²³⁷Np(n,γ) E=resonance 1990Ho02,1979Io01

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014	

Additional information 1.

E(n)=0.489 eV, 1.33 eV, 5.3 eV (1979Io01).

E(n)=1.48 eV (1990Ho02,1979Io01).

 $J^{\pi}(1.48 \text{ eV resonance})=2^+$, $J^{\pi}(5.8 \text{ eV resonance})=3^+$ (1973Mu14).

Others: 2012Ha16, 2012Pr13, 2011Ch57, 2011Gu21, 2011Iw04, 2011Ma59, 2011Mu13, 2010Pr07, 2010No02, 2010Co02, 2009Ha10, 2008Br06, 2008Es01, 2008Pa14, 2007Ko28, 2006Ad16, 2006V101, 2005Na45, 2005Re25, 2005Sh15, 2004Sh01, 2003Ka47, 2002Ko18, 2001Wa28.

2012GU07: Neutron beam at E=0.7-500 eV from neutron time-of-flight facility n_TOF at CERN. Target=49.1 mg NpO₂ (99.2% purity). Measured total absorption γ spectra, E(n), σ (E), transmission spectra using 4π BaF₂ Total Absorption Calorimeter (40 BaF₂ crystals). Deduced neutron resonances, levels, level spacing distribution, average capture cross sections, neutron widths. S(n)(²³⁸Np)=5488.32 keV 20 (2012Wa38).

 $J^{\pi}(^{237}\text{Np g.s.})=5/2^+$.

²³⁸Np Levels

 Γ_{γ} =40.9 meV 18 for all resonances.

$E(level)^{\dagger e}$	$J^{\pi \ddagger}$	Γ_n (eV)	Comments
26.4 ^b	3+		
136.0 [#]	3-		
179.2 ^{@&d}	4-		
182.9 ^{#@&d}	2-		
215.5 ^{#@&a}	3-		
246.8 [°] 16			
250.4 ^{#&d}	(2) ⁻		
258.9 ^{&d}	4-		
325.2 [#]	1-		
334.0 [#]	1^{-} to 3^{-}		
347.7 <mark>&</mark>	1 ⁻ to 3 ⁻		
352.5 [#]	(3)-		
367.3 [#]	$(2)^{-}$		
373.7 <mark>&ab</mark>	(1)-		
386.2 ^{<i>a</i>} 5			
442.2 ^{<i>a</i>}	$(4)^{-}$		
457.5	1^{-} to 3^{-}		
529.9 [#] <i>a</i>	2-,3-		
567.0 ^{#&a}	3-		
601.4 ^{&ab}	1 ⁻ to 3 ⁻		
623.6^{a} 15			E(level): $E=619.5 \ 3$ for this level in thermal capture.
$648.4^{\#\&a}$	1^{-} to 3^{-}		
674.5 ^{#000}	1^{-} to 3^{-}		
692.3 ^{# &}	1^{-} to 3^{-}	a 15 10-5 AL 10	
S(n)+0.00132 1	3	$3.17 \times 10^{-3} \text{ eV } 12$	S(n)=5488.32 keV 20 (2012Wa38). E(n)=0.001321 eV 1.
S(n)+0.00148 1	2	1.81×10 ⁻⁴ eV 7	E(n)=0.001478 eV 1.
S(n)+0.00197 1	3	1.40×10 ⁻⁵ eV 5	E(n)=0.001969 eV 1.

²³⁷Np(n,γ) E=resonance 1990Ho02,1979Io01 (continued)

²³⁸Np Levels (continued)

$E(level)^{\dagger e}$	$J^{\pi \ddagger}$	Γ_n (eV)	Comments
S(n) + 0.00387 1	3	2.07×10 ⁻⁴ eV 8	E(n)=0.003865 eV 2
S(n)+0.00307 I S(n)+0.00426 I	2	3.23×10^{-5} eV 12	F(n)=0.004264 eV 3
S(n)+0.004861	2	3.96×10^{-5} eV 15	E(n) = 0.004863 eV 3
S(n)+0.00788 1	3	5.24×10^{-4} eV 19	E(n) = 0.005777 eV 4
S(n)+0.005701 S(n)+0.006381	3	7.8×10^{-5} eV 3	E(n) = 0.006378 eV 4
S(n)+0.00668 1	2	$1.36 \times 10^{-5} \text{ eV} 5$	E(n) = 0.006570 eV 4
S(n)+0.00719 <i>l</i>	2	8.2×10^{-6} eV 3	E(n) = 0.007189 eV 5.
S(n) + 0.00742 <i>I</i>	3	1.19×10^{-4} eV 4	E(n)=0.007423 eV 5.
S(n) + 0.00768 l	2	1.76×10^{-6} eV 12	E(n) = 0.007678 eV 7.
S(n)+0.00831 <i>l</i>	3	8.8×10^{-5} eV 3	E(n) = 0.008307 eV 6.
S(n)+0.00898 1	3	1.01×10^{-4} eV 4	E(n)=0.008978 eV 6.
S(n)+0.00930 1	2	5.85×10^{-4} eV 22	E(n)=0.009299 eV 6.
S(n)+0.01023 <i>l</i>	2	2.75×10^{-5} eV 10	E(n)=0.010231 eV 7.
S(n) + 0.01068 I	3	4.22×10^{-4} eV 16	E(n)=0.010682 eV 7.
S(n)+0.01085 <i>I</i>	3	6.83×10^{-4} eV 25	E(n)=0.010845 eV 8.
S(n)+0.01110 <i>I</i>	2	1.00×10^{-3} eV 4	E(n)=0.011097 eV 8.
S(n)+0.01220 <i>I</i>	3	4.87×10^{-5} eV 18	E(n)=0.012202 eV 9.
S(n)+0.01262 1	2	8.9×10^{-4} eV 3	E(n)=0.012618 eV 9.
S(n)+0.01314 1	3	1.78×10 ⁻⁵ eV 7	E(n)=0.013139 eV 9.
S(n)+0.01428 3	2	9.6×10 ⁻⁷ eV 10	
S(n)+0.01580 1	3	6.71×10 ⁻⁵ eV 25	
S(n)+0.01595 1	3	3.74×10 ⁻⁵ eV 18	
S(n)+0.01609 1	2	1.01×10 ⁻³ eV 4	
S(n)+0.01686 1	2	2.90×10 ⁻⁴ eV 11	
S(n)+0.01760 1	3	1.51×10 ⁻⁴ eV 6	
S(n)+0.01791 1	2	1.55×10 ⁻⁵ eV 7	
S(n)+0.01794 4	3	3.0×10 ⁻⁶ eV 3	
S(n)+0.01889 1	2	4.18×10 ⁻⁵ eV 15	
S(n)+0.01913 1	3	8.4×10 ⁻⁵ eV 3	
S(n)+0.01993 2	3	6.22×10 ⁻⁵ eV 23	
S(n)+0.02040 2	2	1.30×10 ⁻³ eV 5	
S(n)+0.02110 2	3	4.29×10 ^{−4} eV 16	
S(n)+0.02135 2	2	2.54×10 ⁻⁵ eV 11	
S(n)+0.02202 2	2	1.46×10 ⁻³ eV 5	
S(n)+0.02287 2	3	3.75×10 ⁻⁴ eV 14	
S(n)+0.02368 2	3	1.39×10 ⁻³ eV 5	
S(n)+0.02399 2	2	1.79×10 ⁻⁴ eV 7	
S(n)+0.02476 2	3	5.03×10^{-5} eV 22	
S(n)+0.02499 2	3	3.56×10^{-3} eV 13	
S(n)+0.02620 2	3	2.11×10^{-4} eV 8	
S(n)+0.02657 2	3	2.31×10^{-3} eV 9	
S(n)+0.02709 2	2	4.33×10 ⁻⁵ eV 16	
S(n)+0.02845 2	2	$9.3 \times 10^{-5} \text{ eV} 3$	
S(n)+0.02862 2	3	3.59×10^{-5} eV 18	
S(n)+0.02894 2	2	1.40×10^{-4} eV 5	
S(n)+0.02948 2	2	$8.5 \times 10^{-5} \text{ eV} 3$	
S(n)+0.03042 2	3	3.10×10^{-3} eV 11	
S(n)+0.03076 2	2	3.44×10^{-4} eV 13	
S(n)+0.03131 3	3	$2.43 \times 10^{-4} \text{ eV } 9$	
S(n)+0.03167 3	3	4.52×10^{-5} eV 17	
S(n)+0.03248 3	2	$1.31 \times 10^{-5} \text{ eV } 9$	

1990Ho02,1979Io01 (continued)

			²³⁸ Np Levels (continued)		
E(level) [†] <i>e</i>	$J^{\pi \ddagger}$	Γ_n (eV)	E(level) [†] e	$J^{\pi \ddagger}$	Γ_n (eV)
S(n)+0.03343 3	3	3.87×10 ⁻⁴ eV 14	S(n)+0.03820 3	3	1.10×10 ⁻³ eV 4
S(n)+0.03391 3	2	4.37×10 ⁻⁴ eV 16	S(n)+0.03892 3	3	7.3×10 ⁻⁴ eV 3
S(n)+0.03406 3	3	3.8×10 ⁻⁵ eV 3	S(n)+0.03901 3	2	4.1×10 ⁻⁴ eV 4
S(n)+0.03469 3	3	1.45×10 ⁻⁴ eV 5	S(n)+0.03924 3	3	5.14×10 ⁻⁴ eV 19
S(n)+0.03521 3	2	3.67×10 ⁻⁴ eV 14	S(n)+0.03984 3	2	9.1×10 ⁻⁵ eV 9
S(n)+0.03639 3	3	1.12×10 ⁻⁴ eV 4	S(n)+0.03994 3	3	4.18×10 ⁻⁴ eV 15
S(n)+0.03685 3	2	8.4×10 ⁻⁵ eV 3	S(n)+0.04137 3	3	1.82×10 ⁻³ eV 7
S(n)+0.03716 3	3	1.07×10 ⁻³ eV 4	S(n)+0.04241 4	3	5.90×10 ⁻⁵ eV 22
S(n)+0.03790 3	2	4.0×10 ⁻⁵ eV 4	S(n)+0.04284 4	3	7.3×10 ⁻⁵ eV 3
S(n)+0.03807 3	2	2.33×10 ⁻⁴ eV 19			

²³⁷Np(n, γ) E=resonance

[†] Rounded-off values from Adopted Levels. The primary γ data are given in 1990Ho02 and 1979Io01, along with the level energies deduced from these transitions.

[‡] From Adopted Levels. Levels strongly fed from the 1.48-eV 2⁺ resonance are expected to have J=1, 2, or 3, and those fed from the 3^+ 5.8-eV resonance are expected to have J=2, 3, or 4.

[#] Fed from the 1.48-eV resonance and reported by both 1979Io01 and 1990Ho02.

[@] Fed from the 5.8-eV resonance.

[&] Fed from the 1.33-eV resonance.

^a Fed from the 0.489-eV resonance.
^b Fed from the 1.48-eV resonance but reported only by 1990Ho02.

^c Fed from the 1.48-eV resonance but reported only by 1979Io01.

^d Primary transition from 0.489-eV resonance could feed one or both of the close-lying levels at this energy.

^e Neutron resonance energies are from 2012Gu07.