 \ 8$ $\alpha(N)=0.1401 \ 20$; $\alpha(O)=0.0345 \ 5$; $\alpha(P)=0.00670 \ 10$; $\alpha(Q)=0.000519 \ 8$ Mult.: 1990Ho02 show mult=M1+E2 in table I; however, I γ was deduced from I(ce(L1)) using the $\alpha(L1)$ value for
^x 124.29 5	0.054 21					M1+E2	1.2 4	8.6 15	mult=M1. $\alpha(K)=4.3 \ 21; \ \alpha(L)=3.1 \ 4; \ \alpha(M)=0.84 \ 12$ $\alpha(N)=0.23 \ 4; \ \alpha(O)=0.054 \ 8; \ \alpha(P)=0.0094 \ 10;$ $\alpha(Q)=2.39\times10^{-4} \ 89$ $\delta: ELC1=0.82 \ 31$
^x 125.241 9 ^x 126.21 3 ^x 126.355 3	0.26 <i>4</i> 0.191 <i>17</i> 0.48 <i>8</i>								0. EECI-0.82 31.
130.215 12	0.25 4	380.600	3-	250.385	2-	E2(+M1)	5.7×10 ³ 1	4.50	$\alpha(K)=0.203 \ 3; \ \alpha(L)=3.13 \ 5; \ \alpha(M)=0.871 \ 13$ $\alpha(N)=0.238 \ 4; \ \alpha(O)=0.0555 \ 8; \ \alpha(P)=0.00921 \ 13;$ $\alpha(Q)=4.90\times10^{-5} \ 7$ $\delta: \ FL \ C1=0 \ 13 \ 3$
^x 133.662 <i>15</i>	0.21 3					M1+E2	2.8 1	4.77 9	$\alpha(K)=1.13 \ 7; \ \alpha(L)=2.65 \ 4; \ \alpha(M)=0.732 \ 11 \\ \alpha(N)=0.200 \ 3; \ \alpha(O)=0.0468 \ 7; \ \alpha(P)=0.00785 \ 12; \\ \alpha(Q)=8.6\times10^{-5} \ 3 \\ \delta: ELC1=0.28 \ 4.$

 ∞

					²³⁷ N	$p(\mathbf{n}, \gamma) \mathbf{E} = \mathbf{t} \mathbf{h}$:secondary γ 's	1990Ho	02 (continued)
							γ ⁽²³⁸ Np) (cont	inued)	
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ^{i}	$lpha^{\ddagger h}$	Comments
135.918 7 136.045 10	0.20 3 0.68 11	315.068 136.044	$(4)^+$ 3 ⁻	179.156 0.0	4 ⁻ 2 ⁺	E1		0.247	E _γ : authors' value of 135.198 in table I is a misprint. α (K)exp=0.20 3 α (K)=0.190 3; α (L)=0.0436 6; α (M)=0.01064 15 α (N)=0.00285 4; α (O)=0.000679 10; α (P)=0.0001206 17; α (Q)=6.09×10 ⁻⁶ 9
x138.47 3 142.328 10 x144.260 21	0.21 6 0.44 <i>10</i> 0.14 <i>3</i>	325.210	1-	182.878	2-	M1(+E2)	<0.7	7.6 10	$\alpha(K)=5.7 \ 11; \ \alpha(L)=1.45 \ 11; \ \alpha(M)=0.36 \ 4$ $\alpha(N)=0.098 \ 11; \ \alpha(O)=0.0239 \ 22; \ \alpha(P)=0.0045 \ 3;$ $\alpha(Q)=0.00028 \ 5$ $\delta; \ \alpha(K)=p=7.0 \ 22.$
152.69 ^{kc}	≤0.33 ^{kc}	179.156	4-	26.427	3+				······································
152.69 ^{kc}	≤0.33 ^{kc}	258.855	4-	106.164	5+				
153.192 12	0.43 5	215.521	3-	62.330	4+	(E1)		0.187	$\alpha(K)=0.1447\ 21;\ \alpha(L)=0.0322\ 5;\ \alpha(M)=0.00785\ 11$ $\alpha(N)=0.00210\ 3;\ \alpha(O)=0.000503\ 7;\ \alpha(P)=9.00\times10^{-5}\ 13;$ $\alpha(Q)=4.70\times10^{-6}\ 7$ Mult.: $\alpha(K)$ exp is consistent with E1 or E2(+M1). Placement in the level scheme requires $\Delta\pi$ =vec
^x 153.731 11	0.46 4					M1+E2	2.8 3	2.80 13	$\alpha(K)=0.82 \ 14; \ \alpha(L)=1.441 \ 23; \ \alpha(M)=0.396 \ 7$ $\alpha(N)=0.1082 \ 18; \ \alpha(O)=0.0254 \ 4; \ \alpha(P)=0.00429 \ 7;$ $\alpha(O)=5 \ 6 \ 10^{-5} \ 6$
153.870 9	0.45 10	275.515	5+	121.645	4+				L1/K=0.054 2; L1:L2:L3=100:15 1:8.9 15; M1/L1=0.25 1 α (K)exp=1.8 4 Mult.: 1990Ho02 assign mult=M1+E2; however, the conversion data are not consistent. α (K)exp gives δ =1.7 3, L2/L1 gives δ =0.18 4, L3/L1 gives δ =0.42 4, and L1/K is not consistent with any multipolarity. Placement in the decay scheme involves Δ J=1, $\Delta\pi$ =no.
155.731 <i>11</i> 156.452 <i>2</i>	0.22 <i>3</i> 4.23 22	373.684 182.878	1 ⁻ 2 ⁻	217.949 26.427	0- 3+	E1		0.1784	α (K)exp=0.14 <i>1</i> α (K)=0.1379 <i>20</i> ; α (L)=0.0305 <i>5</i> ; α (M)=0.00744 <i>11</i> α (N)=0.00199 <i>3</i> ; α (O)=0.000477 <i>7</i> ; α (P)=8.54×10 ⁻⁵ <i>12</i> ; α (O)=4.40×10 ⁻⁶ <i>7</i>
^x 159.585 21	0.28 5					M1+E2	5.6 +24-11	2.07 8	$\alpha(Q) = 4.49 \times 10^{-47}$ $\alpha(K) = 0.35 \ 8; \ \alpha(L) = 1.248 \ 18; \ \alpha(M) = 0.346 \ 6$ $\alpha(N) = 0.0944 \ 14; \ \alpha(O) = 0.0221 \ 4; \ \alpha(P) = 0.00370 \ 6;$ $\alpha(Q) = 3.3 \times 10^{-5} \ 4$
$x_{160.642}$ 14 x_{161} 521 4	0.37 5								u(x) 5.5/10 1
163.29 5	0.28 4	342.396	5-	179.156	4-	M1+E2	6.26 [†] 7	1.86	α (K)=0.310 5; α (L)=1.130 16; α (M)=0.313 5 α (N)=0.0855 12; α (O)=0.0200 3; α (P)=0.00335 5; α (Q)=2.93×10 ⁻⁵ 5
174.88 <i>3</i>	0.15 11	433.719	3+,4+	258.855	4-	E1		0.1375	δ: From α (K)exp=0.31 5. α (K)=0.1069 15; α (L)=0.0231 4; α (M)=0.00561 8

 $^{238}_{93}\mathrm{Np}_{145}$ -9

					²³⁷ N]	$p(n,\gamma) E=th$	n:secondar	yγ's 199	00Ho02 (continued)
							γ ⁽²³⁸ Np)) (continued)	<u>)</u>
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ^{i}	$\alpha^{\ddagger h}$	Comments
176.62 5 179.00 3 182.876 2	0.17 <i>3</i> 0.19 <i>4</i> 13.9 <i>16</i>	312.707 315.068 182.878	5 ⁻ (4) ⁺ 2 ⁻	136.044 136.044 0.0	3^{-} 3^{-} 2^{+}	E1		0.1239	$\alpha(N)=0.001506\ 21;\ \alpha(O)=0.000361\ 5;\ \alpha(P)=6.51\times10^{-5}\ 10;\alpha(Q)=3.52\times10^{-6}\ 5$ M1/L1=0.17 2; $\alpha(K)$ exp=0.097 13 $\alpha(K)=0.0965\ 14;\ \alpha(L)=0.0206\ 3;\ \alpha(M)=0.00502\ 7$ $\alpha(N)=0.001346\ 19;\ \alpha(Q)=0.000323\ 5;\ \alpha(P)=5.84\times10^{-5}\ 9;$
184.38 <i>3</i> ^x 185.24 <i>3</i> ^x 188.05 0	0.24 <i>4</i> 0.23 <i>5</i> 0.34 <i>4</i>	367.26	2-	182.878	2-				$\alpha(Q)=3.20\times10^{-6} 5$
189.099 6	0.44 4	215.521	3-	26.427	3+	E1		0.1146	α (K)=0.0894 <i>13</i> ; α (L)=0.0190 <i>3</i> ; α (M)=0.00462 <i>7</i> α (N)=0.001238 <i>18</i> ; α (O)=0.000297 <i>5</i> ; α (P)=5.38×10 ⁻⁵ <i>8</i> ; α (O)=2.98×10 ⁻⁶ 5
^x 197.315 <i>14</i>	0.40 15					E1		0.1038	$\alpha(\text{K})=0.0811 \ 12; \ \alpha(\text{L})=0.01708 \ 24; \ \alpha(\text{M})=0.00415 \ 6$ $\alpha(\text{N})=0.001114 \ 16; \ \alpha(\text{O})=0.000268 \ 4; \ \alpha(\text{P})=4.86\times10^{-5} \ 7; \ \alpha(\text{Q})=2.72\times10^{-6} \ 4$ Mult.: $\alpha(\text{K})$ exp=0.09 3.
x198.52 3 215.517 5	0.29 <i>4</i> 0.81 <i>4</i>	215.521	3-	0.0	2+	E1		0.0847	α (K)=0.0664 <i>10</i> ; α (L)=0.01376 <i>20</i> ; α (M)=0.00334 <i>5</i> α (N)=0.000897 <i>13</i> ; α (O)=0.000216 <i>3</i> ; α (P)=3.94×10 ⁻⁵ <i>6</i> ; α (Q)=2.25×10 ⁻⁶ <i>4</i>
217.26 7	0.30 3	529.857	3-	312.707	5-	E2		0.589	Mult.: $\alpha(K)\exp=0.067 / 7$. $\alpha(K)=0.1340 \ 19; \ \alpha(L)=0.332 \ 5; \ \alpha(M)=0.0915 \ 13$ $\alpha(N)=0.0250 \ 4; \ \alpha(O)=0.00586 \ 9; \ \alpha(P)=0.000991 \ 14;$ $\alpha(Q)=1.090\times10^{-5} \ 16$ Mult : $\alpha(K)\exp=0.12 \ 3$
217.966 ^e 20	0.20 ^e 3	217.949	0-	0.0	2+	M2		10.57	$\alpha(K) = 7.09 \ 10; \ \alpha(L) = 2.56 \ 4; \ \alpha(M) = 0.674 \ 10$ $\alpha(N) = 0.186 \ 3; \ \alpha(O) = 0.0456 \ 7; \ \alpha(P) = 0.00865 \ 13; \ \alpha(Q) = 0.000607 \ 9$ $Mult: L 10 \ 2 \ (arg) = 100/15 \ 1/12 \ 4; \ L 1/K \ (arg) = 0.21 \ 2$
218.17 <i>3</i> ^x 218.56 <i>6</i>	0.28 <i>5</i> 0.29 <i>5</i>	433.719	3+,4+	215.521	3-	M1+E2	1.41 <i>14</i>	1.27 10	$\alpha(K)=0.79 \ 10; \ \alpha(L)=0.353 \ 7; \ \alpha(M)=0.0928 \ 14 \\ \alpha(N)=0.0253 \ 4; \ \alpha(O)=0.00604 \ 10; \ \alpha(P)=0.001077 \ 22; \\ \alpha(Q)=4.1\times10^{-5} \ 5$
223.89 10	0.29 4	250.385	2-	26.427	3+	(E1)		0.0776	δ: α (K)exp=0.79 <i>I3</i> . α (K)=0.0609 <i>9</i> ; α (L)=0.01254 <i>18</i> ; α (M)=0.00304 <i>5</i> α (N)=0.000817 <i>12</i> ; α (O)=0.000197 <i>3</i> ; α (P)=3.60×10 ⁻⁵ <i>5</i> ; α (Q)=2.07×10 ⁻⁶ <i>3</i> Mult.: α (K)exp=0.10 <i>3</i> . Mult.: α (K)exp is consistent with mult=E1 or E2. Placement in the
232.433 8	0.29 5	258.855	4-	26.427	3+	E1		0.0712	level scheme requires $\Delta \pi$ =yes. α (K)exp=0.05 2

From ENSDF

²³⁸₉₃Np₁₄₅-10

				237	⁷ Np((n,γ) E=th	:secondary γ	/s 1990	Ho02 (continued)
							γ ⁽²³⁸ Np) (continued)	
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	\mathbf{J}_f^{π}	Mult.@	δ ⁱ	$\alpha^{\ddagger h}$	Comments
					_				$\begin{aligned} &\alpha(K) = 0.0560 \ 8; \ \alpha(L) = 0.01145 \ 16; \ \alpha(M) = 0.00278 \ 4 \\ &\alpha(N) = 0.000746 \ 11; \ \alpha(O) = 0.000180 \ 3; \ \alpha(P) = 3.29 \times 10^{-5} \ 5; \\ &\alpha(Q) = 1.92 \times 10^{-6} \ 3 \end{aligned}$
^x 233.650 6	0.243 22					M1+E2	1.50 25	0.99 15	$\alpha(K)=0.62 \ 14; \ \alpha(L)=0.275 \ 9; \ \alpha(M)=0.0722 \ 17 \ \alpha(N)=0.0197 \ 5; \ \alpha(O)=0.00469 \ 12; \ \alpha(P)=0.00084 \ 3; \ \alpha(Q)=3.2\times10^{-5} \ 7 \ \delta; \ \alpha(K)=n=0.67 \ 11$
236.025 11	0.61 5	298.368	3+	62.330 4	4+	M1		2.13	$\alpha(K)=1.691\ 24;\ \alpha(L)=0.332\ 5;\ \alpha(M)=0.0806\ 12$ $\alpha(N)=0.0218\ 3;\ \alpha(O)=0.00537\ 8;\ \alpha(P)=0.001043\ 15;$ $\alpha(O)=8.06\times10^{-5}\ 12$
243.959 4	3.6 4	243.959	1+	0.0 2	2+	M1+E2	0.2 9	1.88 79	$\begin{array}{l} \alpha(\rm K) \exp = 1.5 \ 2 \\ \alpha(\rm K) = 1.49 \ 73; \ \alpha(\rm L) = 0.30 \ 5; \ \alpha(\rm M) = 0.073 \ 9 \\ \alpha(\rm N) = 0.0197 \ 23; \ \alpha(\rm O) = 0.0048 \ 7; \ \alpha(\rm P) = 0.00094 \ 18; \ \alpha(\rm Q) = 7.1 \times 10^{-5} \\ 34 \end{array}$
250.40 ^{kb} 4	≤0.41 ^{<i>kb</i>}	250.385	2-	0.0 2	2+	(E1) ^b		0.0602	$\alpha(K)=0.0475 7; \alpha(L)=0.00958 14; \alpha(M)=0.00232 4$ $\alpha(N)=0.000624 9; \alpha(O)=0.0001504 21; \alpha(P)=2.76\times10^{-5} 4;$ $\alpha(Q)=1.637\times10^{-6} 23$ Mult.: $\alpha(K)$ exp is consistent with mult=E1 or E2. Placement in the level scheme requires $\Delta\pi$ =ves.
250.40 ^{kb}	≤0.41 ^{<i>kb</i>}	312.707	5-	62.330 4	4+	b			
251.25 4	0.152 21	277.642	2+	26.427 3	3+	E2		0.354	$\alpha(K)=0.1047 \ 15; \ \alpha(L)=0.182 \ 3; \ \alpha(M)=0.0500 \ 7$ $\alpha(N)=0.01365 \ 20; \ \alpha(O)=0.00321 \ 5; \ \alpha(P)=0.000546 \ 8;$ $\alpha(Q)=7.50\times10^{-6} \ 11$ Mult: $\alpha(K)\exp=0.14 \ 3.$
^x 262.80 8	0.49 4								α (K)exp=0.076 8 Mult.: 1990Ho02 assign mult=E2; however, α (K)=0.098 for E2 theory. The α (K)exp value is consistent with E1+M2 with δ =0.091
^x 264.68 3	0.13 3					M1+E2	1.0 2	0.92 14	$\alpha(K)=0.66\ 13;\ \alpha(L)=0.194\ 11;\ \alpha(M)=0.0494\ 21$ $\alpha(N)=0.0134\ 6;\ \alpha(O)=0.00325\ 15;\ \alpha(P)=0.00060\ 4;\ \alpha(Q)=3.3\times10^{-5}\ 6$
271.953 11	0.44 3	298.368	3+	26.427 3	3+	M1		1.437	$\alpha(K) = 1.140 \ 16; \ \alpha(L) = 0.224 \ 4; \ \alpha(M) = 0.0542 \ 8$ $\alpha(N) = 0.01467 \ 21; \ \alpha(O) = 0.00361 \ 5; \ \alpha(P) = 0.000702 \ 10;$ $\alpha(Q) = 5.42 \times 10^{-5} \ 8$ Mult : $\alpha(K) \exp = 1.3 \ 2.$
277.633 19	0.25 5	277.642	2+	0.0 2	2+				
281.79 10	0.15 4	497.20	2-,3-	215.521 3	3-	M1+E2	1.0 +5-3	0.77 21	$\alpha(K)=0.56 \ 19; \ \alpha(L)=0.159 \ 17; \ \alpha(M)=0.040 \ 4$ $\alpha(N)=0.0109 \ 10; \ \alpha(O)=0.00265 \ 25; \ \alpha(P)=0.00049 \ 6; \ \alpha(Q)=2.74\times10^{-5} \ 84$ $\delta; \ \alpha(K)=n=0.57 \ 18$
289.04 8	0.16 <i>3</i>	395.198	5+	106.164 5	5+	M1+E2	0.9 3	0.77 19	$\alpha(K) \approx 0.57 \ 17; \ \alpha(L) = 0.151 \ 16; \ \alpha(M) = 0.038 \ 4$ $\alpha(N) = 0.0103 \ 9; \ \alpha(O) = 0.00250 \ 23; \ \alpha(P) = 0.00047 \ 6; \ \alpha(Q) = 2.76 \times 10^{-5} \ 74$ $\delta: \ \alpha(K) \exp = = 0.64 \ 16.$

²³⁸₉₃Np₁₄₅-11

From ENSDF

²³⁸₉₃Np₁₄₅-11

				²³⁷ Np(n,)	γ) E=th:sec	condary γ' s	1990H o	002 (continued)			
γ ⁽²³⁸ Np) (continued)											
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{i}	$\alpha^{\ddagger h}$	Comments			
294.178 ^m 20	0.21 3	473.3	(3 ⁻ ,4 ⁻)	179.156 4-	M1		1.156	$\alpha(K)=0.917 \ 13; \ \alpha(L)=0.180 \ 3; \ \alpha(M)=0.0435 \ 6$ $\alpha(N)=0.01178 \ 17; \ \alpha(O)=0.00290 \ 4; \ \alpha(P)=0.000564 \ 8;$ $\alpha(Q)=4.35\times10^{-5} \ 6$ Mult.: $\alpha(K)\exp=1.1 \ 2.$ Transition is unplaced by 1990Ho02. Placement is suggested by the evaluators as deexcitation of the 473.3 level reported by these			
295.984 <i>15</i>	0.63 5	417.639	2+,3+	121.645 4+	E2		0.208	authors in their arc work. $\alpha(K)=0.0780 \ 11; \ \alpha(L)=0.0950 \ 14; \ \alpha(M)=0.0259 \ 4$ $\alpha(N)=0.00707 \ 10; \ \alpha(O)=0.001665 \ 24; \ \alpha(P)=0.000286 \ 4;$ $\alpha(Q)=5.03\times10^{-6} \ 7$ Mult.: $\alpha(K)\exp=0.07 \ 1S.$ Mult.: $\alpha(K)\exp=0.07 \ 1S.$ Mult.: the authors assign mult=E1,E2, but $\alpha(K)\exp$ is consistent only with E2, unless one invokes an M2 admixture with $\delta=0.114$ 17			
297.672 15	0.66 8	433.719	3+,4+	136.044 3-	E1		0.0410	$\alpha(K)=0.0325 5; \alpha(L)=0.00638 9; \alpha(M)=0.001544 22$ $\alpha(N)=0.000415 6; \alpha(O)=0.0001003 14; \alpha(P)=1.86\times10^{-5} 3;$ $\alpha(Q)=1.144\times10^{-6} 16$			
298.38 4	0.056 6	298.368	3+	0.0 2 ⁺	M1		1.111	Mult: $\alpha(K)\exp=0.03$ <i>I</i> . $\alpha(K)=0.882$ <i>I</i> 3; $\alpha(L)=0.1727$ <i>25</i> ; $\alpha(M)=0.0418$ <i>6</i> $\alpha(N)=0.01133$ <i>I</i> 6; $\alpha(O)=0.00279$ <i>4</i> ; $\alpha(P)=0.000542$ <i>8</i> ; $\alpha(Q)=4.18\times10^{-5}$ <i>6</i>			
^x 302.65 7	0.19 3				E2+M1	4.4 16	0.24 6	Mult.: $\alpha(K)\exp=1.0$ 3. $\alpha(K)=0.113$ 50; $\alpha(L)=0.091$ 6; $\alpha(M)=0.0245$ 12 $\alpha(N)=0.0067$ 3; $\alpha(O)=0.00158$ 8; $\alpha(P)=0.000276$ 17; $\alpha(Q)=6.5\times10^{-6}$ 23 δ : $\alpha(K)\exp=0.13$ 3.			
310.40 ^{&} 8	0.008 ^{&} 3	543.23	4-	232.823 5-	[M1]		0.997	$\begin{aligned} &\alpha(\mathbf{K}) = 0.791 \ 11; \ \alpha(\mathbf{L}) = 0.1548 \ 22; \ \alpha(\mathbf{M}) = 0.0375 \ 6 \\ &\alpha(\mathbf{N}) = 0.01015 \ 15; \ \alpha(\mathbf{O}) = 0.00250 \ 4; \ \alpha(\mathbf{P}) = 0.000485 \ 7; \\ &\alpha(\mathbf{Q}) = 3.75 \times 10^{-5} \ 6 \end{aligned}$			
^x 314.168 <i>14</i> 314.31 ^{kf} <i>3</i> 314.31 ^{kf} <i>3</i> ^x 328.89 <i>3</i>	$0.23 \ 4 \le 0.209^{kf} \le 0.209^{kf} 0.13 \ 3$	497.20 529.857	2 ⁻ ,3 ⁻ 3 ⁻	182.878 2 ⁻ 215.521 3 ⁻	$egin{array}{c} f \ f \end{array}$						
x329.24 10	0.024 6				[M1]		0.847	α(K)=0.673 10; α(L)=0.1315 19; α(M)=0.0318 5 α(N)=0.00862 12; α(O)=0.00212 3; α(P)=0.000412 6; $α(Q)=3.18\times10^{-5} 5$ I _γ : 1990Ho02 show mult=M1+E2 in table I; however, the α(K) value used to get I _γ is that corresponding to mult=M1.			
330.966 <i>19</i> *332.257 <i>13</i>	0.29 8 0.75 <i>5</i>	417.639	2+,3+	86.674 3+	M1+E2	0.38 [†] 10	0.74 5	$\alpha(K)=0.58 \ 4; \ \alpha(L)=0.120 \ 5; \ \alpha(M)=0.0292 \ 10$ $\alpha(N)=0.0079 \ 3; \ \alpha(O)=0.00194 \ 7; \ \alpha(P)=0.000375 \ 15;$ $\alpha(Q)=2.76\times10^{-5} \ 17$ $\delta: \text{ From } \alpha(K)\exp=0.58 \ 3.$			

				2	³⁷ Np(n, γ) E=th:secondary γ 's 1990Ho02 (continued)							
							$\gamma(^{238}Np)$ (c	ontinued)				
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ^{i}	$\alpha^{\ddagger h}$	Comments			
332.868 16	0.24 3	395.198	5+	62.330	4+	E2(+M1)	9.0 2	0.1540	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0701 \ 11; \ \alpha(\mathrm{L}) = 0.0615 \ 9; \ \alpha(\mathrm{M}) = 0.01662 \ 24 \\ \alpha(\mathrm{N}) = 0.00453 \ 7; \ \alpha(\mathrm{O}) = 0.001072 \ 15; \ \alpha(\mathrm{P}) = 0.000186 \ 3; \\ \alpha(\mathrm{Q}) = 4.15 \times 10^{-6} \ 6 \end{array} $			
334.205 13	0.27 8	567.021	3-	232.823	5-	E2		0.1441	δ: α (K)exp=0.07 <i>I</i> . α (K)exp=0.05 <i>I</i> α (K)=0.0624 <i>9</i> ; α (L)=0.0598 <i>9</i> ; α (M)=0.01620 <i>23</i> α (N)=0.00442 <i>7</i> ; α (O)=0.001044 <i>I5</i> ; α (P)=0.000181 <i>3</i> ; α (Q)=3.78×10 ⁻⁶ 6			
^x 341.760 <i>12</i>	0.36 4						-1-					
346.98 1	0.11 3	529.857	3-	182.878	2-	M1+E2	0.7 4	0.53 15	$\begin{aligned} &\alpha(\mathbf{K}) = 0.41 \ 13; \ \alpha(\mathbf{L}) = 0.093 \ 16; \ \alpha(\mathbf{M}) = 0.023 \ 4 \\ &\alpha(\mathbf{N}) = 0.0063 \ 9; \ \alpha(\mathbf{O}) = 0.00153 \ 23; \ \alpha(\mathbf{P}) = 0.00029 \ 5; \\ &\alpha(\mathbf{Q}) = 1.96 \times 10^{-5} \ 60 \\ &\delta: \ \alpha(\mathbf{K}) \exp[= 0.4 \ 1. \end{aligned}$			
351.37 8	0.34 5	567.021	3-	215.521	3-	E2		0.1247	δ: From α (K)exp=0.4 <i>I</i> . α (K)exp=0.06 <i>I</i> α (K)=0.0569 <i>8</i> ; α (L)=0.0497 <i>7</i> ; α (M)=0.01342 <i>19</i> α (N)=0.00366 <i>6</i> ; α (O)=0.000865 <i>I3</i> ; α (P)=0.0001505 <i>22</i> ;			
358.25 4	0.34 3	523.87	5+,4+	165.59	5+				Mult.: 1990Ho02 show mult=E2 for this transition; however, no ce data are available. The basis for this assignment is not given.			
364.09 <i>4</i> x368.41 <i>5</i>	0.09 <i>3</i> 0.32 <i>3</i>	543.23	4-	179.156	4-	M1+E2	0.97 14	0.37 4	$\alpha(K)=0.28 \ 4; \ \alpha(L)=0.070 \ 5; \ \alpha(M)=0.0175 \ 10$ $\alpha(N)=0.0047 \ 3; \ \alpha(O)=0.00115 \ 7; \ \alpha(P)=0.000217 \ 14;$ $\alpha(Q)=1.35 \times 10^{-5} \ 16$ $\delta: \ \alpha(K)=n=0.28 \ 3$			
^x 369.875 15	0.271 24								u(x) = 0.200			
x373.03 5 x374.59 ^{&} 7	$0.85 \ 3 \\ 0.031^{\&} \ 6$					[M1]		0.595	α (K)=0.473 7; α (L)=0.0921 13; α (M)=0.0223 4 α (N)=0.00604 9; α (O)=0.001487 21; α (P)=0.000289 4;			
x380.302 25	0.014 4					[M1]		0.571	$\alpha(Q)=2.23\times10^{-5} 4$ $\alpha(K)=0.453 7; \ \alpha(L)=0.0884 \ 13; \ \alpha(M)=0.0214 \ 3$ $\alpha(N)=0.00579 \ 9; \ \alpha(O)=0.001426 \ 20; \ \alpha(P)=0.000277 \ 4; \ \alpha(O)=2 \ 14\times10^{-5} \ 3$			
^x 381.995 <i>19</i>	0.241 25											
384.12 4	0.191 <i>19</i>	567.021	3-	182.878	2-	M1+E2	0.93 [†] 16	0.34 5	$\alpha(K)=0.26 \ 4; \ \alpha(L)=0.063 \ 5; \ \alpha(M)=0.0156 \ 11 \\ \alpha(N)=0.0042 \ 3; \ \alpha(O)=0.00103 \ 8; \ \alpha(P)=0.000195 \ 15; \\ \alpha(Q)=1.24\times10^{-5} \ 17 \\ \delta: \ 0.26 \ 3. \\ \delta: \ From \ \alpha(K)exp=0.26 \ 3. \end{cases}$			
391.27 3	0.37 <i>3</i>	417.639	2+,3+	26.427	3+	M1+E2	1.3 2	0.25 4	$\alpha(K)=0.19 \ 3; \ \alpha(L)=0.052 \ 4; \ \alpha(M)=0.0130 \ 9 \\ \alpha(N)=0.00354 \ 24; \ \alpha(O)=0.00086 \ 6; \ \alpha(P)=0.000160 \ 13; \\ \alpha(Q)=9.0\times10^{-6} \ 14$			

From ENSDF

 $^{238}_{93}\mathrm{Np}_{145}\text{--}13$

I

					²³⁷ Np	(\mathbf{n}, γ) E=th	:secondary γ 's	1990Ho0	1990Ho02 (continued)		
							γ ⁽²³⁸ Np) (cont	inued)			
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#j}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	δ^{i}	$lpha^{\ddagger h}$	Comments		
^x 405.213 <i>11</i>	0.27 3					M1		0.480	δ: α(K)exp=0.19 3. Mult.: the authors assign mult=M1; however, α(K)exp requires an E2 admixture. α(K)=0.382 6; α(L)=0.0743 11; α(M)=0.0180 3 α(N)=0.00487 7; α(O)=0.001198 17; α(P)=0.000233 4; $α(Q)=1.80×10^{-5} 3$ Mult.: α(K)exp=0.26 3.		
^x 409.96 3 417.60 ^{kd} 417.60 ^{kd} 6	$0.188\ 22 \le 0.031^{kd} \le 0.031^{kd}$	417.639 523.87	2 ⁺ ,3 ⁺ 5 ⁺ ,4 ⁺	0.0 106.164	2 ⁺ 4 5 ⁺						
430.96 <i>3</i>	0.65 8	567.021	3-	136.044	4 3-	M1+E2	0.87 [†] 22	0.26 5	$\begin{aligned} &\alpha(\mathbf{K}) = 0.20 \ 4; \ \alpha(\mathbf{L}) = 0.046 \ 6; \ \alpha(\mathbf{M}) = 0.0114 \ 12 \\ &\alpha(\mathbf{N}) = 0.0031 \ 4; \ \alpha(\mathbf{O}) = 0.00076 \ 8; \ \alpha(\mathbf{P}) = 0.000144 \ 17; \\ &\alpha(\mathbf{Q}) = 9.6 \times 10^{-6} \ 18 \\ &\delta: \ 0.20 \ 3. \end{aligned}$		
^x 432.05 1	0.021 6					[M1]		0.403	δ: From α (K)exp=0.20 3. α (K)=0.321 5; α (L)=0.0623 9; α (M)=0.01508 22 α (N)=0.00408 6; α (O)=0.001005 14; α (P)=0.000195 3; α (O)=1.506×10 ⁻⁵ 21		
^x 442.74 3	0.026 6					[M1]		0.377	$\alpha(Q) = 1.300 \times 10^{-2.1}$ $\alpha(K) = 0.300 \ 5; \ \alpha(L) = 0.0583 \ 9; \ \alpha(M) = 0.01410 \ 20$ $\alpha(N) = 0.00382 \ 6; \ \alpha(O) = 0.000940 \ 14; \ \alpha(P) = 0.000183 \ 3;$ $\alpha(Q) = 1.409 \times 10^{-5} \ 20$		
^x 456.040 <i>13</i> 461.59 9	0.51 <i>3</i> 0.36 <i>6</i>	523.87	5+,4+	62.330) 4+	M1+E2	0.93 +25-20	0.21 4	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.16 \ 3; \ \alpha(\mathbf{L}) = 0.037 \ 4; \ \alpha(\mathbf{M}) = 0.0091 \ 9 \\ &\alpha(\mathbf{N}) = 0.00247 \ 25; \ \alpha(\mathbf{O}) = 0.00060 \ 6; \ \alpha(\mathbf{P}) = 0.000114 \ 13; \\ &\alpha(\mathbf{Q}) = 7.6 \times 10^{-6} \ 13 \\ &\delta: \ \alpha(\mathbf{K}) \exp = 0.17 \ 3. \end{aligned} $		
^x 469.17 4 ^x 476.99 3	0.15 <i>3</i> 0.13 <i>4</i>					M1+E2	0.7 5	0.225 74	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.175 \ 62; \ \alpha(\mathrm{L}) = 0.038 \ 9; \ \alpha(\mathrm{M}) = 0.0092 \ 21 \\ \alpha(\mathrm{N}) = 0.0025 \ 6; \ \alpha(\mathrm{O}) = 0.00061 \ 14; \ \alpha(\mathrm{P}) = 0.00012 \ 3; \\ \alpha(\mathrm{Q}) = 8.3 \times 10^{-6} \ 29 \end{array} $		
^x 478.79 4	0.38 4					M1+E2	0.4 3	0.27 5	δ: α (K)exp=0.17 5. α (K)=0.21 4; α (L)=0.043 6; α (M)=0.0104 14 α (N)=0.0028 4; α (O)=0.00069 9; α (P)=0.000134 19; α (Q)=1.00×10 ⁻⁵ 19		
^x 481.605 <i>19</i>	0.50 4					M1+E2	0.56 25	0.24 4	α(K) exp=0.21 2. α(K)=0.19 4; α(L)=0.039 5; α(M)=0.0096 11 α(N)=0.0026 3; α(O)=0.00064 8; α(P)=0.000123 15; $ α(Q)=8.9 \times 10^{-6} 15 $		
x482.60 <i>4</i>	0.45 7					M1+E2	0.5 4	0.25 6	δ: α(K)exp=0.19 2. α(K)=0.197 51; α(L)=0.040 8; α(M)=0.0098 17 α(N)=0.0027 5; α(O)=0.00065 12; α(P)=0.000126 24; $ α(Q)=9.2×10^{-6} 24 $ δ: α(K)exp=0.19 3.		

 $^{238}_{93}\mathrm{Np}_{145}$ -14

From ENSDF

²³⁸₉₃Np₁₄₅-14

²³⁷ Np(n, γ) E=th:secondary γ 's 1990Ho02 (continued)										
γ ⁽²³⁸ Np) (continued)										
${\rm E_{\gamma}}^{\#}$	Ι _γ # <i>j</i>	E_i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult.@	δ^i	$\alpha^{\ddagger h}$	Comments	
^x 483.75 5 ^x 496.53 4	0.44 8 0.55 9					M1+E2	1.2 2	0.143 21	α (K)=0.108 <i>18</i> ; α (L)=0.026 <i>3</i> ; α (M)=0.0066 <i>6</i> α (N)=0.00178 <i>16</i> ; α (O)=0.00043 <i>4</i> ; α (P)=8.2×10 ⁻⁵ <i>8</i> ; α (Q)=5.2×10 ⁻⁶ <i>8</i> δ : α (K)exn=0 11 2	
497.49 5	0.43 4	523.87	5+,4+	26.427	3+				0. u(R) A p = 0.11 2.	
^x 530.61 <i>10</i>	0.34 7						-0.5	0.004.10		
*538.39 5	0.32 3					M1(+E2)	≤0.5	0.204 19	$\begin{array}{l} \alpha(\mathbf{K})=0.162 \ 16; \ \alpha(\mathbf{L})=0.0320 \ 23; \ \alpha(\mathbf{M})=0.0078 \ 6\\ \alpha(\mathbf{N})=0.00210 \ 15; \ \alpha(\mathbf{O})=0.00052 \ 4; \ \alpha(\mathbf{P})=0.000100 \ 8; \\ \alpha(\mathbf{Q})=7.6\times10^{-6} \ 7\\ \delta: \ \alpha(\mathbf{K})\exp=0.17 \ 2. \end{array}$	
^x 541.28 4	0.37 7					M1+E2	0.9 3	0.14 4	$\begin{aligned} \alpha(\mathbf{K}) &= 0.108 \ 28; \ \alpha(\mathbf{L}) = 0.024 \ 4; \ \alpha(\mathbf{M}) = 0.0059 \ 10 \\ \alpha(\mathbf{N}) &= 0.0016 \ 3; \ \alpha(\mathbf{O}) = 0.00039 \ 7; \ \alpha(\mathbf{P}) = 7.4 \times 10^{-5} \ 13; \\ \alpha(\mathbf{Q}) &= 5.1 \times 10^{-6} \ 13 \\ \delta: \ \alpha(\mathbf{K}) &= p = 0.11 \ 2. \end{aligned}$	
^x 551.64 5	0.29 3									
^x 554.62 7	0.33 4									
^x 555.16 6	0.39 8					M1+E2	0.9 3	0.13 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.101 \ 26; \ \alpha(\mathbf{L}) = 0.022 \ 4; \ \alpha(\mathbf{M}) = 0.0055 \ 9 \\ &\alpha(\mathbf{N}) = 0.00148 \ 24; \ \alpha(\mathbf{O}) = 0.00036 \ 6; \ \alpha(\mathbf{P}) = 6.9 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{Q}) = 4.8 \times 10^{-6} \ 12 \\ &\delta: \ \alpha(\mathbf{K}) \exp = 0.10 \ 2. \end{aligned}$	
^x 555.50 6	0.394 25									
^x 557.45 7	0.37 3					M1+E2	1.7 2	0.081 9	$\alpha(K)=0.060\ 7;\ \alpha(L)=0.0158\ 11;\ \alpha(M)=0.00398\ 25$ $\alpha(N)=0.00108\ 7;\ \alpha(O)=0.000262\ 17;\ \alpha(P)=4.9\times10^{-5}\ 4;$ $\alpha(Q)=2.9\times10^{-6}\ 4$ $\delta;\ \alpha(K)=0.06\ 1.$	
^x 565.31 5	0.40 4					M1+E2	0.7 2	0.143 21	$\alpha(K)\exp=0.11 \ l$ $\alpha(K)=0.112 \ l7; \ \alpha(L)=0.023 \ 3; \ \alpha(M)=0.0057 \ 6$ $\alpha(N)=0.00155 \ l7; \ \alpha(O)=0.00038 \ 4; \ \alpha(P)=7.3\times10^{-5} \ 9; \ \alpha(Q)=5.3\times10^{-6} \ 8$	
^x 571.25 3	0.36 5									
x582.53 6	0.20 3		a+ a+	(2.220)	4+					
584.47 5	0.4 1	646.76	21,31	62.330	4'					
x592.92.6	0.95 15									
x602.50 3	0.61 7									
^x 603.23 5	0.41 4					M1+E2	1.7 2	0.066 7	$\begin{array}{l} \alpha(\text{K}) \exp = 0.05 \ l \\ \alpha(\text{K}) = 0.049 \ 6; \ \alpha(\text{L}) = 0.0126 \ 9; \ \alpha(\text{M}) = 0.00317 \ 2l \\ \alpha(\text{N}) = 0.00086 \ 6; \ \alpha(\text{O}) = 0.000209 \ l4; \ \alpha(\text{P}) = 3.9 \times 10^{-5} \ 3; \\ \alpha(\text{Q}) = 2.4 \times 10^{-6} \ 3 \end{array}$	
^x 606.73 4	0.44 5									
^x 609.07 8	0.15 4						4			
^x 612.86 5	0.32 5					M1+E2	1.06 20	0.091 14	$\alpha(K)=0.070 \ 11; \ \alpha(L)=0.0156 \ 17; \ \alpha(M)=0.0038 \ 4$	

From ENSDF

²³⁸₉₃Np₁₄₅-15

²³⁸₉₃Np₁₄₅-15

²³⁷ Np(n, γ) E=th:secondary γ 's 1990Ho02 (continued)										
γ ⁽²³⁸ Np) (continued)										
$E_{\gamma}^{\#}$	Ι _γ # <i>j</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ^{i}	$\alpha^{\ddagger h}$	Comments	
X(14.00.6	0.16.2								$ α(N)=0.00104 \ 11; \ α(O)=0.00025 \ 3; \ α(P)=4.8\times10^{-5} \ 6; α(Q)=3.3\times10^{-6} \ 5 δ: From α(K)exp=0.07 \ 1. $	
620.28 <i>6</i>	0.63 8	646.76	2+,3+	26.427	3+	M1+E2	0.97 21	0.093 15	α (K)=0.072 <i>12</i> ; α (L)=0.0157 <i>19</i> ; α (M)=0.0039 <i>5</i> α (N)=0.00105 <i>12</i> ; α (O)=0.00026 <i>3</i> ; α (P)=4.9×10 ⁻⁵ <i>6</i> ; α (Q)=3.4×10 ⁻⁶ <i>6</i>	
x625.73 5 x630.54 7 x633 56 0	0.184 22 0.20 <i>3</i>									
646.75 7	0.14 5	646.76	2+,3+	0.0	2+	E2(+M1)	≥1.9	0.040 12	α (K)exp=0.03 <i>I</i> α (K)=0.0285 <i>98</i> ; α (L)=0.0083 <i>16</i> ; α (M)=0.0021 <i>4</i> α (N)=0.00057 <i>10</i> ; α (O)=0.000139 <i>25</i> ; α (P)=2.6×10 ⁻⁵ <i>5</i> ; α (O)=1.37×10 ⁻⁶ <i>45</i>	
^x 648.27 8	0.50 7									
[†] Deduce [‡] Theore (2005K [#] From 1 [@] From e	 [†] Deduced by evaluators using conversion-electron in 1990Ho02 data and a minimization procedure (Program BRICCMixing), except as noted. [‡] Theoretical values listed here are from 2002Ba85, and have been interpolated using the computer code bricc (Band Raman Internal Conversion Coefficients) (2005KiZT). [#] From 1990Ho02. The Iγ are in units of photons per 100 neutron captures. [@] From apprimental conversion coefficient and subshall ratio data of 1900Ho02 									
^{&} No pho	oton is obse	rved, and on	ly an L1	subshell	or K	ce peak is se	een. 1990Ho	02 assume n	nult=M1 to deduce $E\gamma$ and $I\gamma$. In such cases mult=E0, E3 or higher	
or M2 or higher would be possible but much less likely. ^a 1990Ho02 report E=109.614 4 with I γ =1.09 24 and α (L1)exp=0.06 <i>I</i> for this doubly placed transition. Placement from the 136 level requires mult=E1(+M2), and placement from the 342 level requires mult=M1 or E2. Comparison of α (L1)exp with the theory values of 0.038 (E1), 0.233 (E2), and 2.80 (M1) suggests that most of the intensity of this transition belongs with the 136 level. From I γ (109 γ)/I γ (67 γ)≤1.23 <i>I0</i> from the 342 level in α decay, one obtains I γ (109 γ)≤0.32 for placement from the 342 level in (n, γ), leaving I γ (109 γ)=0.9 3 for placement from the 136 level in (n, γ).										
^b 1990Ho02 report E=250.40 4 with I γ =0.35 6 and α (K)exp=0.13 3 for this doubly placed transition. Both placements require mult=E1(+M2); however, the α (K)exp gives δ =0.13 +2-3, an unusually large value. The authors observe a 250.33 transition in α decay, with a placement requiring mult=M1 or E2. A 5% contribution to the 250.44 peak from the 250.33 transition would yield the observed K-shell conversion coefficient.										
^c 1990H	^c 1990Ho02 report E=152.69 3 with $I\gamma$ =0.29 4 for this doubly placed transition. The authors assign a tentative mult of E1, probably based on the absence of any									
^d 1990H	002 report 1	E=417.60~6	with $I\gamma = 0$	0.025 6 f	or thi	s doubly place	ced transitior	n. No photor	has been seen, and this intensity has been deduced by the authors	
from I(^e No pho	ce(K)) with oton has bee	the assumption the assumption detected.	ion of m Eγ and I	ult=M1. γ are obta	Both ained	from the ce	anvolve $\Delta L = 0$ data and the	$0,1 \text{ and } \Delta \pi =$ deduced mu	no. 1ltipolarity.	
^{<i>f</i>} 1990Ho02 report E=314.31 3 with I γ =0.185 24 and α (K)exp=0.46 7 for this doubly placed transition. α (K)exp is consistent with mult=M1,E2 required for both placements.										

²³⁸₉₃Np₁₄₅-16

$\gamma(^{238}Np)$ (continued)

- ^g Authors' value, deduced from I(ce(L2)) and α (L2), is reevaluated by the evaluators to correspond to the corrected theoretical α (L2). See the general comment at the head of the γ listing.
- ^h Additional information 3.
- ^{*i*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^{*j*} Intensity per 100 neutron captures.
- ^k Multiply placed with undivided intensity.
- ^{*l*} Multiply placed with intensity suitably divided.
- m Placement of transition in the level scheme is uncertain.
- ^{*x*} γ ray not placed in level scheme.

 $^{238}_{93} Np_{145}$

²³⁷Np(n,γ) E=th:secondary γ's 1990Ho02

 $^{238}_{93}\mathrm{Np}_{145}\text{--}20$

 $^{238}_{93}\mathrm{Np}_{145}\text{--}20$

From ENSDF